半导体物理学课后知识题第五章第六章答案解析
半导体物理学(刘恩科第七版)课后答案(完整版)-阳光大学生网

a
) 10
7
8.27 10 13 s
补充题 1 分别计算 Si(100) , (110) , (111)面每平方厘米内的原子个数,即原子面密度 (提示:先画出各晶面内原子的位置和分布图)
Si 在(100) , (110)和(111)面上的原子分布如图 1 所示:
(a)(100)晶面
(b)(110)晶面
欢迎光临阳光大学生网,提供最全面的大学生课后习题答案和复习试题免费下载,/
第三章习题
1. 计算能量在 E=Ec 到 E E C 解:
100h 2 之间单位体积中的量子态数。 2 8m * nL
1 * 3 2m n 2 g ( E ) 4 ( 2 ) ( E EC ) 2 V h dZ g ( E )dE dZ 单位体积内的量子态数Z 0 V Ec 100 h 2
欢迎光临阳光大学生网,提供最全面的大学生课后习题答案和复习试题免费下载,/
受主浓度为 NAeff≈ NA-ND (3)NAND 时, 不能向导带和价带提供电子和空穴, 6. 说明类氢模型的优点和不足。 称为杂质的高度补偿
7. 锑化铟的禁带宽度 Eg=0.18eV,相对介电常数r=17,电子的有效质量
欢迎光临阳光大学生网,提供最全面的大学生课后习题答案和复习试题免费下载,/
补充题 2
2 7 1 一维晶体的电子能带可写为 E(k ) ( cos ka cos 2ka) , 2 8 ma 8
式中 a 为 晶格常数,试求 (1)布里渊区边界; (2)能带宽度; (3)电子在波矢 k 状态时的速度;
2 8 mn l
1 Z0 V 4 (
Ec
100 h 2
2 8 mn l
半导体物理学课后知识题第五章第六章答案解析

半导体物理学课后知识题第五章第六章答案解析第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。
(1)写出光照下过剩载流子所满足的方程;(2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω?cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3?s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm pU s cm p Up3171010010313/10U 100,/10613==?=====?-??-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=?∴=+?-∴=?+=?+?-=?∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度?n=?p=1014cm -3。
计算无光照和有光照的电导率。
cms pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=++=?+?++=+=Ω=+==?==?=?=+?-----μμμμμμσμμρττ光照后光照前光照达到稳定态后%2606.38.006.3500106.1109.,..32.01191610''===?∴?>?Ω==-σσρpu p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡。
半导体物理学第五章习题答案

第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cms pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度n=p=1014cm -3。
计算无光照和有光照的电导率。
6. 画出p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和光照时的准费米能级。
(考试范围)半导体物理学课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ半导体物理第2章习题5. 举例说明杂质补偿作用。
当半导体中同时存在施主和受主杂质时, 若(1) N D >>N A因为受主能级低于施主能级,所以施主杂质的电子首先跃迁到N A 个受主能级上,还有N D -N A 个电子在施主能级上,杂质全部电离时,跃迁到导带中的导电电子的浓度为n= N D -N A 。
半导体物理导论课后习题答案5章

高上升;
CD:本征激发为主。晶格振动散射导致迁移率下降,但载流子浓
度升高很快,故电阻率ρ随温度T升高而下降;
第5章
10.对于电阻率为1Ω•cm的P型Si样品,少子寿命τn=10μs,室温下光均 匀照射,电子-空穴对的产生率是1020cm-3•s-1。已知,μp=417cm2/V•s, ni=1.5×1010cm-3。计算
[(31013) 3800 (1.151013) 1800] 1.61019
0.02( cm) 所以J E 0.02 2 0.04 A/ cm2
子寿命为τ。假设小注入条件成立,试推导因光照而形成的电流增
加值为
GnqVA
L
。
解:因光照而形成的电流增加值 I A J ,光照产生的过剩载流
子浓度n G
在小注入下, J
n
E
(n
q
n
)
V L
G
q n V
L
所以,I
A
J
GqnVA
L
第5章
3.证明非简并的非均匀n型半导体中的电子电流形式为 J
p0 p(0)
179mV
(1分)
(2分)
第5章
7.导出非简并载流子满足的爱因斯坦关系。
证明:假设为非简并n型半导体的一维情况,当系统达到热平衡时,半
导体电中性,其电流方程
Jn
n(x)qn E(x)
qDn
dn( x) dx
可得
第5章
8.光均匀照在6Ω•cm的n型样品上,电子-空穴对的产生率为1×1020cm-3s-1, 样品寿命为6μs。试计算光照前后样品的电导率。
(1)此时的电子浓度和空穴浓度; (2)电子和空穴准费米能级EFn , EFp 与平衡费米能级EF的距离。
半导体物理学(第7版)第五章习题及答案

第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω∙cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3∙s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。
刘恩科半导体物理课后习题答案_第六章唯一版!!

