常见的6类弱电系统工程线缆设计及配置计算方法
弱电线缆安装预留长度及算量

弱电线缆安装预留长度及算量
1、问:弱电综合布线工程量计算规则:双绞线缆、光缆、漏泄同轴电缆、电话线和广播线敷设、穿放、明布放以“米”计算。
电缆敷设按单根延长米计算,如一个架上敷设3根各长100m的电缆,应按300m计算,以此类推。
电缆附加及预留的长度是电缆敷设长度的组成部分,应计入电缆长度工程量之内。
电缆进入建筑物预留长度2m;电缆进入沟内或吊架上引上(下)预留1.5m;电缆中间接头盒,预留长度两端各留2m。
答:按定额计算规则,以上基本正确。
2、问:我可不可以这样理解,弱电线均为电缆,我所有的线每条、每端都加2米?
答:不正确。
线缆进箱柜加半周长(宽+高);进面板加0.2米。
双绞线进跳线架加6米;进面板加0.2米。
问题补充:从桥架到机柜的线,以图纸里是不显示的。
答:进弱电间后,可以按垂直+水平距离计算到机柜。
3、问:机柜要移动要预留长度?
答:没有机柜要移动的说法。
4、问:机柜内要盘线,不能直放,要增加长度?
答:按上面说的半周长或6米的预留量增加。
5、问:线缆测试也要截去一定长度,这些长度怎么算?
答:不可以加。
6、问:清单计算规则是按图算,但图纸上不显示的部分量我怎么加?
答:在清单组价时,套定额子目的量=清单量+预留量机房。
问:很大,一个头要甩十米多?
答:进机房按规范规定预留2.0米,其它按路径算到机柜(机柜里面按规定+半周长的量),你要甩十米多不是计算的理由。
问:机柜是可移的,这个线也要预留1.5米?
答:有手续可以计算。
一个头的量并不多,可是一个楼下来,量就大了。
弱电工程计算线材的公式

1、整数用线量(总长度M)=楼层*每层用线量
2、订货总量(总长度M)=所需总长+所需总长*10%+总点数*6
每层用线量=[0.55*(最远点距离+最近点距离)+6]*楼层信息点数
3、总长度=最短信息点长度+最长信息点长度/2*总点数*3.3*1.2
注:得出的长度为英尺
用线箱数计算
用线箱数=总长度(单位米)/305+1
用线箱数=总长度(英尺)/1000+1
l平均=[l(水平)最长+l(水平)最短]/2*1.1+l(垂直)+l(余量)
l总长=l平均*信息点数
upt箱数=roundup(l总长/305,0)+n(自定数量)
价格=utp箱数*单价
管槽线缆容量对照表
1 PVC槽(型号)20*10 24*14 39*19 59*2
2 99*27 99*40
2 五类线(根数) 2 4 9 16 32 48
3 PVC管(型号)ф16 ф20 ф25 ф32 ф40 ф50
4 五类线(根数) 2 3 6 9 1
5 24
5 度锌线槽(型号) 25*25 25*50 25*75 50*50 50*100 100*100
6 五类线(根数)
7 15 22 30 60 120
容量公式:管槽容量=INT(管槽面积*K)对CAT5 UTP来说K=0.012
例如:100*100的桥架
算法:100*100*0.012
结果:120根
另一种算法
100*100*0.4/28.6=139根,100*100为桥架的尺寸,0.4是因为桥架线缆敷设时的容量,28.6为线缆的横切面积
注:规范要求弱电的槽满率是40%,强电的槽满率是50%。
六类综合布线系统方案

结构化六类综合布线系统XXX,以智能化通讯办公、电子信息数据监控、信息管理为主;此次布线工程主要是进行XXX智能信息网络的建设,在国内信息网络工程的标准基础上加以完善,我们将为用户提供100Mbps到户的网络接口,以适应将来高速Internet需求;XXX 结构化综合布线系统作为智能化结构的重要组成部分,我们力争做到在尽可能减少一次性投资的基础上,协调好近期使用和远期发展的关系,建立起一个技术先进、开放式的智能信息管理系统。
用户需求分析:1)综合布线系统的结构、性能要符合国内、国际标准和规范,满足各个系统目前和未来发展的需要。
2)综合布线系统应以电脑系统等为服务对象,同时尽可能为各个弱电系统提供统一信息传输布线平台。
它应有利于各个系统自身组网和传递信息,有利于各个系统之间的互连,有利于各个系统与外界的连网。
