特殊平行四边形单元测试卷.docx

合集下载

九年级数学(上)单元测试卷 第一章《特殊平行四边形》(含答案与解析)

九年级数学(上)单元测试卷 第一章《特殊平行四边形》(含答案与解析)

【新北师大版九年级数学(上)单元测试卷】第一章《特殊平行四边形》(含答案与解析)班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 244. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 139.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 1611.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长为()A. 1B.C. 4-2D. 3-4二.填空题:(每小题3分共12分)13.正方形的一条边长是4,则它的对角线长是_________.15.矩形的对角线相交构成的钝角为120°,短边等于5cm,则对角线的长为__________.16.如图,E为正方形ABCD边BC延长线上一点,且CE=BD,AE交DC于F,则∠AFC=_________.三.解答题:(共52分)17.如图,在四边形ABCD中,∠ABC=∠ADC=90°,点P是AC的中点.求证:∠BDP=∠DBP.18.已知:菱形ABCD中,对角线于点E,求菱形ABCD的面积和BE的长.于点F,且,连接BF.证明:;当满足什么条件时,四边形AFBD是矩形?并说明理由.20.已知中对角线AC的垂直平分线交AD于点F,交BC于点E.求证:四边形AECF是菱形.证明:∵EF是AC的垂直平分线(已知)∴四边形AECF是不正确⑴你能找出小明错误的原因吗?请你指出来.⑵请你给出本题的证明过程.21.如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.22. 如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.23.如图,F是正方形ABCD的边BC的中点,CG平分∠DCM,交过F点AF的垂线FG于G,求证:AF=FG.一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个【答案】C【解析】①正确.②等腰梯形是对角线相等,错误.③菱形也两个角相等,错误.④正确.所以选C.2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°【答案】B【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 24【答案】A【解析】∵菱形的两条对角线长分别为3和4,∴S菱形=.故选A.4. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形【答案】B【解析】如图,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF∥AC,HG∥AC,∴EF∥AC,∴四边形EFGH是平行四边形,∵EF∥AC,AC⊥BD,∴EF⊥BD,∵HE∥BD,∴EF⊥HE,∴∠HEF=90°,∴平行四边形EFGH是矩形.故选B.5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD【答案】D【解析】A、不能,只能判定出是平行四边形;B、不能,只能判定出是矩形;C、不能,只能判定出是菱形;D、能,由OA=OB=OC=OD可判断出四边形ABCD是矩形,再根据AC⊥BD,可判断出矩形ABCD 又是菱形,所以可判断出四边形ABCD是正方形,故选D.6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等【答案】B【解析】根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对边平行且相等、对角线相等、对角线互相平分,但矩形的对角线不互相垂直,故选B.7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等C. 对角线互相垂直D. 对角线互相垂直且相等【解析】如图所示:添加的条件是AC=BD且AC⊥BD,平行四边形ABCD为正方形;理由如下:添加的条件时AC=BD且AC⊥BD时;∵四边形ABCD是平行四边形.又AC=BD,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是菱形,∴四边形ABCD是正方形;故选:D.8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 13【答案】B【解析】∵四边形ABCD是矩形,∠BOC=120°,∴AO=BO,∠BAD=90°,∠AOB=60°,∴△AOB是等边三角形,∴∠ABD=60°,∴∠BDA=30°,∴BD=2AB=10.故选B.9.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.【解析】∵菱形的两条对角线分别为5cm和10cm,∴菱形的面积为:(cm2),设正方形的边长为cm,则,解得:(cm).故选B.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 16【答案】D【解析】试题分析:根据题意可得:AD=2+6=8,根据折叠图形的性质可得:AB=2,然后根据矩形的面积计算公式求出矩形的面积.11.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.【答案】C【解析】DE BF,AF EC,EGFH是平行四边形,E,F是中点,易得,四边形对角线垂直,1∴EGFH是菱形。

第一章 特殊平行四边形 单元测试(含答案)

第一章  特殊平行四边形 单元测试(含答案)