kT 2 b b 1 = σi + 2 2 Lnσ p (1 + b )2 b q 1 L pσ n 1 + b
kT 2 b b = σi + 2 2 q L pσ n (1 + b ) Lnσ p (1 + b )
10 −3
⑴
kT N A N D 10 × 10 VD = ln = 0.026 × ln 2 q ni 1.5 × 1010
20
16
(
)
2
= 0.936V
qVD = 0.94eV
XD 2ε r ε 0 N A + N D = VD NAND q
1 2
N D >> N A
1 2
kT bσ = q (1 + b )2
2 i
1 1 + Lnσ p L pσ n
返回
p + − n 结,n区 ρ n = 5Ω ⋅ cm , p = 1µs ;p区 τ Si突变 ρ p = 5Ω ⋅ cm , n = 1µs 计算室温下空穴电流和电子电 τ
流之比,饱和电流密度及正偏压0.3V时流过p-n结的电 流密度。 解答: 由图4-15知, ρ n = 5Ω ⋅ cm , N D = 9 × 1014 , −3 cm
= 1.1 × 10 cm
返回
−5
解答:
1 3
6-9 -
已知突变结两边杂质浓度为 N A = 1016 cm −3 ,
N D = 10 cm ,求
20
−3
⑴势垒高度和势垒宽度 ⑵画出 ε ( x ) 和 V ( x ) 的图线 解答: 设此突变结为为Si材料,T=300K,ni = 1.5 × 10 cm
半导体物理参考答案第六章