3)布线系统要具有高性能和相当的超前性,能够满足各个系统目前和未来新技术、新产品对传输的需求。
4)同时布线系统在设计和实施中应充分考虑办公的具体特点,在信息点的选取、线缆配置等各方面满足网络系统的要求。
5)布线系统应采用符合国内、国际标准的名牌布线产品,技术上要领先,同时要经过国内、国际广泛和较长期使用,具有良好的技术支持和服务。
第二章 XXX综合布线系统设计依据《智能建筑设计标准》GB/T50314-2000;民用建筑线缆标准EIA/TIA570;民用建筑通信管理标准EIA/TIA606;民用建筑通信管理标准EIA/TIA607;国际建筑布线标准IEC/ISO11801;光纤分布式数据接口高速局域网标准ANSIFDDI;综合业务数字网基本数据速率接口标准CCITTISDN;建筑与建筑群综合布线系统设计规范GBT50311—2000;建筑与建筑群综合布线系统工程施工及验收规范GBT50312—2000;《商用建筑线缆标准》EIA/TIA568A;《商用建筑线缆标准》EIA/TIA569;《民用建筑电气设计规范》JGJ/16—92;《建筑设计防火规范》GBJ16—37《工业企业通信接地规范》GBJ79-85中华人民共和国通信行业标准大楼通信综合布线系统标准YD/T926。
弱电工程项目综合布线估算方法和公式实用

弱电工程项目综合布线估算方法和公式(实用)弱电系统中线缆的计算是一门技术活,不是简单的心算就可以完成的,也有一些基本方法和公式来套用,本篇文章分系统介绍弱电线缆估算方法。
一、综合布线系统1.1 水平子系统,线缆用量计算方法:电缆平均长度=(最远信息点水平距离+最近信息点水平距离)/2+2H(H-楼层高)实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)每箱线缆布线根数=每箱电缆长度/实际电缆平均长度电缆需要箱数=信息点总数/每箱线缆布线根数注:最远、最近信息点水平距离是从楼层配线间(IDF)到信息点的水平实际距离,包含水平实际路由的距离,若是多层设置一个IDF则还应包含相应楼层高度。
上面的“电缆平均长度”计算公式适应一层或三层设置一个楼层配线间(IDF)的情形。
1.2 主干子系统,铜线缆用量计算方法:电缆平均长度 =(最远IDF距离+最近IDF距离)/2实际电缆平均长度 = 电缆平均长度×1.1+(端接容限,通常取6)每轴线缆布线根数 = 每轴电缆长度/实际电缆平均长度电缆需要轴数 = IDF的总数/每箱线缆布线根数注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到设备间(MDF)的水平距离。
大对数电缆对数按照1:2(即1个语音点配置2对双绞线)计算,并分别选择25/50对电缆进行合理设计。
100对大对数电缆一般不要选择,因施工较困难。
1.3 主干子系统,光缆用量计算方法:光缆平均长度=(最远IDF距离+最近IDF距离)/2实际光缆平均长度=光缆平均长度×1.1+(端接容限,通常取6)光缆需要总量=IDF的总数×实际光缆平均长度注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到MDF的水平距离。
光纤芯数、单模、多模的选择若招标文件有明确的要求,则按要求设计,通用的选择是6芯多模光缆。
如何根据弱电工程实际情况计算设备与线缆的数量

如何根据弱电工程实际情况计算设备与线缆的数量?一、线缆长度的估算线缆长度估算分为有图纸和没图纸两种情况:1、有图纸情况在图纸上找出线路走向,确定监控室位置;如果是大楼工程要确定监控室离线井距离及位置,如无法确认一定找业务了解清楚。
工程施工一般布线原则是就近走直线,尽量不绕弯。
单支枪最远距离用线长度一般按建筑面积的长和宽再加监控室下线长度、前端预留线之和。
一条线标准计算长度为:前端枪预留1.5米,后端从天花板到地面下线长度也就是天花板到监控柜垂直距离,一般为3.5米,监控机柜预留2米(供机柜短距离移动)这样算下来一支枪预留线路长度为1.5+3.5+2=7米,再按图纸实际环境标注的长度尺寸算出用线总长,以下图为例:建筑长40米,宽30米,监控中心在室内中间位置,那么枪A用线长度为40米+15米(30米宽度的一半)+7米(预留线)=62米,但根据工程部实际工作经验在布线过程中还要经过线缆转角、转弯等,一般会在原长度基础上增加15%,也就是62*10%=10米,那么枪A的实际长度为62米+10米=72米。
