半导体物理学第五章习题答案
半导体物理学课后习题第五章第六章答案

可修改 第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为。
(1)写出光照下过剩载流子所满足的方程;(2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm p U scm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dt p d g Ae t p g p dt p d L L t L =∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cms pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后可修改4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度n=p=1014cm -3。
计算无光照和有光照的电导率。
%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡Θ。
半导体物理学课后习题第五章第六章答案

第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为。
(1)写出光照下过剩载流子所满足的方程;(2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm p U scm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dt p d g Ae t p g p dt p d L L t L =∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L :101:1010100.00'000316622∆+∆++=+=Ω=+==⨯==∆=∆=+∆---μμμμμμσμμρττ光照后光照前光照达到稳定态后4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度n=p=1014cm -3。
计算无光照和有光照的电导率。
%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡 。
半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学课后习题第五章第六章答案

第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为?。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10??cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3?s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后4. 一块半导体材料的寿命?=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度?n=?p=1014cm -3。
计算无光照和有光照的电导率。
%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡Θ。
半导体物理分章答案第五章

Rn = rn n( N t − nt ) N t :复合中心浓度 其中, 其中,rn 是与温度有关的 比例系数, 比例系数,称为电子俘获 nt :复合中心上电子浓度 系数。 系数。
⑵电子的发射过程(乙) 电子的发射过程( 是温度的函数,与导带空状态密度成正比。 电子激发几率s-是温度的函数,与导带空状态密度成正比。 在非简并情况下, 可写成: 在非简并情况下,电子的产生率Gn可写成:
材料是均匀的电场分布也是均匀的则分布也是均匀的则所以所以通解为通解为其中其中1122是下面方程的两个根是下面方程的两个根22连续性方程求解特例连续性方程求解特例被称为牵引长度被称为牵引长度则则的方程式表示为的方程式表示为22光激发的载流子衰减光激发的载流子衰减141141页例页例1133少数载流子脉冲在电少数载流子脉冲在电场中的漂移如图场中的漂移如图551919所示所示在一块均匀的在一块均匀的nn型半导体用局部的光脉冲体用局部的光脉冲照射会产生非平衡载照射会产生非平衡载流子
(5-14) 14)
把 n = n0 +△p,p = p0 +△p以及△n =△p代入上 式,得到 Ud = r (n0 + p0)△p + r (△p)2 16) (5-16) 所以,非平衡载流子的寿命为: 所以,非平衡载流子的寿命为:
∆p 1 τ= = U d r [(n0 + p0 ) + ∆p ]
非平衡态的电子与空穴各自处于热平衡态 则 1 fn (E) = E−En
F
f p (E) =
1 + e k0T 1
p EF − E k 0T
1+ 1+ e n E F → 电子准费米能级
p E F → 空穴准费米能级
半导体物理学课后知识题第五章第六章答案解析

第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω•cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3•s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm pU s cm p Up3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。
计算无光照和有光照的电导率。
cms pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρpu p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡 。
半导体物理学第五章习题答案

第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cms pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度n=p=1014cm -3。
计算无光照和有光照的电导率。
6. 画出p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和光照时的准费米能级。
半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案