第一章特殊平行四边形一、选择题1. 下列四边形对角线相等但不一定垂直的是( )A.平行四边形B.矩形C.菱形D.正方形2. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3. 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )A.16B.24C.413D.8134. 如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )D.34 A.5B.4C.3425. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为( )A.5 cm B.10 cm C.14 cm D.20 cm6. 如图,点P是矩形ABCD的边上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.27. 如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90∘到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )A.4B.5C.217D.348. 如图,在矩形ABCD中,EG垂直平分BD于点G,若AB=4,BC=3,则线段EG的长度是( )A.32B.158C.52D.39. 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,且EF=5,点G,H 分别边AB,CD上的点,连接GH交EF于点P.若∠EPH=45∘,则线段GH的长为( )A.5B.2103C.253D.710. 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A.732B.4C.5D.92二、填空题11. 菱形的对角线长为6和8,则菱形的高为.12. 如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形.13. 在菱形ABCD中,对角线AC,BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34∘,则∠ECA=.14. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15. 在矩形ABCD中,AB=4,BC=3,折叠矩形ABCD,使点B与点D重合,则BF的长为.16. 如图,菱形ABCD中,AB=2,∠BAD=60∘,点E是边AB的中点,点P在对角线AC上移动.则PB+PE的最小值是.三、解答题17. 已知如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1) 求证:四边形AODE是矩形.(2) 若AB=6,∠BCD=120∘,求四边形AODE的面积.18. 如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=2CE.19. 在平行四边形ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F.(1) 如图①,求证:OE=OF;(2) 如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.20. 回答下列问题.(1) 提出问题:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.(2) 类比探究:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由.21. 如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1) 求证:四边形EGFH是平行四边形.(2) 当EG=EH时,连接AF.①求证:AF=FC.②若DC=8,AD=4,求AE的长.答案一、选择题1. B2. B3. C4. D5. D6. A7. D8. B9. B10. D二、填空题11. 24512. AC⊥BD13. 2214. 615. 25816. 3三、解答题17.(1) 因为DE∥AC,AE∥BD,所以四边形AODE是平行四边形,因为在菱形ABCD中,AC⊥BD,所以∠AOD=90∘,所以四边形AODE是矩形.(2) 因为∠BCD=120∘,AB∥CD,所以∠ABC=180∘−120∘=60∘,因为AB=BC,所以△ABC是等边三角形,所以OA=12×6=3,OB=32×6=33,因为四边形ABCD是菱形,所以OD=OB=33,所以四边形AODE的面积=OA⋅OD=3×33=93.18.(1) ∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90∘,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,{∠BCG=∠DCF=90∘,BC=CD,∠CBG=∠CDF,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=42−32=7.(2) 过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90∘,∴∠MCG=∠ECF,在 △MCG 和 △ECF 中,{∠MCG =∠ECF,CG =CF,∠F =∠CGB,∴△MCG ≌△ECF (ASA),∴MG =EF ,CM =CE ,∴△CME 是等腰直角三角形,∴ME =2CE ,又 ∵ME =MG +EG =EF +EG , ∴EF +EG =2CE .19.(1) ∵ 四边形 ABCD 是平行四边形, ∴OB =OD ,AB ∥CD ,∴∠EBO =∠FDO ,在 △OBE 与 △ODF 中,{∠EBO =∠FDO,OB =OD,∠BOE =∠DOF, ∴△OBE ≌△ODF (ASA),∴OE =OF ;(2) ∵OB =OD ,OE =OF , ∴ 四边形 BEDF 是平行四边形, ∵EF ⊥BD ,∴ 四边形 BEDF 是菱形.20.(1) ∵ 四边形 ABCD 是正方形, ∴AB =DA ,∠ABE =90∘=∠DAH , ∴∠HAO +∠OAD =90∘,∵AE⊥DH,∴∠ADO+∠OAD=90∘,∴∠HAO=∠ADO,在△ABE和△DAH中,{∠BAE=∠HDA,AB=AD,∠B=∠HAD,∴△ABE≌△DAH(ASA),∴AE=DH.(2) EF=GH,理由:将PE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,∴EF=GH.21.(1) ∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,且CH=AG,∠FCH=∠EAG,∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形.(2) ①连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE.②设AE=x,则FC=AF=x,DF=8−x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8−x)2=x2,解得x=5,∴AE=5.。