= − qNd 2ε n
(x
+
xn )2
+ ϕin (−xn )
ϕip (x)=
qNa εp
(x
−
xp )2
+ ϕin (xp )
则:
ϕin =
ϕin (−xn ) − ϕin (0) =
qNd 2ε n
xn 2
ϕip
=ϕin (0) − ϕin (xp )
=qNa 2ε p
xp2
(−xn ≤ x ≤ 0) (0 < x ≤ xp )
xp2
Байду номын сангаас
则耗尽层厚度为:
xp
=
( 2φsε Si qNa
1
)2
7.试求出肖特基二极管的接触电阻表达式,并讨论和降低接触电阻、形成欧姆接 触的有效途径。
解:通过肖特基二极管的电流为 I ≈ I0 eqVA kT −1
其中 I0
=
Aq2Dn NC kT
[ 2qNd (φi ε Si
−
VA
)
1
]2
d
ϕ2 ip
dx2
=
qNa εp
(−xn ≤ x ≤ 0) (0 < x ≤ xp )
在 x= −xn 和 x= xp 处电场为零,即:
− dϕin
= − dϕip = 0
dx x= − xn
dx x=xp
电中性条件:
qNd xn
=
qNa xp ,得
xn xp
=
Na Nd
解泊松方程得:
ϕin (x)
(−xn ≤ x ≤ 0) (0 < x ≤ xp )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω•cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3•s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm pU s cm p Up3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。
计算无光照和有光照的电导率。
cms pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρpu p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡 。
后,减为原来的光照停止%5.1320%5.13)0()20()0()(1020s e p p ep t p tμτ==∆∆∆=∆--cms q n qu p q n pp p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=⨯⨯⨯=≈+=∆+=∆+=⨯===∆=∆⨯==---μμσ无光照则设6. 画出p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和光照时的准费米能级。
半导体的迁移率)本征空穴的迁移率近似等于的半导体中电子、注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2)(:--=+=+⨯⨯⨯+≈+∆++=+=cm cms nq q p q n pq nq p n p n pn μμμμμμσ7. 掺施主浓度N D =1015cm -3的n 型硅,由于光的照射产生了非平衡载流子∆n=∆p=1014cm -3。
试计算这种情况下的准费米能级位置,并和原来的费米能级作比较。
E c E iE vE c EF E i E vE FpE Fn光照前光照后⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-=-==+⨯=+=∆+=⨯=+=∆+=-T k E E e n p T k E E e n n cmN n p p p cm n n n FP iio i Fn i Di 0141415210142315141503/101010)105.1(10/101.11010 度强电离情况,载流子浓PTln 0k i E FP E0.291eV 10101.515101.1Tln 0k i E Fn E innTln 0k i E Fn E-==⨯⨯=-+=∴8. 在一块p 型半导体中,有一种复合-产生中心,小注入时,被这些中心俘获的电子发射回导带的过程和它与空穴复合的过程具有相同的概率。
试求这种复合-产生中心的能级位置,并说明它能否成为有效的复合中心?Tk E E en p p p p p pn r k E E en n r pn r n Tk E E e n r n n r n s n N o F i i tp o it i t n tn to it i n t n t n t t -≈∆+=<<∆=--==001T ,.小注入:由题知,从价带俘获空穴向导带发射电子被电子占据复合中心接复合理论:解:根据复合中心的间不是有效的复合中心。
代入公式很小。
,11,;011tp t n o F i i t p n o Fi i p o i t i n N r N r p n p n E E E E r r Tk E E e n r T k E E en r +==-=-∴≈-=-τ9. 把一种复合中心杂质掺入本征硅内,如果它的能级位置在禁带中央,试证明小注入时的寿命τ=τn+τp 。
10. 一块n 型硅内掺有1016cm -3的金原子 ,试求它在小注入时的寿命。
若一块p 型硅内也掺有1016cm -3的金原子,它在小注入时的寿命又是多少?Tk E E c Tk E E c Tk E E c Tk E E c n p t p n iT iF V T T C o V F F c eN p eN n eN p e N n p p n r r p p p r p n n r E E E E Si 0001100001010;;)(N )()(::--------====∆++∆+++∆++=== τ根据间接复合理论得复合中心的位置本征n p nt p t n p t p n p t n T i F r N r N p n n r r N p n n r p n n r r N p n n r p n p n E E E τττ+=+=∆++∆+++∆++∆++======11)()()()(000000001100所以:因为:s N r r Au Si p s N r r A Si n cm N t n n n t p p p t 9168101617316106.110103.611106.8101015.111u 10--+----⨯=⨯⨯==⨯=⨯⨯===ττ决定了其寿命。
对少子电子的俘获系数中,型。
决定了少子空穴的寿命对空穴的俘获系数中,型11. 在下述条件下,是否有载流子的净复合或者净产生:(1)在载流子完全耗尽(即n, p 都大大小于n i )半导体区域。
(2)在只有少数载流子别耗尽(例如,p n <<p n0,而n n =n n0)的半导体区域。
(3)在n=p 的半导体区域,这里n>>n i0产生复合率为负,表明有净载流子完全耗尽,00,0)1()()()(112112<+-=≈≈+++-=p r n r n r r N U p n p p r n n r n np r r N U p n i p n t p n i p n t 产生复合率为负,表明有净结,(反偏,只有少数载流子被耗尽0)(),)2()()()(11200112<++-=≈<<+++-=p r n n r n r r N Un n p p pn p p r n n r n np r r N U p n i p n t n n n n p n i p n t 复合复合率为正,表明有净(0)()(),)3()()()(1122112>+++-=>>=+++-=p n r n n r n n r r N U n n p n p p r n n r n np r r N U p n i p n t ip n i p n t12. 在掺杂浓度N D =1016cm -3,少数载流子寿命为10us 的n 型硅中,如果由于外界作用,少数载流子全部被清除,那么在这种情况下,电子-空穴对的产生率是多大?(E t =E i )。
3160340203160,0,0,10/1025.2,10p p n p cm n n cm n n p cm N n i D -=∆=∆===⨯====iTk E E v Tk E E v i T k E E c T k E E cpni p n t p n i p n t n eN e N p n eN e N n pr n n r n r r N p p r n n r n np r r N U o v i v i c C ======++-=+++-=--------0T 00T11112112)()()()(s cm p p r N n r n r r N n r n r n r n r r N pp t n i p n t i p i n o n i p n t 396400022/1025.210101025.2U ⨯-=⨯⨯-=-=-=-≈++-=-τ13. 室温下,p 型半导体中的电子寿命为τ=350us ,电子的迁移率u n =3600cm -2/(V •s)。
试求电子的扩散长度。
14. 设空穴浓度是线性分布,在3us内浓度差为1015cm -3,u p =400cm 2/(V •s)。
试计算空穴扩散电流密度。
cmqTk D L qTk D q Tk D n n n n n n o nn18.0103503600026.0600=⨯⨯⨯=====-μτμμ:解:根据爱因斯坦关系241500/55.510310400026.0cm A x pT k xp q T k q dxp d qD J ppPP =⨯⨯⨯=∆∆=∆∆=∆-=-μμ15. 在电阻率为1Ω•cm 的p 型硅半导体区域中,掺金浓度N t =1015cm -3,由边界稳定注入的电子浓度(∆n )0=1010cm -3,试求边界 处电子扩散电流。
s N r n cm N Si p g n x E n x nE x n D t n t n n t p p p p p 815831522106.110103.61110:---⨯=⨯⨯==∆=-+∆-∂∂+∂∆∂-∂∆∂=∂∆∂ττμμ遇到复合中心复合的复合中心内部掺有由于根据少子的连续性方程0,0,,2222=∆-∆=∆-∆∆n n nP D n dx n d n x n d D ττ达到稳定分布无产生率无电场nn n L x L x D L BeAe x n nnτ=+=∆+-,)(:方程的通解为00000002)()(0)(,)0(,0:n T k qn D qD n qD L n qD dx x n d qD J e n x n n x n n x nnnnnn o nnnx nn Lnx∆=∆=∆=∆=∆=∴∆=∆∴=∞∆∞=∆=∆==-τμττ边界条件16. 一块电阻率为3Ω•cm 的n 型硅样品,空穴寿命τp =5us,在其平面形的表面处有稳定的空穴注入,过剩浓度(∆p )=1013cm -3。