料的电阻率n=0.38m2/( 121.8。
V.S),Ge的单晶密度为5.32g/cm3,Sb原子量为
解:该Ge单晶的体积为:;
Sb掺杂的浓度为:
查图3-7可知,室温下Ge的本征载流子浓度,属于过渡区
5. 500g的Si单晶,掺有4.510-5g 的B ,设杂质全部电离,试求该材
料的电阻率p=500cm2/( V.S),硅单晶密度为2.33g/cm3,B原子量为10.8。 解:该Si单晶的体积为:;
21. 试计算掺磷的硅、锗在室温下开始发生弱简并时的杂质浓度为多 少?
22. 利用上题结果,计算掺磷的硅、锗的室温下开始发生弱简并时有 多少施主发生电离?导带中电子浓度为多少?
第四章习题及答案 1. 300K时,Ge的本征电阻率为47cm,如电子和空穴迁移率分别为 3900cm2/( V.S)和1900cm2/( V.S)。 试求Ge 的载流子浓度。 解:在本征情况下,,由知 2. 试计算本征Si在室温时的电导率,设电子和空穴迁移率分别为 1350cm2/( V.S)和500cm2/( V.S)。当掺入百万分之一的As后,设杂质 全部电离,试计算其电导率。比本征Si的电导率增大了多少倍?
5. 利用表3-2中的m*n,m*p数值,计算硅、锗、砷化镓在室温下的NC , NV以及本征载流子的浓度。
6. 计算硅在-78 oC,27 oC,300 oC时的本征费米能级,假定它在禁带 中间合理吗?
所以假设本征费米能级在禁带中间合理,特别是温度不太高的情况 下。
7. ①在室温下,锗的有效态密度Nc=1.051019cm-3,NV=3.91018cm-3, 试求锗的载流子有效质量m*n m*p。计算77K时的NC 和NV。 已知300K 时,Eg=0.67eV。77k时Eg=0.76eV。求这两个温度时锗的本征载流子浓 度。②77K时,锗的电子浓度为1017cm-3 ,假定受主浓度为零,而EcED=0.01eV,求锗中施主浓度ED为多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10??cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度n=p=1014cm -3。
计算无光照和有光照的电导率。
6. 画出p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和光照时的准费米能级。
%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡Θ。
后,减为原来的光照停止%5.1320%5.13)0()20()0()(1020s e p p ep t p tμτ==∆∆∆=∆--cms q n qu p q n pp p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=⨯⨯⨯=≈+=∆+=∆+=⨯===∆=∆⨯==---μμσ无光照则设半导体的迁移率)本征空穴的迁移率近似等于的半导体中电子、注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2)(:--=+=+⨯⨯⨯+≈+∆++=+=cm cms nq q p q n pq nq p n p n pn μμμμμμσ7. 掺施主浓度N D =1015cm -3的n 型硅,由于光的照射产生了非平衡载流子n=p=1014cm -3。
试计算这种情况下的准费米能级位置,并和原来的费米能级作比较。
8. 在一块p 型半导体中,有一种复合-产生中心,小注入时,被这些中心俘获的电子发射回导带的过程和它与空穴复合的过程具有相同的概率。
试求这种复合-产生中心的能级位置,并说明它能否成为有效的复合中心E cE iE vE cE F E i E vE FpE Fn光照前光照后⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-=-==+⨯=+=∆+=⨯=+=∆+=-T k E E e n p T k E E e n n cmN n p p p cm n n n FP i i o i Fn i Di01414152101420315141503/101010)105.1(10/101.11010Θ度强电离情况,载流子浓0.0517eV P FE F E 0.0025eVFE nF E 0.289eV 10101.51410Tln 0k inDNTln o k i E F E 平衡时0.229eV 10101.51410Tln 0k i E FP E iPP Tln 0k i E FP E0.291eV 10101.515101.1Tln 0k i E Fn E innTln 0k i E Fn E=-=-∴=⨯==--=⨯-=--==⨯⨯=-+=∴9. 把一种复合中心杂质掺入本征硅内,如果它的能级位置在禁带中央,试证明小注入时的寿命=n+p 。
10. 一块n 型硅内掺有1016cm -3的金原子 ,试求它在小注入时的寿命。
若一块p 型硅内也掺有1016cm -3的金原子,它在小注入时的寿命又是多少s N r r Au Si p s N r r A Si n cm N t n n n t p p p t 9168101617316106.110103.611106.8101015.111u 10--+----⨯=⨯⨯==⨯=⨯⨯===ττ决定了其寿命。
对少子电子的俘获系数中,型。
决定了少子空穴的寿命对空穴的俘获系数中,型11. 在下述条件下,是否有载流子的净复合或者净产生:(1)在载流子完全耗尽(即n, p 都大大小于n i )半导体区域。
