eejAAA半导体物理第五章习题答案
半导体物理课后习题答案(精)

第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k2 2(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14(3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V(2mng(E)=(E-EC)2解232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1V Z0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
半导体物理分章答案第五章

EC
复合
EV
电子 空穴
§5.2 非平衡载流子的寿命
Lifetime of Carriers at unequilibrium
1、非平衡载流子的寿命
寿命τ:非平衡载流子的平均生存时间。 由于小注入时,非平衡少子是影响半导体特性的主
要因素,所以将非平衡载流子的寿命称为少子寿命。 用τp 和τn 分别表示n型和p型半导体的少子寿命。
EFn
Ec
k0T
n ln(
Nc
)
EFp
Ev
k0T
ln(
p Nv
)
准费米能级偏离费米能级的情况
Ec
E
n F
EF
E
p F
Ev
有
n
Ec EFn
N c e k0T
EFn EF
e k0T
n0
Ec EF
N c e k0T
EFn EF EF EFp
证明:
Ec EFn
第五章 非平衡载流子
Carrier concentrations in unequilibrium
重点:
1、平衡与非平衡半导体判定标准 2、复合理论 3、非平衡载流子的运动规律
§5.1 非平衡载流子的注入与复合
Injection and Recombination of Carriers
1、非平衡载流子及其产生(注入)
解得
nt
Nt rnn rp p1
rn n n1 rp p
p1
带入上式
利用n1p1=ni2,则:
U rnrp Nt (np ni2 ) rn n n1 rp p p1
半导体物理学课后习题第五章第六章答案

第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为。
(1)写出光照下过剩载流子所满足的方程;(2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm p U scm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dt p d g Ae t p g p dt p d L L t L =∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L :101:1010100.00'000316622∆+∆++=+=Ω=+==⨯==∆=∆=+∆---μμμμμμσμμρττ光照后光照前光照达到稳定态后4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度n=p=1014cm -3。
计算无光照和有光照的电导率。
%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡 。
半导体物理学第7版习题及答案

半导体物理学第7版习题及答案第五章习题1. 在⼀个n 型半导体样品中,过剩空⽳浓度为1013cm -3, 空⽳的寿命为100us 。
计算空⽳的复合率。
2. ⽤强光照射n 型样品,假定光被均匀地吸收,产⽣过剩载流⼦,产⽣率为,空⽳寿命为。
(1)写出光照下过剩载流⼦所满⾜的⽅程;(2)求出光照下达到稳定状态时的过载流⼦浓度。
3. 有⼀块n 型硅样品,寿命是1us ,⽆光照时电阻率是10cm 。
今⽤光照射该样品,光被半导体均匀的吸收,电⼦-空⽳对的产⽣率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流⼦的贡献占多⼤⽐例?4. ⼀块半导体材料的寿命=10us ,光照在材料中会产⽣⾮平衡载流⼦,试求光照突然停⽌20us 后,s cm pU s cm p Up 3171010010313/10U 100,/10613==?=====?-??-ττµτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=?∴=+?-∴=?+=?+?-=?∴-.00)2()(达到稳定状态时,⽅程的通解:梯度,⽆飘移。
解:均匀吸收,⽆浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.19,..32.01191610''===?∴?>?Ω==-σσρp u p p p p cm 的贡献主要是所以少⼦对电导的贡献献少数载流⼦对电导的贡其中⾮平衡载流⼦将衰减到原来的百分之⼏?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注⼊的⾮平衡载流⼦浓度n=p=1014cm -3。
计算⽆光照和有光照的电导率。
6. 画出p 型半导体在光照(⼩注⼊)前后的能带图,标出原来的的费⽶能级和光照时的准费⽶能级。
半导体物理学(刘恩科)课后习题解第五章答案