(完整版)浙教版八年级下册数学第五章特殊平行四边形单元测试卷

(完整版)浙教版八年级下册数学第五章特殊平行四边形单元测试卷

第五章 特殊的平行四边形姓名:---------- 成绩:------ --- 一.选择题 (每小题4分,共40分)1. 若菱形ABCD 中,AE 垂直平分BC 于E,AE=1cm,则BC 的长是 A.1cm B.332cm C.3cm D.4cm 2. 如果a 表示一个菱形的对角线的平方和,b 表示这个菱形的一边的平方,那么 A.a =4b B.a =2b C .a =b D.b =4a3. .已知ABCD 是平行四边形,下列结论中,不一定正确的是 A.AB=CD B.AC=BD C.当AC ⊥BD 时,它是菱形 D.当∠ABC=90º时,它是矩形4. 如图,矩形ABCD 的边长AB=6,BC=8,将矩形沿EF 折叠,使C 点与A 点重合,则折痕EF 的长是 A.7.5 B.6 C.10 D.55. 如图所示,过四边形ABCD 的各顶点,作对角线BD 、AC 的平行线,围城四边形EFGH,若四边形EFGH 是菱形,则原四边形一定是A.菱形B.平行四边形 C.矩形 D.对角线相等的四边形6. 在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是. A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格7. 图1中有8个完全相同的直角三角形,则图中矩形的个数是A. 5B. 6C. 7D. 8A E DB FC 图(2)图(1)MNN M 图1 图2A C8. 如图,正方形ABCD 中,∠︒=25DAF ,AF 交对角线BD 于点E ,那么∠BEC 等于A.︒45B.︒60C.︒70D.︒759. Rt △ABC 的两边长分别是3和4,若一个正方形的边长是△ABC 的第三边,则这个正方形的面积是 A.25 B.7C.12D.25或7 10. 下列图形中,不能..经过折叠围成正方形的是A. B C. D.第Ⅱ卷(非选择题 共8道填空题8道解答题)请将你认为正确的答案代号填在下表中1 2 3 4 5 6 7 8 9 10 二.简答题 (每小题3分,共24分)11. 如图矩形,ABCD 中,AC 、BD 相交于O,AE 平分∠BAD 交BC 于E,若∠CAE=15º,则∠BOE=_________ 12. M 为矩形ABCD 中AD 的中点,P 为BC 上一点,PE ⊥MC,PF ⊥MB,当AB 、BC 满足_________时,四边形PEMF 为矩形 13. 给定下列命题:(1)对角线相等的四边形是矩形;(2)对角相等的四边形是矩形;(3)有一个角是直角的平行四边形是矩形;(4)一个角为直角,两条对角线相等的四边形是矩形;(5)对角线相等的平行四边形是矩形;其中不正确的命题的序号是____________14. 如图,矩形ABCD 中,E 、F 分别为AD 、AB 上一点,且EF=EC,EF ⊥EC,若DE=2,矩形周长为16,则矩形ABCD 的面积为_________15. 现有一张长52cm,宽28cm 的矩形纸片,要从中剪出长15cm 宽、12cm 的矩形小纸片(不能粘贴),则最多能剪出__________张16. 已知矩形的周长是40cm,被两条对角线分成的相邻两个三角形的周长的差是8cm,则较长的边长为________17. 已知菱形ABCD 的边长为6,∠A=60º,如果点P是菱形内一点,切PB=PD=32,那么AP 的长为____________18. 矩形ABCD 的对角线AC 、BD 相交于点O,AB=4cm,∠AOB=60º,则这个矩形的对角线的长是_________cmA DERBC D B E C三.解答题(共56分)19. 如图,菱形AB CD中,点M、N分别在B C、CD上,且CM=CN,求证:(1)△AB M≌△A DN(2)∠A MN=∠A NM20. 如图,在四边形ABCD中,AD∥BC,对角线AC与BD相交于点O,AC平分∠BAD,请你再添一个什么条件? 就能推出四边形ABCD是菱形,并给出证明.21. 某课外学习小组在设计一个长方形时钟钟面时,欲使长方形的宽为20厘米,时钟的中心在长方形对角线的交点上,数字2在长方形的顶点上,数字3、6、9、12标在所在边的中点上,如图所示。

北师大版数学九年级上册《特殊的平行四边形》单元测试卷(含答案)

北师大版数学九年级上册《特殊的平行四边形》单元测试卷(含答案)

