第二章 气体混相驱
气液两相流 第2章-两相流的基本理论

x
1 (1 x)
G G
• 对于均相流动,考虑流体流过微元流道的平衡方程式,设流道截面积为A, 与水平面的倾斜角为θ。
• 针对最普遍问题,不做任何简化:非稳态、非等截面、有换热、有内热生成
• 2.4管内气液两相流的基本ห้องสมุดไป่ตู้程
q
z
qv
Vm
A
p
θ
τ0
q -经流道壁面进入系统的热流密度,W/m2 qv-单位体积的内热发生率,J/m3·s P - 流道周界长度
2.1管内气液两相流的基本参数
7、气相(真实平均)速度VG、液相(真实平均)速度VL(actual velocity) m/s VG=QG/AG, VL=QL/AL 事实上,它们是各相在其所占截面上的平均速度,真正的两相流 速应当是截面上各流体质点的速度---局部速度。
8、折算速度VSG、VSL(Superficial gas/liquid velocity) m/s VSG:假定气相单独流过管道整个截面时的流速(即折算到整个截面上) VSG=QG/A, VSL: VSL=QL/A (VSG=QG/A=QG/(AG/α)=α·VG; VSL=(1-α)·VL
2.1管内气液两相流的基本参数
3、质量含气率x(mass fraction of the gas phase)
流过某一截面的气相质量流量占两相总质量流量的份额。
x WG WG W WG WL
WG x W WL (1 x) W
质量含液率为:
1 x WL WG WL
单组份气液两相流的质量含气率x也称为干度(Dryness、Quality)。
2.1管内气液两相流的基本参数
⑴真实密度(又称分相流密度)
第2章 气液两相流的模型

v 2
两边同除 Adz 得
' dv dp v 2 4 g sin G 2 ' dx dp g ' f 2 vg vl x dz 2 D v A dz dp dz
1
2-11
G G G ' 所以 Gdv Gd dv d vl' x vg vl' v A A A
2
2
2-13
多相管流理论与计算
由于假定两相流动已达到热力学平衡状态
v' f ( p)
' dv ' ' dv d vl' x vg vl' vg vl' dx x dp 1 x l dp dp dp
多相管流理论与计算
两边同除以
VdZ
dI w dp dv v g sin 0 dZ dZ dZ
dI w dp dv [ v g sin ] dZ dZ dZ
总压力降
动能损失
重位损失
摩擦损失
多相管流理论与计算
dp ( )重位 g sin dZ
dIw dp ( )摩擦 dZ dZ
dp dv ( ) 加速度 v dZ dZ
dp dp dp dp ( )重位 ( )摩擦 ( )加速度 dZ dZ dZ dZ
dp dp v2 由 ( ) 摩擦= 并取 为正值 dZ dz d 2
二氧化碳驱最低混相压力影响因素分析

二氧化碳驱最低混相压力影响因素分析二氧化碳驱过程中混相区位置是驱替工艺控制的关键,因为决定了从混相区出来的气体的质量流量。
而目前对于混相区位置的研究还有待进一步深入。
本文将在最近几年有关文献的基础上,对二氧化碳驱最低混相压力进行分析,以期得到一些有价值的参考数据。
1。
常规驱油的最低混相压力影响因素首先根据驱替反应条件来分析影响最低混相压力的因素。
由于驱油方式不同,驱替介质也不同,所以要探讨不同类型方法的最低混相压力会有很大的困难。
实际上由于非牛顿性,驱替过程是不可逆的,因此各种不同的方法都有不同的最低混相压力,只能从驱替机理及其影响因素两方面来探讨。
(1)二氧化碳驱不同驱替剂的最低混相压力分析对于二氧化碳驱常用驱替剂有四种:二氧化碳、甲烷、蒸汽和水。
这些驱替剂都是酸性物质,在驱油过程中发生的主要反应都是酸碱反应。
2。
CO。
驱最低混相压力影响因素在混相区发生了混相,必然会影响混合相与原油间的传质过程,造成混相的不稳定性,从而增加混相的静阻力。
增加了混相的静阻力,则降低了混相的驱替能力。
混相越容易形成和长大,混相的驱替效果就越差。
由于二氧化碳驱混相的驱替能力较低,所以提高混相驱替能力是提高该驱替方法经济效益的重要途径。
二氧化碳驱的混相压力受许多因素影响,包括: CO。
浓度,温度,混相区的长度等。
混相区的长度越短,混相区的静阻力越小,那么混相区的范围就越窄,这样可提高混相驱替的效果。
其次,温度和压力也会影响混相的形成和长大,从而改变混相区的结构。
例如,当温度升高时,混相区的混合强度增大,混相驱替的过程受到抑制,但是混相的驱替率却下降;反之,当温度降低时,混相区的混合强度减小,混相驱替的过程被打断,但是混相的驱替率却增大。
因此可以通过控制混相区的温度和压力,来达到控制混相的形成和长大。
3。
二氧化碳驱最低混相压力的计算目前对于CO。
驱最低混相压力的计算方法主要有三种:动量法,总压法,热力学法。
3。
此外,驱替剂与驱替液的配比、地层压力、原油粘度、流度等因素对最低混相压力也有一定影响。
二氧化碳混相驱油技术