6. 画出 p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和 光照时的准费米能级。
Ec Ei EF Ev
Ec Ei EFn
Ev
EFp
光照前
光照后
7. 掺施 主浓度 ND=1015cm-3 的 n 型硅,由于光的照射产生了非平衡载流子 ∆n=∆p=1014cm-3。试计算这种情况下的准费米能级位置,并和原来的费米能级 作比较。 解: 强电离情况,载流子浓度 n = n0 + ∆n = 1015 + 1014 = 1.1 × 1015 / cm 3 p = p 0 + ∆p = = ni + 1014 ND
从价带俘获空穴rn pnt 由题知,rn nt ni e Et − Ei = r p pnt koT Ei − E F k oT
小注入:∆p << p 0 p = p 0 + ∆p ≈ ni e rn ni e
Et − Ei E − EF = r p ni e i ; k oT k oT
rn ≈ rp ∴ Et − Ei = Ei − E F no , p1很小。n1 = p 0 代入公式
σ = nqµ n + pqµ p
= n0 qµ n + p 0 qµ p + ∆nq( µ n + µ p ) ≈ 2.16 + 1014 × 1.6 × 10 −19 × (1350 + 500) = 2.16 + 0.0296 = 2.19 s / cm (注:掺杂1016 cm −13的半导体中电子、 空穴的迁移率近似等于本征 半导体的迁移率)
U= =
N t rn rp (np − ni2 ) rn (n + n1 ) + rp ( p + p1 ) − N t rn rp ni2
半导体物理分章答案第五章

Rn = rn n( N t − nt ) N t :复合中心浓度 其中, 其中,rn 是与温度有关的 比例系数, 比例系数,称为电子俘获 nt :复合中心上电子浓度 系数。 系数。
⑵电子的发射过程(乙) 电子的发射过程( 是温度的函数,与导带空状态密度成正比。 电子激发几率s-是温度的函数,与导带空状态密度成正比。 在非简并情况下, 可写成: 在非简并情况下,电子的产生率Gn可写成:
材料是均匀的电场分布也是均匀的则分布也是均匀的则所以所以通解为通解为其中其中1122是下面方程的两个根是下面方程的两个根22连续性方程求解特例连续性方程求解特例被称为牵引长度被称为牵引长度则则的方程式表示为的方程式表示为22光激发的载流子衰减光激发的载流子衰减141141页例页例1133少数载流子脉冲在电少数载流子脉冲在电场中的漂移如图场中的漂移如图551919所示所示在一块均匀的在一块均匀的nn型半导体用局部的光脉冲体用局部的光脉冲照射会产生非平衡载照射会产生非平衡载流子
(5-14) 14)
把 n = n0 +△p,p = p0 +△p以及△n =△p代入上 式,得到 Ud = r (n0 + p0)△p + r (△p)2 16) (5-16) 所以,非平衡载流子的寿命为: 所以,非平衡载流子的寿命为:
∆p 1 τ= = U d r [(n0 + p0 ) + ∆p ]
非平衡态的电子与空穴各自处于热平衡态 则 1 fn (E) = E−En
F
f p (E) =
1 + e k0T 1
p EF − E k 0T
1+ 1+ e n E F → 电子准费米能级
p E F → 空穴准费米能级
半导体物理 课后习题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。
解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C 22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
半导体物理学课后知识题第五章第六章答案解析