《特殊的平行四边形》单元测试卷一.选择题(每小题3分,满分36分)1.下列说法正确的是()A.有两边和一角分别相等的两个三角形全等B.有一组对边平行,且对角线相等的四边形是矩形C.如果一个角的补角等于它本身,那么这个角等于45°D.点到直线的距离就是该点到该直线的垂线段的长度2.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等3.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.54.如图,在正方形ABCD的外侧,作等边△ABE,则∠BED为()A.15°B.35°C.45°D.55°5.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC 于点F,则DE的长是()A.1B.C.2D.6.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8B.12C.16D.328.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.9.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)10.如图,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为点E,且AE 平分∠BAO,则AB的长为()A.3B.4C.D.11.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD 于点E,则AE的长是()A.4B.C.5D.12.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE =S△CEF.其中正确的是()A.①③B.②④C.①③④D.②③④二.填空题(每小题3分,满分12分)13.如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC 的长为.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF 的周长是.16.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.三.解答题(17题—20题,每题7分,21题—23题,每题8分,满分52分)17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.18.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.19.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.20.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.23.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.参考答案一.选择题(共12小题)1.下列说法正确的是()A.有两边和一角分别相等的两个三角形全等B.有一组对边平行,且对角线相等的四边形是矩形C.如果一个角的补角等于它本身,那么这个角等于45°D.点到直线的距离就是该点到该直线的垂线段的长度【解答】解:A.有两边和一角分别相等的两个三角形全等;不正确;B.有一组对边平行,且对角线相等的四边形是矩形;不正确;C.如果一个角的补角等于它本身,那么这个角等于45°;不正确;D.点到直线的距离就是该点到该直线的垂线段的长度;正确;故选:D.2.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等【解答】解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选:C.3.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.5【解答】解:∵四边形ABCD为菱形,∴CD=BC==5,且O为BD的中点,∵E为CD的中点,∴OE为△BCD的中位线,∴OE=CB=2.5,故选:A.4.如图,在正方形ABCD的外侧,作等边△ABE,则∠BED为()A.15°B.35°C.45°D.55°【解答】解:在正方形ABCD中,AB=AD,∠BAD=90°,在等边△ABE中,AB=AE,∠BAE=∠AEB=60°,在△AD E中,AD=AE,∠DAE=∠BAD+∠BAE=90°+60°=150°,所以,∠AED=(180°﹣150°)=15°,所以∠BED=∠AEB﹣∠AED=60°﹣15°=45°.故选:C.5.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC 于点F,则DE的长是()A.1B.C.2D.【解答】解:连接CE,如图所示:∵四边形ABCD是矩形,∴∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC,∵EF⊥AC,∴AE=CE,设DE=x,则CE=AE=8﹣x,在Rt△CDE中,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即DE=;故选:B.6.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8B.12C.16D.32【解答】解:如图所示:∵四边形ABCD是菱形,∴AO=CO=AC,DO=BO=BD,AC⊥BD,∵面积为28,∴AC•BD=2OD•AO=28①∵菱形的边长为6,∴OD2+OA2=36②,由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.∴OD+AO=8,∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.故选:C.8.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.【解答】解:如图,设BC=x,则CE=1﹣x易证△ABC∽△FEC∴===解得x==××1=∴阴影部分面积为:S△ABC故选:A.9.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO﹣AF=4﹣1=3,∴.故选:D.10.如图,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为点E,且AE 平分∠BAO,则AB的长为()A.3B.4C.D.【解答】解:∵四边形ABCD是矩形∴AO=CO=BO=DO,∵AE平分∠BAO∴∠B AE=∠EAO,且AE=AE,∠AEB=∠AEO,∴△ABE≌△AOE(ASA)∴AO=AB,且AO=OB∴AO=AB=BO=DO,∴BD=2AB,∵AD2+AB2=BD2,∴36+AB2=4AB2,∴AB=2故选:C.11.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD于点E,则AE的长是()A.4B.C.5D.【解答】解:∵四边形ABCD是菱形,∴AO=AC,OB=BD,AC⊥BD,∵AC:BD=3:4,∴AO:OB=3:4,设AO=3x,OB=4x,则AB=5x,∵AB=5,∴5x=5,x=1,∴AC=6,BD=8,S菱形ABCD=,∴,AE=,故选:B.12.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE =S△CEF.其中正确的是()A.①③B.②④C.①③④D.②③④【解答】解:①四边形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE =AF ,∴AC 垂直平分EF .(故①正确).②设BC =a ,CE =y ,∴BE +DF =2(a ﹣y )EF =,∴BE +DF 与EF 关系不确定,只有当y =()a 时成立,(故②错误).③当∠DAF =15°时,∵Rt△ABE ≌Rt△ADF ,∴∠DAF =∠BAE =15°,∴∠EAF =90°﹣2×15°=60°,又∵AE =AF∴△AEF 为等边三角形.(故③正确).④当∠EAF =60°时,设EC =x ,BE =y ,由勾股定理就可以得出:∴x 2=2y (x +y )∵S △CEF =x 2,S △ABE =,∴S △ABE =S △CEF .(故④正确).综上所述,正确的有①③④,故选:C .二.填空题(共4小题)13.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若MN =4,则AC 的长为16.【解答】解:∵M 、N 分别为BC 、OC 的中点,∴BO =2MN =8.∵四边形ABCD 是矩形,∴AC=BD=2BO=16.故答案为16.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.16.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【解答】解:∵四边形OABC是矩形,B(8,7),∴OA=BC=8,OC=AB=7,∵D(5,0),∴OD=5,∵点P是边AB或边BC上的一点,∴当点P在AB边时,OD=DP=5,∵AD=3,∴PA==4,∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).三.解答题(共7小题)17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.18.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL);(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,∵BC=AD,∴CE=AF,∵CE∥AF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形.19.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.【解答】(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:如图,连接EF,交AC于点O.在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.20.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8﹣x)2,解之得:x=,∴DE=8﹣=,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=,∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2﹣OD2=OE2,∴OE=,∴EF=2OE=.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.【解答】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.22.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.23.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.【解答】解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.。