枪B用线长度为10米+15米+7米=32米,再加15%,枪B用线总长度为37米,那么两支枪各准备110米75-3视频线、RVV2*0.5电源线、RVVP3×0.5监听线就足够了,管槽长度同线缆长度。
2、无图纸情况在没有图纸情况下,需向业务了解到网点基本情况如楼高、面积、线井位置等基本信息。
然后根据楼层高度(一般楼层高3.5米,1楼在7米高度)估算垂直长度,然后再根据机柜离线井的横向距离算出线缆大概总长度。
3、电梯布线如果是大楼布线有电梯情况,线缆从哪一层进入电梯应按以下公式算出后接入:楼层÷2+1,计算出结果就是实际楼层数。
如一栋16层楼为例,16÷2+1=9应该在9层位置接线进入电梯。
二、线缆类型的选择视频线一般选用75-3和75-5线也有及少数电梯专用线等特种线,75-3视频传输距离一般为200米,75-5传输距离一般为400米。
常见的6类弱电系统工程线缆设计及配置计算方法

注2:若在一个楼层(即一个广播分区)需要有两个扬声器回路,如酒店的客房(或办公楼的办公间)与公共走廊需分为两个回路,则上述的“电缆平均长度”应分别计算,然后再计算出“实际电缆平均长度”,并要注意此时的“水平电缆总根数(即广播分区数)”需“加倍”。
注:最远、最近用户终端距离是从分支器到最近的一个终端用户插座、最远的一个用户终端的实际距离。
B、水平部分分支电缆(通常为RG11),线缆用量计算方法:
电缆平均长度=(最远分支器/终端电阻距离+最近分支器/终端电阻距离)/2
实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)
电缆需要总数=水平电缆总根数x实际电缆平均长度(米)
4、背景音乐及紧急广播系统
4.1水平线缆计算方法:
水平部分线缆(通常为ZR-RVS 2*1.0):ZR--阻燃RVS--软(R)铜(V)绞(S)线
电缆平均长度=(最长水平距离+最短水平距离)/2+H (H—楼层高)
实际电缆平均长度=电缆平均长度×1.1+(扬声器端接容限)
电缆需要总数=水平电缆总根数(即广播分区数)x实际电缆平均长度(米)
注:最远、最近分支器距离是从楼层分配间的分配器箱到最远、最近分支器的实际距离,包含水平实际路由的距离,若是多层共享一个楼层分配器则还应包含相应楼层高度。
C、主干电缆(通常为RG12或RG11),线缆用量计算方法:
电缆平均长度=(最远楼层分配箱距离+最近楼层分配箱距离)/2
实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)
1.2主干子系统,铜线缆用量计算方法:
综合布线六类线施工工艺标准[详]
![综合布线六类线施工工艺标准[详]](https://img.taocdn.com/s3/m/4dbe532733687e21ae45a957.png)
综合布线六类线施工工艺本文从施工的角度出发,阐述六类布线系统在施工中应注意的问题,重点论述了六类布线系统施工前准备,管路线缆的敷设及接地防护技术,以提高整个布线系统的抗干扰性、数据的性以及数据的传输速率。
六类布线系统在传输速率上可提供高于超五类2.5倍的高速带宽,在100MHz时高于超五类300%的ACR值。
在施工安装方面,六类比超五类难度也要大很多。
六类布线系统的施工必须按照国际标准要求的规去执行。
因为“越是高级的铜缆对外界的环境就越敏感。
随着传输速率的上升,安装施工的正确与否对系统性能的影响就越大”。
不合理的管线敷设,不规的安装步骤,不到位的管理体制,都会对六类布线的测试结果(包括物理性能和电气性能)带来影响,而且有些会成为难以修复的故障,甚至只能重新敷设一条链路来更替。
1、六类布线系统在施工时应注意的事项1.1由于六类线缆的外径要比一般的五类线粗,为了避免线缆的缠绕(特别是在弯头处),在管线敷设时一定要注意管径的填充度,一般径20mm的线管以放2根六类线为宜。
1.2严格遵守线槽的施工规,保证合适的线缆弯曲半径。