第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω•cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3•s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm pU s cm p Up3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。
计算无光照和有光照的电导率。
cms pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρpu p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五篇 题解-非平衡载流子
刘诺 编
5-1、何谓非平衡载流子?非平衡状态与平衡状态的差异何在?
解:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。
通常所指的非平衡载流子是指非平衡少子。
热平衡状态下半导体的载流子浓度是一定的,产生与复合处于动态平衡状态
,跃迁引起的产生、复合不会产生宏观效应。
在非平衡状态下,额外的产生、复合效应会在宏观现象中体现出来。
5-2、漂移运动和扩散运动有什么不同?
解:漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均匀导致载流子从浓度高的地方向浓度底的方向的定向运动。
前者的推动力是外电场,后者的推动力则是载流子的分布引起的。
5-3、漂移运动与扩散运动之间有什么联系?非简并半导体的迁移率与扩散系数之间有什么联系?
解:漂移运动与扩散运动之间通过迁移率与扩散系数相联系。
而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系。
即
T k q D 0=
μ
5-4、平均自由程与扩散长度有何不同?平均自由时间与非平衡载流子的寿命又有何不同?
答:平均自由程是在连续两次散射之间载流子自由运动的平均路程。
而扩散长度则是非平衡载流子深入样品的平均距离。
它们的不同之处在于平均自由程由散射决定,而扩散长度由扩散系数和材料的寿命来决定。
平均自由时间是载流子连续两次散射平均所需的自由时间,非平衡载流子的寿命是指非平衡载流子的平均生存时间。
前者与散射有关,散射越弱,平均自由时间越长;后者由复合几率决定,它与复合几率成反比关系。
5-5、证明非平衡载流子的寿命满足()τ
t
e p t p -∆=∆0,并说明式中各项的物理意义。
证明:
()[]
p
p
dt t p d τ∆=∆-
=非平衡载流子数而在单位时间内复合的子的减少数单位时间内非平衡载流
时刻撤除光照如果在0=t
则在单位时间内减少的非平衡载流子数=在单位时间内复合的非平衡载流子数,即
()[
]()1−→−∆=∆-p
p dt t p d τ
在小注入条件下,τ为常数,解方程(1),得到
()()()20−→−∆=∆-
p t
e p t p τ
式中,Δp (0)为t=0时刻的非平衡载流子浓度。
此式表达了非平衡载流子随时间呈指数衰减的规律。
得证 。
5-6、导出非简并载流子满足的爱因斯坦关系。
证明:假设这是n 型半导体,杂质浓度和内建电场分布入图所示
E 内
稳态时,半导体内部是电中性的,
Jn=0
即
()
10→=--x n n E nq dx dn q D μ
对于非简并半导体
()()()()()()()()()
()
()()()()()()()()()()()()()()()T k q
D x n dx x dV D x n dx x dV D x n
E D dx x dn x n dx
x dV T k q dx x dn e
n e N x n x V q E x E n n n n n n x n n T
k x qV T
k E x E c c c F
c 00545143302000=⇒=→⋅⋅=⋅⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝
⎛-=⋅⋅-=⇒→⋅⋅=⇒
→⋅=⋅=→-+=--
μμμμ式式由由所以
这就是非简并半导体满足的爱因斯坦关系。
得证。
5-7、间接复合效应与陷阱效应有何异同?
答:间接复合效应是指非平衡载流子通过位于禁带中特别是位于禁带中央的杂质或缺陷能级E t 而逐渐消失的效应,E t 的存在可能大大促进载流子的复合;陷阱效应是指非平衡载流子落入位于禁带中的杂质或缺陷能级E t 中,使在E t 上的电子或空穴的填充情况比热平衡时有较大的变化,从引起Δn ≠Δp ,这种效应对瞬态过程的影响很重要。
此外,最有效的复合中心在禁带中央,而最有效的陷阱能级在费米能级附近。
一般来说,所有的杂质或缺陷能级都有某种程度的陷阱效应,而且陷阱效应是否成立还与一定的外界条件有关。
5-8、光均匀照射在6cm ⋅Ω的n 型Si 样品上,电子-空穴对的产生率为4×1021cm -3s -1,样品寿命为8µs 。
试计算光照前后样品的电导率。
解:光照前
()1100167.1611--⋅Ω≈==cm ρσ
光照后 Δp=G τ=(4×1021)(8×10-6
)=3.2×1017 cm -3 则
()()()
1119160051.3490106.1102.3167.1---⋅Ω=⨯⨯+=⋅⋅∆+=∆+=cm q p p μσσσσ
答:光照前后样品的电导率分别为1.167Ω-1cm -1和3.51Ω-1cm -1。
5-9、证明非简并的非均匀半导体中的电子电流形式为
dx dE n j n F
n
μ=。
证明:对于非简并的非均匀半导体
()()dx dn qD E nq j j j n
n n n +=+=μ漂
扩
由于
()[]T
k E x qV E c n F c e
N n 00---
⋅=)(
则
T k dx dE dx dV q n dx dn n
F 0+
⋅=
同时利用非简并半导体的爱因斯坦关系,所以
dx
dE
n T
k dx dE dx dV q n q T k q dx dV nq dx
dn
qD E nq j n
F
n n
F n n n
n ⋅=⎪⎪⎪⎪⎭
⎫ ⎝
⎛+
⋅⋅+-=+=μμμμ00)()(
得证。
5-10、假设Si 中空穴浓度是线性分布,在4µm 内的浓度差为2×1016cm -3,试计算空穴的扩散电流密度。
解:
()
()
(
)()
2
56
8
16
1919
190/1015.71041010
2106.110
602.1026.0055.0106.1m A dx
dp
q T k q dx
dp
qD j n p
p -----⨯-=⨯⨯⨯⎪⎪
⎭
⎫ ⎝⎛⨯⨯⨯⨯⨯-=⎪⎪⎭
⎫ ⎝⎛-=-=μ扩
答:空穴的扩散电流密度为7.15╳10-5A/m 2。
5-11、试证明在小信号条件下,本征半导体的非平衡载流子的寿命最长。
证明:在小信号条件下,本征半导体的非平衡载流子的寿命
()i rn p n r 21
100=
+≈τ 而
i
n p n 2p n 20000=≥+
所以
i rn 21≤
τ
本征半导体的非平衡载流子的寿命最长。
得证。