(完整版)第一章《特殊平行四边形》单元试卷及

(完整版)第一章《特殊平行四边形》单元试卷及

第一章特别平行四边形班级姓名学号成绩一、选择题(每题4 分,共 40 分)(以下每题只有一个正确答案,请将正确答案的序号填在括号内)1、下列条件中,能判断一个四边形为菱形的条件是()A、对角线相互均分的四边形B、对角线相互垂直且均分的四边形C、对角线相等的四边形D、对角线相等且相互垂直的四边形2、以下对矩形的判断:“( 1)对角线相等的四边形是矩形;( 2)对角线相互均分且相等的四边形是矩形;( 3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩形;( 5)四个角都相等的四边形是矩形;(6)对角线相等,且有一个直角的四边形是矩形;( 7)一组邻边垂直,一组对边平行且相等的四边形是矩形;( 8)对角线相等且互垂直的四边形是矩形”中, 正确的个数有()A 、3 个B、 4 个C、 5 个D、 6 个3、过四边形 A BCD 的极点 A、B、C、D 作 BD 、AC 的平行线围成四边形 EFGH, 若 EFGH是菱形 ,则四边形 ABCD必定是 ()A、平行四边形 B 、菱形C、矩形 D 、对角线相等的四边形4、在菱形ABCD 中,AE BC , AF CD ,且 E、 F 分别是 BC 、 CD 的中点,那么EAF()A 、750B、550C、45 0D、6005、矩形的一条长边的中点与另一条长边构成等腰直角三角形,已知矩形的周长是36,则矩形一条对角线的长是()A 、6 5B、 5 5C、4 5 D 、3 56、矩形的内角均分线可以构成一个()A 、矩形B、菱形C、正方形D、平行四边形7、以正方形 ABCD 的一组邻边 AD 、CD 向外作等边三角形ADE 、CDF,则以下结论中错误的选项是()A 、 BD 均分EBFB 、DEF300C、BD EF D、BFD4508、已知正方形ABCD 的边长是10cm,APQ是等边三角形,点P 在 BC 上,点 Q 在CD 上,则 BP 的边长是()A 、5 5 cmB 、20 3 cm C、( 20 103) cm D、(20103) cm39、菱形的周长为20, 两邻角的比为 2∶ 1,则一组对边的距离为()33353A 、2B、2C、 3 3D、210、正方形拥有而菱形不拥有的性质是()A 、四个角都是直角B、两组对边分别相等C、内角和为3600D、对角线均分对角二、填空题(每空 1 分,共 11 分)6、将长为 12,宽为 5 的矩形纸片ABCD 沿对角线 AC 对折后, AD 与 BC 交于点 E,则DE 的长度为.7、从矩形的一个极点作一条对角线的垂线,这条垂线分这条对角线成1:3 两部分,则矩形的两条对角线夹角为.8、菱形两条对角线长度比为1: 3 ,则菱形较小的内角的度数为.9、正方形的一条对角线和一边所成的角是度.10、已知四边形 ABCD 是菱形,AEF 是正三角形,E、F分别在BC、CD上,且 EF CD ,则BAD.三、解答题(第1、 2 小题各 10 分,第 3、 4 小题各 5 分,共 30 分)1、如图 3, AB//CD ,ACB900,E是AB的中点,D CE=CD , DE 和 AC 订交于点 F.求证:( 1)DE AC ;( 2)ACD ACE .ACFE图3B2、如图 4, ABCD 为平行四边形,DFEC 和 BCGH 为正方形 .求证:AC EG .GD CHABF图 4E3、证明:假如一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4、从菱形钝角的极点向对边作垂线,且垂线均分对边,求菱形各角的度数?四、(第 1、 2 小题各 6 分,第 3 小题 7 分,共 19 分)A 与1、如图 5 ,正方形纸片ABCD 的边 BC 上有一点E,AE=8cm ,若把纸片对折,使点点 E 重合,则纸片折痕的长是多少?A DBE C图 52、如图 6,在矩形ABCD 中, E 是 BC 上一点且 AE=AD ,又DF AE 于点F,证明:EC=EF.A DFB CE图 63、如图 7,已知 P 是矩形 ABCD 的内的一点 .求证:PA2PC 2PB 2PD 2.A DPB C图 7参照答案一、选择题1、 B;2、B3、D ;4、 D ;5、 A ;6、 C;7、B ;8、 C;9、D ; 10、 A二、填空题6、119;247、600或1200; 8、600; 9、450; 10、1000。

第一章 特殊平行四边形 单元测试(含答案解析)

第一章 特殊平行四边形 单元测试(含答案解析)