11
二、二氧化碳混相驱油技术的应用现状
12
目录 CONTENTS
01 02
一、二氧化碳混相驱油技术的基本原理
二、二氧化碳混相驱油技术的应用现状
03
04
三、二氧化碳混相驱油渗流特征
四 、 一 种 二氧 化碳 混 相驱 油技 术的 数学 模型
三、二氧化碳混相驱油渗流特征
3.1 一维填砂模型中的渗流特征
式中,C 为注入的 CO2浓度;k1, k2为反应常数; t为时间。
四、考虑吸附现象的低渗透油藏二氧化碳混相驱油数学模型
总的吸附浓度分布为:
当吸附达到平衡即t→ +∞时,总的吸附浓度公式整理为: ( 1) 其中,
,
流体的吸附浓度是时间和CO2浓度的函数,因此有:
四、考虑吸附现象的低渗透油藏二氧化碳混相驱油数学模型
一、二氧化碳混相驱油技术的基本原理
1.3 改善油水两相体系性能
降低油水界面的界面张力 二氧化碳混相驱 中,二氧化碳抽提原油中的轻质组分或使 其汽化,从而降低界面张力。二氧化碳驱 过程是二氧化碳不断富化过程。 混相效应 二氧化碳与原油混合后,不仅能 萃取和汽化原油中轻质烃,而且还能形成 二氧化碳和轻质烃混合的油带。油带移动 是最有效的驱油过程,可使采收率达到90% 以上。 CO2在油水中的扩散作用可使 CO2本身重新 分配,并且起到稳定相系统平衡状态的作 用。
图4-2注入压力对 CO2流出端 CO2降黏效果的影响 在其他条件不变的情况下,油藏的初始原 图4-3 初始原油黏度对 浓度分布的影响 油黏度越大,混合物的黏度变化幅度越大,CO2 的降黏效果越明显。
CD
谢谢聆听
THANK YOU FOR YOUR ATTENTION
二氧化碳驱最低混相压力影响因素分析

二氧化碳驱最低混相压力影响因素分析
二氧化碳驱是一种常用的油田开发方法,它是通过注入二氧化碳来增加油藏的压力,从而提高油产的方法。
二氧化碳驱的最低混相压力是指二氧化碳驱操作时所需的最低的混合气体压力。
二氧化碳驱最低混相压力的影响因素主要有以下几个:
油藏地质条件:油藏的岩性、孔隙度、渗透率等地质条件会影响二氧化碳驱的最低混相压力。
二氧化碳注入量:二氧化碳注入量越大,二氧化碳驱的最低混相压力就越高。
1 / 1。
国内外混相气驱提高采收率技术

要开展流体在生烃岩内部的流动特性的研究;还要开展生烃层内流体性质及其影响因素的研究。
这些研究无疑将大大丰富目前的油气生成和初次运移理论,同时也将大大促进泥岩油气藏的勘探。
陈弘供稿提高采收率技术国内外混相气驱提高采收率技术一、混相驱发展概况1 混相驱概述在提高采收率方法中,气体混相驱具有非常强大的吸引力。
因为注入气体与原油达到混相后,界面张力趋于零,驱油效率趋于100%。
如果该技术与流度控制技术相结合,那么油藏的原油采收率可达95%。
因此混相气驱已经成为仅次于热力采油的处于商业应用的提高采收率方法。
(1)概念混相驱是指在多孔介质中,一种流体驱替另外一种流体时,由于两种流体之间发生扩散、传质作用,使两种流体互相溶解而不存在分界面。
其目的是使原油和驱替剂之间完全消除界面张力,毛细管数变为无限大,残余油饱和度降到最低。
(2)分类按照混相驱的气体烃类气体非烃类气体干气富气液化石油气二氧化碳氮气烟道气按照混相机理一次接触混相驱多次接触混相驱(凝析气驱+蒸发气驱)LPG段塞驱丙烷段塞驱富气驱 CO2驱干气驱氮气(烟道气驱)2 混相驱发展概况(1)国外概况混相注气始于20世纪40年代,由美国最早提出向油层注入干气。
50年代,全世界实施了150多个项目,在室内和现场进行了大量试验。
但是早期多采用液化气进行初期混相驱。
通过不断试验和研究,人们发现除丙烷、LPG可以一次接触混相外,CO2、干气、富气等注入气体在适当条件下,也可以通过多次接触达到动态混相。
自60年代以来,加拿大、阿尔及利亚、智利、前苏联等相继展开烃类混相驱油研究。
70年代,人们对烃类混相驱的兴趣达到顶峰。
加拿大烃类混相驱方法已经在许多油田获得成功,在61个项目中,只失败了8次。
47个成功项目的增产措施为16%~44%,是水驱的两倍。
而美国受天然气气源供应的限制,发展缓慢。
80年代,CO2混相驱逐渐发展起来,这是因为烃类气体价格上涨和天然CO2气藏被发现。
二氧化碳驱油技术综述