上下左右绕过其他线槽时,转弯坡度要平缓,重点注意两端线缆下垂受力后是否还能在不压损线缆的前提下盖上盖板。
1.3放线过程中主要是注意对拉力的控制,对于带卷轴包装的线缆,应把卷轴套在自制的拉线杆上,放线端应从卷轴箱预拉出一部分线缆,以供在管线另一端抽取,预拉出的线不能过多,避免多根线在场地上缠结环绕。
1.4拉线工序结束后,两端留出的冗余线缆要整理和保护好,盘线时要顺着原来的旋转方向,线圈直径不要太小,用线卡固定在线槽、吊顶上或纸箱,做好标注。
1.5在整理、绑扎、安置线缆时,冗余线缆不要太长,不要让线缆叠加受力,线圈顺势盘整,固定扎绳不要勒得过紧。
1.6在整个施工期间,严格按施工工艺流程组织施工,各工种要根据施工方案和施工网络计划组织施工,在其他后续工种开始前应完成本工种的施工任务。
2.在施工中需要注意的几个问题在施工前,必须仔细查阅其他专业的施工图纸,尤其是土建结构施工图、水、电、通风施工图。
弱电设计线路长度计算公式

弱电设计线路长度计算公式在建筑物的设计和施工过程中,弱电系统是一个非常重要的部分,它涉及到通信、安全、监控等方面的设备和系统。
弱电系统的设计需要考虑到线路的长度,因为线路长度的长短直接影响到系统的稳定性和性能。
因此,对于弱电设计线路长度的计算是非常重要的。
本文将介绍弱电设计线路长度计算的公式及其相关内容。
首先,我们需要了解一些基本的概念。
在弱电系统中,线路长度指的是从设备到设备之间的实际电缆长度,包括水平和垂直的长度。
在计算线路长度时,需要考虑到线路的走向、弯曲、分支等因素,这些因素都会对线路长度产生影响。
弱电设计线路长度的计算公式如下:L = √(Lh^2 + Lv^2)。
其中,L代表线路总长度,Lh代表水平长度,Lv代表垂直长度。
这个公式是根据勾股定理得出的,用于计算线路的实际长度。
在实际应用中,我们可以根据具体的情况,使用这个公式来计算线路长度。
在实际的弱电系统设计中,我们需要考虑到不同的设备之间的距离、线路的走向、弯曲、分支等因素。
这些因素都会对线路长度产生影响,因此在进行线路长度的计算时,需要综合考虑这些因素。
另外,对于不同类型的弱电系统,其线路长度的计算方法也会有所不同。
例如,对于通信系统而言,需要考虑到信号传输的距离和衰减等因素;对于监控系统而言,需要考虑到摄像头的布置位置和监控范围等因素。
因此,在进行弱电设计线路长度计算时,需要根据具体的系统要求和设计要求来确定合适的计算方法。
此外,对于大型建筑物或者复杂的弱电系统,线路长度的计算可能会比较复杂,需要考虑到更多的因素。
在这种情况下,我们可以借助计算机辅助设计软件来进行线路长度的计算,这样可以更加准确和高效地完成线路长度的计算工作。
总之,弱电设计线路长度的计算是非常重要的,它直接影响到弱电系统的稳定性和性能。
在进行线路长度的计算时,需要考虑到线路的走向、弯曲、分支等因素,综合考虑不同的系统要求和设计要求,选择合适的计算方法。
通过合理的线路长度计算,可以保证弱电系统的正常运行和良好的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见六类线工程设计及配置方法1.1 水平子系统,线缆用量计算方法:电缆平均长度=(最远信息点水平距离+最近信息点水平距离)/2+2H(H-楼层高)实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6) 每箱线缆布线根数=每箱电缆长度/实际电缆平均长度电缆需要箱数=信息点总数/每箱线缆布线根数注:最远、最近信息点水平距离是从楼层配线间(IDF)到信息点的水平实际距离,包含水平实际路由的距离,若是多层设置一个IDF则还应包含相应楼层高度。
上面的“电缆平均长度”计算公式适应一层或三层设置一个楼层配线间(IDF)的情形。
1.2 主干子系统,铜线缆用量计算方法:电缆平均长度=(最远IDF距离+最近IDF距离)/2实际电缆平均长度= 电缆平均长度×1.1+(端接容限,通常取6)每轴线缆布线根数= 每轴电缆长度/实际电缆平均长度电缆需要轴数= IDF的总数/每箱线缆布线根数注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到设备间(MDF)的水平距离。