初中数学北师大版九年级上学期第一章单元测试一、单选题1.已知四边形是平行四边形,,相交于点O,下列结论错误的是()A. ,B. 当时,四边形是菱形C. 当时,四边形是矩形D. 当且时,四边形是正方形2.如图,四边形是菱形,对角线,相交于点O,,,点E是上一点,连接,若,则的长是()A. 2B.C. 3D. 43.如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC单位中点,过点E作EF⊥BD于F,EG⊥AC与G,则四边形EFOG的面积为()A. B. C. D.4.如图,菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点.若菱形ABCD的周长为32,则OE的长为()A. 3B. 4C. 5D. 65.如图,正方形的面积为1,是的中点,则图中阴影部分的面积是()A. B. C. D.6.如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为CD上一点,CF=2,连接EF,ED,则2EF+ED的最小值为( )A. 12B. 12C. 12D. 10二、填空题7.如图,在菱形中,,点E在上,若,则________.8.如图,在矩形中,分别为边,的中点,与,分别交于点M,N.已知,,则的长为________.9.如图,在矩形ABCD中,AB=9,,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C 的对应点是R点,则∠CQP=________.10.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是________度.三、作图题11.在正方形ABCD中,E是CD边上的点,过点E作EF⊥BD于F.(1)尺规作图:在图中求作点E,使得EF=EC;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接FC,求∠BCF的度数.四、综合题12.如图,的对角线AC,BD相交于点O,过点O作,分别交AB,DC于点E、F,连接AF、CE.(1)若,求EF的长;(2)判断四边形AECF的形状,并说明理由.13.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.14.如图,的对角线,交于点O,过点D作于E,延长到点F,使,连接,.(1)求证:四边形是矩形;(2)若,,,试求的长.15.如图,点是正方形外一点,点是线段上一点,且是等腰直角三角形,其中,连接、.(1)求证:;(2)判断与的位置关系,并说明理由.16.如图,菱形的三个顶点、、分别在正方形的边、、上,连接.(1)求证:;(2)当时,求证:菱形为正方形.答案解析部分一、单选题1. B解析:四边形是平行四边形,,故A正确,四边形是平行四边形,,不能推出四边形是菱形,故错误,四边形是平行四边形,,四边形是矩形,故C正确,四边形是平行四边形,,,四边形是正方形.故D正确.故答案为:B.【分析】(1)根据平行四边形的对角线互相平分可得OA=OC,OB=OD;(2)根据菱形的判定“一组邻边相等的平行四边形是菱形”可知当AB=CD时,四边形ABCD是菱形错误;(3)根据一个角是直角的平行四边形是矩形可知当∠ABC=90°时,四边形是矩形;(4)根据对角线相等且互相垂直的平行四边形是正方形可知,当且时,四边形是正方形.2. B解析:∵四边形ABCD是菱形,AC=8,BD=6,∴CO=AC=4,OD=BD=3,AC⊥BD,∴DC==5,∠EOC+∠DOE=90°,∠DCO+∠ODC=90°,∵OE=CE,∴∠EOC=∠ECO,∴∠DOE=∠ODC,∴DE=OE,∴OE=CD=.故答案为:B.【分析】根据菱形的性质,可得CO=AC=4,OD=BD=3,AC⊥BD,利用勾股定理及等角的余角相等,可得DC=5,∠DOE=∠ODC,可得DE=OE,从而可得DE=OE=CE,继而得出OE=CD,据此即可求出结论.3. B解析:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,S=AC×BD,∵EF⊥BD于F,EG⊥AC于G,∴四边形EFOG是矩形,EF∥OC,EG∥OB,∵点E是线段BC的中点,∴EF、EG都是△OBC的中位线,∴EF=OC=AC,EG=OB=BD,∴矩形EFOG的面积=EF×EG=AC×BD== S;故答案为:B.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,S=AC×BD,证出四边形EFOG 是矩形,EF∥OC,EG∥OB,得出EF、EG都是△OBC的中位线,则EF=OC=AC,EG=OB=BD,由矩形面积即可得出答案.4. B解析:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∴∠AOB=90°,又∵AB+BC+CD+AD=32.∴AB=8,在Rt△AOB中,OE是斜边上的中线,∴OE= AB=4.故答案为:B.【分析】利用菱形的对边相等以及对角线互相垂直,进而利用直角三角形斜边上的中线等于斜边的一半得出答案.5. B解析:如图,过点E作HF⊥AB,∵AM//CD,∴∠DCE=∠EAM,∠CDE=∠EMA,∴△AME∽△CDE,∴AM:DC=EH:EF=1:2,FH=AD=1,∴EH= ,EF= .∴阴影部分的面积=S正方形ABCD-S△AME-S△CDE-S△MBC=1- - - = .故答案为:B.【分析】根据正方形的性质可得到△AME∽△CDE,根据相似三角形的边对应边成比例,求得EH,EF的长,从而即可求得阴影部分的面积.6. B解析:如图,在AD上取点k,使AK=2,连接EK,在△AEK和△ADE中,∠EAK=∠DAE,∴△AEK∽△ADE,∴,即EK= ED,∴EF+ ED=EF+EK,当F、E、K三点共线时,EF+ ED=FK=6 ,∴(2EF+ED)最小=2(EF+ ED)=12 ,故答案为:B。

第一章《特殊平行四边形》单元测试卷(含答案解析)

第一章《特殊平行四边形》单元测试卷(含答案解析)

第一章《特殊平行四边形》单元测试卷班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补2.矩形具有而菱形不一定具有的性质是()A.内角和等于3600B.对角互补C.对边平行且相等D.对角线互相平分3.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形4.如图所示,四边形ABCD的对角线互相平分,要使四边形ABCD成为矩形,需要添加的条件是()A.AB=CD B.AD=BD C.AB=BC D.AC=BD(第4题) (第5题) (第6题)5.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm6.如图,四边形ABCD是平行四边形,下列说法不正确的是()A.当AC=BD时,四边形ABCD是矩形;B.当AB=BC时,四边形ABCD是菱形;C.当AC⊥BD时,四边形ABCD是菱形;D.当∠DAB=90°时,四边形ABCD是正方形7.正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等N分别是边AB、BC的中点,则PM+PN的最小值是()A.5 B.10 C.14 D.不确定(第8题) (第9题) (第10题)9.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=4,则菱形ABCD的周长是()A.8 B.16 C.24 D.3210.如图,AC、BD是矩形ABCD的对角线,过点D作DE∥AC,交BC的延长线于E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个11.如图,在菱形ABCD中,∠BAD=82°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.67°B.57°C.60°D.87°(第11题) (第12题)12.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、A n分别是正方形的中心,则n个这样的正方形重叠部分的面积和为()A2B 2 C 2 D cm2二.填空题:(每小题3分,共12分13.如图,四边形ABCD中,点E、F、G、H分别为边AB、BC、CD、DA的中点,请你(第13题) (第14题) (第15题)14.如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α= 度.15.如图,E是边长为1的正方形ABCD对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BD于点R,则PQ+PR的值为。