(2)在只有少数载流子别耗尽(例如,p n <<p n0,而n n =n n0)的半导体区域。
(3)在n=p 的半导体区域,这里n>>n i0T k E E e n p p p p p pn r k E E e n n r pn r n T k E E e n r n n r n s n N o Fi i tp o i t i t n t n t o i t i n t n t n t t -≈∆+=<<∆=--==001T ,.小注入:由题知,从价带俘获空穴向导带发射电子被电子占据复合中心接复合理论:解:根据复合中心的间不是有效的复合中心。
代入公式很小。
,11,;011t p t n o F i i t p n o Fi i p o i t i n N r N r p n p n E E E E r r Tk E E e n r T k E E e n r +==-=-∴≈-=-τTk E E c Tk E E c T k EE c T k E E c n p t p n iT iF V T T C o VF F c eN p eN n e N p e N n p p n r r p p p r p n n r E E EE Si 0001100001010;;)(N )()(::--------====∆++∆+++∆++===Θτ根据间接复合理论得复合中心的位置本征np nt p t n p t p n p t n T i F r N r N p n n r r N p n n r p n n r r N p n n r p n p n E E E τττ+=+=∆++∆+++∆++∆++======11)()()()(000000001100所以:因为:产生复合率为负,表明有净载流子完全耗尽,00,0)1()()()(112112<+-=≈≈+++-=p r n r n r r N U p n p p r n n r n np r r N U p n i p n t p n ip n t 结,(反偏,只有少数载流子被耗尽0)(),)2()()()(11200112<++-=≈<<+++-=p r n n r n r r N U n n p p pn p p r n n r n np r r N U p n i p n t n n n n p n i p n t12. 在掺杂浓度N D =1016cm -3,少数载流子寿命为10us 的n 型硅中,如果由于外界作用,少数载流子全部被清除,那么在这种情况下,电子-空穴对的产生率是多大(E t =E i )。
13. 室温下,p 型半导体中的电子寿命为=350us ,电子的迁移率u n =3600cm -2/(Vs)。
试求电子的扩散长度。
复合复合率为正,表明有净(0)()(),)3()()()(1122112>+++-=>>=+++-=p n r n n r n n r r N U n n p n p p r n n r n np r r N U p n i p n t ip n i p n t 03160340203160,0,0,10/1025.2,10p p n p cm n n cm n n p cm N n i D -=∆=∆===⨯====iTk E E v Tk E E v i T k E E c T k E E c p n i p n t p n i p n t n eN eN p n eN e N n p r n n r n r r N p p r n n r n np r r N U o v i v i c C ======++-=+++-=--------0T 00T 111102112)()()()(s cm p p r N n r n r r N n r n r n r n r r N pp t n i p n t i p i n o n i p n t 396400022/1025.210101025.2U ⨯-=⨯⨯-=-=-=-≈++-=-τqTk D L qTk D q Tk D n n n n n n o nn00====μτμμ:解:根据爱因斯坦关系14. 设空穴浓度是线性分布,在3us 内浓度差为1015cm -3,u p =400cm 2/(Vs)。
试计算空穴扩散电流密度。
15. 在电阻率为1??cm 的p 型硅半导体区域中,掺金浓度N t =1015cm -3,由边界稳定注入的电子浓度(n )0=1010cm -3,试求边界 处电子扩散电流。
16. 一块电阻率为3??cm 的n 型硅样品,空穴寿命p =5us,在其平面形的表面处有241500/55.510310400026.0cm A x pT k xp q T k q dxp d qD J ppPP =⨯⨯⨯=∆∆=∆∆=∆-=-μμs N r n cm N Si p g n x E n x n E x n D t n t n n t p p p p p 815831522106.110103.61110:---⨯=⨯⨯==∆=-+∆-∂∂+∂∆∂-∂∆∂=∂∆∂ττμμ遇到复合中心复合的复合中心内部掺有由于根据少子的连续性方程0,0,,2222=∆-∆=∆-∆∆n n n P D n dx n d nx n d D ττ达到稳定分布无产生率无电场nn n L x L x D L Be Ae x n n n τ=+=∆+-,)(:方程的通解为00000002)()(0)(,)0(,0:n T k q n D q D n qD L n qD dx x n d qD J e n x n n x n n x n n n n nn o n nn x nn Lnx ∆=∆=∆=∆=∆=∴∆=∆∴=∞∆∞=∆=∆==-τμττ边界条件稳定的空穴注入,过剩浓度(p )=1013cm -3。