二氧化碳驱油技术综述第一章前言提高采收率(EOR)研究是油气IB开发永恒的主题之一。
迄今为止,己形成化学驱、气体混相驱、热采和微生物采油四大类。
近儿年,注气驱提高采收率发展迅速,其中乂以注CO?驱的发展速度最快。
一方面,注g驱油的效果非常明显。
另一方而,CO?气体的利用可以减轻温室效应,这也使C6驱在全球推广运用。
早在1920年就有文献记载,可以通过注入CQ 气体的方法来采出原油。
而CQ的现场应用最早开始于1958年,在美国Permain盆地苗先进行了注CO?混相驱项目,这一项目的结果说明注CQ不但具有很高的效益,而且是一种有效的提高采收率方法。
随着技术的进步、环境保护的需要,注C02提高采收率的方法越來越受到重视.我国陆地上的大多数主力油田进入了中后期开发阶段,呈现出可采储量的动用程度高、白然递减率高、综合递减率高、综合含水率高等特点。
同时,目前随着勘探开发技术的提高,低渗透油田储量占的比例越来越大。
因此在石油后备储量比较紧张的形势下,动用好和开发好低渗透油田,对我国石油事业持续稳定的发展具有重人意义。
但是低渗透油田山于其物性差,比如孔隙度和渗透率都比较小,因此,单井产量低,开发难度大。
利用二氧化碳开发低渗透油田可以有效提高原油采收率。
外CO2驱发展概况门上个世纪五十年代,国际上许多国家就开始把二氧化碳作为一种驱替溶剂进行现场和实验研究。
由于二氧化碳能溶解于原油,降低界面张力,降低原油粘度,在一定的条件下还能与原油混相,进行混相驱油,从而提高原油的采收率。
二氧化碳驱汕特别是二氧化碳混相驱汕己经成为现在低渗透汕藏开发的主要方式之一。
注入二氧化碳用于提高石油采油率已有30多年的历史。
二氧化碳驱油作为一项n趋成熟的采汕技术己受到世界各国的广泛关注,据不完全统计,目前全世界正在实施的二氧化碳驱油项目有近80个。
90年代的CQ驱技术口趋成熟,根据1994年油气杂志的统计结果,全世界有137个商业性的气体混相驱项目,其中55%采用的是烧类气体,42%采用的是CQ,其他气体混相驱仅占3%o目前,国外采用二氧化碳驱油的主要国家有:美国、俄罗斯、匈牙利、加拿大、法国、徳国等。
注空气、氮气、二氧化碳、天然气、蒸汽等提采机理-

1。
二氧化碳驱油机理1.1二氧化碳驱油机理二氧化碳驱的作用机理可分为CO2混相驱和CO2非混相驱(表1—1),当最小混相压力小于原始地层压力时,能够达到混相驱油,高于原始地层压力时为非混相驱。
非混相驱主要通过溶解、膨胀、降粘,降低界面张力等作用来驱油;而混相驱除了溶解、膨胀、降粘等,就是CO2与原油能够达到混相,也就是一种相态,没有界面张力,理论上驱油效率能够达到100%。
一般稀油油藏主要采用CO2混相驱,而稠油油藏主要采用CO2非混相驱.表1—1 混相驱油与非混相驱油对比表在稀油油藏条件下CO2易与原油发生混相,在混相压力下,处于超临界状态下的CO2可以降低所波及的油水界面张力。
CO2注入浓度越大,油水相界面张力越小,原油越容易被驱替.通过调整注入气体的段塞使CO2形成混相,可以提高原油采收率增加幅度。
非混相CO2驱开采稠油的机理主要是:降低原油粘度,改善油水流度比,使原油膨胀,乳化作用及降压开采。
CO2在油中的溶解度随压力增加而增加。
当压力降低时,CO2从饱和CO2原油中溢出并驱动原油,形成溶解气驱。
气态CO2渗入地层与地层水反应产生的碳酸,能有效改善井筒周围地层的渗透率。
提高驱油机理。
与CO2驱相关的另一个开采机理是由CO2形成的自由气可以部分代替油藏中的残余油。
CO2驱油机理主要有以下方面:(1)降低原油粘度溶于原油后,降低了原油粘度,原油粘度越高,粘度降低程度越大(表CO21-2)。
原油粘度降低时,原油流动能力增加,从而提高了原油产量.并且原油初始粘度越高,CO降粘效果越明显,如下表所示。
江苏油田富48井注入37.161%2后,原油粘度降低了60.173%;Maini和Sayegh研究发现,在(摩尔分率)CO2之后,其粘度从6822MPa·s降低到了226MPa·s。
61.55MPa下,稠油饱和CO2表1-2 CO2完全饱和时原油粘度变化对比表原油初始粘度(mPa。