第十八单元 特殊平行四边形单元测试卷(原卷版)

第十八单元 特殊平行四边形单元测试卷(原卷版)

第十八单元特殊平行四边形单元测试卷满分:120分时间:120分钟一、选择题(每小题3分,共36分)1.(2021•奉贤区三模)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B 2.(2020春•海陵区校级期末)矩形具有而一般的平行四边形不一定具有的特征()A.对角相等B.对角线相等C.对角线互相平分D.对边相等3.(2020秋•大渡口区期末)如图,在△ABC中,∠ACB=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=∠BDC4.(2022•大渡口区模拟)如图,在平行四边形ABCD中,DE平分∠ADC,∠DEC=30°,则∠ADC=()A.30°B.45°C.60°D.80°5.(2021•陕西模拟)如图,菱形ABCD对角线AC,BD交于点O,∠ACB=15°,过点C 作CE⊥AD交AD的延长线于点E.若菱形ABCD的面积为4,则菱形的边长为()A.2B.2C.4D.46.(2021春•綦江区期末)如图,平行四边形ABCD的对角线交于点O,且AD>CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为7.5,那么平行四边形ABCD的周长是()A.7.5B.15C.17D.197.(2021春•青山区期末)如图,在平行四边形ABCD中,如果EF∥AD,GH∥CD,EF与GH相交于点O,那么图中的平行四边形一共有()A.4个B.5个C.8个D.9个8.(2018•湘潭)如图,已知点E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH 是()A.正方形B.矩形C.菱形D.平行四边形9.(2021春•拱墅区期末)如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC 于点E,∠EDC:∠EDA=1:2,且AC=8,则EC的长度为()A.2B.2C.4D.10.(2021•梓潼县模拟)如图,已知△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AB=8,MN=2,则AC的长为()A.12B.11C.10D.9 11.(2017•临沂)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形12.(2021•宁波模拟)如图,四边形ABCD和DEFG均为正方形,点E在对角线AC上,点F在边BC上,连接EF,CG和EG.若知道正方形ABCD和DEFG的面积,在不添加辅助线的情况下,一定能求出的是()A.四边形ABFE的周长B.四边形ECGD的周长C.四边形AEGD的周长D.四边形ACGD的周长二、填空题(每小题3分,共18分)13.(2021春•祁阳县期末)已知直线a∥b,a与b之间的距离为9,a与b之间有一点P,点P到a的距离是4,则点P到b的距离是.14.(2021秋•禅城区期末)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AB的长为10km,则M,C之间的距离是km.15.(2019春•鼓楼区校级期中)如图,矩形ABCD的对角线AC与BD相交点O,AC=20,P、Q分别为AO、AD的中点,则PQ的长度为.16.如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点A的坐标为;点B的坐标为.17.(2021春•合肥期末)如图1,平行四边形纸片ABCD的面积为120,AD=15.今沿两对角线将四边形ABCD剪成甲、乙.丙、丁四个三角形纸片.若将甲、丙合并(AD、CB 重合)形成一个对称图形戊,如图2所示.则图形戊的两条对角线长度之和为.18.(2021•河南模拟)如图,在正方形ABCD中,点E是AD边的中点,连接CE,点F在CE上,过点F作CE的垂线,分别交AB,CD于点G,H.若BG=1,CH=4,则AE 的长度为.三、解答题(共66分)19.(8分)(2021•越秀区二模)如图,F、C是线段AD上的两点,AB∥DE,BC∥EF,AF =DC,连接AE、BD,求证:四边形ABDE是平行四边形.20.(10分)(2020•兰州模拟)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.21.(10分)(2021春•固始县期末)在Rt△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明:四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.22.(12分)(2020春•泗洪县校级期中)如图,在△ABC中,AD是BC边上的中线,E 是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.(3)在(2)问下当△ABC再满足一个什么条件,四边形ADCF为正方形.23.(12分)(2021春•芙蓉区校级期末)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;24.(14分)(2021秋•凤翔县期中)如图,在Rt△ABC中,∠C=90°,AC=20,∠A=60°.点P从点B出发沿BA方向以每秒2个单位长度的速度向点A匀速运动,同时点Q从点A出发沿AC方向以每秒1个单位长度的速度向点C匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点P、Q运动的时间是t秒.过点P作PM⊥BC 于点M,连接PQ、QM.(1)请用含有t的式子填空:AQ=,AP=,PM=;(2)是否存在某一时刻使四边形AQMP为菱形?如果存在,求出相应的t值;如果不存在,说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章特殊平行四边形单元测试卷总分 100 分时间120分钟姓名:--------
一、选择题(每题 4 分,共 40 分)
1.已知四边形ABCD ,以下有四个条件.
(1)AB∥CD,AB CD (3)AB,CD (2)
(4)
AB AD, AB BC
AB∥CD,AD ∥ BC
能判四边形ABCD 是平行四边形的有()
A.1个B.2 个C.3 个D.4个
2、菱形具有而一般平行四边形不具有的性质是()
A. 对角相等
B. 对边相等
C. 对角线互相垂直
D. 对角线相等
3、菱形的周长为 100cm,一条对角线长为14cm,它的面积是()
A. 168cm 2
B. 336cm 2
C. 672cm 2
D. 84cm 2
4. 下列识别图形不正确的是()
A .有一个角是直角的平行四边形是矩形
B .有三个角是直角的四边形是矩形
C.对角线相等的四边形是矩形D.对角线互相平分且相等的四边形是矩形
5、如图,矩形ABCD的周长为 68,它被分成7 个全等的矩形,则矩形ABCD?的面积为()
A.98 B.196C.280D.284
6、四边形ABCD的对角线相交于点O,下列条件不能判定它是矩形的是()
A. AB=CD, AB∥CD,∠ BAD=90°
B.∠ BAD=∠ ABC=90°,∠ BCD+∠ADC=180°
C . AO=CO, BO=DO, AC=BD
D.∠ BAD=∠ BCD,∠ ABC=∠ ADC=90°
7、在正方形 ABCD中, AB= 12cm,对角线 AC、 BD相交于 O,则△ ABO的周长是()
A. 12+12 2
B. 12+62
C. 12+
D. 24+62
2
8、如图 3,四边形
∠AFC 的度数是(( A)150°ABCD是正方形,延

).
( B)125°
BC至

E,使CE= CA,连结AE

CD?于点F,?则
(C)135°(D)112.5°
9.如图 4,E、F是ABCD对角线AC上两点,
且 AE CF ,连结 DE 、 BF ,则图中共有全等图3三角形的对数是()
A.1对B.2对C.3对D.4对
10、如图,在正方形ABCD中, E
是DC中点,

F 在BC上,

EAF=∠ DAE,则下列结论中
正确的是()
( A)∠ EAF=∠ FAB( B)FC=1 BC 3
( C)AF = AE+ FC( D)AF= BC+ FC
D C
F
E
A
图4
B
二.填空题(每题 5 分,共25 分)
11. 已知ABCD 的周长为20cm,对角线AC、 BD 相交于
点 O,△COB 的周长比△ AOB 的周长大2cm,那么BC cm.图6
12、如图 6,菱形 ABCD的对角线AC、BD相交于点O,且 AC=8, BD=6,过点 O作 OH丄 AB,
垂足为 H,则点 0 到边 AB的距离 OH= _________.
13、菱形的两条对角线分别是 6 cm , 8 cm,则菱形的边长为_____,面积为 ______.
14、如左下图,四边形ABCD是正方形,△ CDE 是等边三角形,则∠ AED=______,∠ AEB=
______.
15.如图,点 O是矩形 ABCD的中心, E 是 AB上的点,沿 CE折叠后,点 B 恰好与点 O重合,
若 BC=3,则折痕 CE的长为------。

三.解答题( 3 道大题,共35 分)
16、(10 分)如图,平行四边形ABCD的对角线AC、BD交于点 O,E、F 在 AC上, G、H在 BD 上, AF=CE, BH=DG.
求证: GF∥HE.
A D
E
O H
G
F
B C
17、( 10 分)如图,平行四边形ABCD中,对角线 AC、BD 相交于点 O,延长 OA到 N,使 ON =
OB,再延长 OC至 M,使 CM= AN. 求证:四边形 NDMB是矩形 .
18、( 15分)如图,在△A BC中,∠ ACB=90°, BC的垂直平分线 DE交 BC于 D,交 AB于 E,F在 DE 上,且 AF=CE=AE.
⑴说明四边形 ACEF是平行四边形;
⑵当∠ B满足什么条件时,四边形ACEF是菱形,并说明理由.
第18题图
参考答案
1.B 2 .C 3.B 4.C 5.C 6.B 7.A 8.D 9.C 10.D 11.6 1
2.
13.5 24 14. 15°; 30
15.
23
16、【答案】证明:∵平行四边形ABCD中, OA=OC,
由已知: AF=CE AF -OA=CE-OC∴OF=OE同理得: OG=OH
∴四边形 EGFH是平行四边形∴GF∥HE
18、【答案】( 1)证明:由题意知∠= ∠= 90 °.∴∥∴∠AEF=∠EAC
FDC DCA EF CA
∵AF = CE = AE ∴∠ F =∠AEF =∠EAC=∠ ECA又∵AE = EA
∴△≌△,∴EF=,∴四边形是平行四边形.
AEC EAF CA ACEF
(2)当∠ =30°时,四边形是菱形.
B ACEF
理由是:∵∠=30°,∠=90°,∴= 1
AB,∵垂直平分,∴=
B ACB A
C DE BC BE CE
2
又∵=,∴=1AB,∴ =,∴四边形是菱形.
AE CE CE AC CE ACEF
2。

相关文档
最新文档