大对数电缆对数按照1:2(即1个语音点配置2对双绞线)计算,并分别选择25/50对电缆进行合理设计。
100对大对数电缆一般不要选择,因施工较困难。
1.3 主干子系统,光缆用量计算方法:光缆平均长度=(最远IDF距离+最近IDF距离)/2实际光缆平均长度=光缆平均长度×1.1+(端接容限,通常取6)光缆需要总量=IDF的总数×实际光缆平均长度注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到MDF的水平距离。
光纤芯数、单模、多模的选择若招标文件有明确的要求,则按要求设计,通用的选择是6芯多模光缆。
2、有线电视系统2.1 星型布线计算法:此方法定义为:所有的楼层分支分配器集中在弱电间内,从每个用户终端(插座)独立敷设一根射频电缆到相应的弱电间与分支分配器联接。
水平部分电缆(通常为RG6),线缆用量计算方法:电缆平均长度=(最远用户终端水平距离+最近用户终端水平距离)/2+2H (H——楼层高度)实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取3)电缆需要总数=用户终端总数x实际电缆平均长度(米)注:最远、最近用户终端水平距离是从楼层分配箱到最远、最近终端用户插座的实际距离,包含水平实际路由的距离,若是多层设置一个楼层分配箱则还应包含相应楼层高度。
主干电缆(通常为RG11/RG9),线缆用量计算方法:电缆平均长度=(最远楼层分配箱距离+最近楼层分配箱距离)/2实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)电缆需要总数=楼层分配间总数x实际电缆平均长度(米)注:最远、最近楼层分配箱距离是从楼层分配箱到卫星或有线电视中心机房(或延续放大器)的实际距离,主要取决于楼层高度和弱电井到有线电视中心机房的水平距离。
2.2 分支器串接布线计算法:分支器串接法布线通常分为进户线缆、水平线缆、主干(垂直)线缆三部分。
A、进户部分电缆:(通常为RG6规格),线缆用量计算方法:电缆平均长度=(最远用户终端距离+最近用户终端距离)/2实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取3)电缆需要总数=用户终端总数x实际电缆平均长度(米)注:最远、最近用户终端距离是从分支器到最近的一个终端用户插座、最远的一个用户终端的实际距离。
B、水平部分分支电缆(通常为RG11),线缆用量计算方法:电缆平均长度=(最远分支器/终端电阻距离+最近分支器/终端电阻距离)/2 实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)电缆需要总数=水平电缆总根数x实际电缆平均长度(米)注:最远、最近分支器距离是从楼层分配间的分配器箱到最远、最近分支器的实际距离,包含水平实际路由的距离,若是多层共享一个楼层分配器则还应包含相应楼层高度。
C、主干电缆(通常为RG12或RG11),线缆用量计算方法:电缆平均长度=(最远楼层分配箱距离+最近楼层分配箱距离)/2实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)电缆需要总数=楼层分配箱总数x实际电缆平均长度(米)注:最远、最近楼层分配箱距离是从楼层分配箱到卫星或有线电视机房的实际距离,主要取决于楼层高度和弱电井到卫星或有线电视机房的水平距离。
3、安全防范系统3.1.1视频电缆计算方法:通常选用SYV75-5规格,电缆平均长度=(最远摄像机距离+最近摄像机距离)/2实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)电缆需要总数=摄像机总数x实际电缆平均长度(米)注:最远、最近摄像机距离是指从安防监控中心机房到离安防机房最远、最近摄像机的实际距离,(注意楼层高度)。
当有群楼的长、宽、与主楼(标准层)的长、宽有较大差距时,要求按照群楼、主楼分别计算实际电缆平均长度。
3.1.2 电源线缆计算方法:RVV2*1.0规格。
方式一:由于摄像机的分布较为分散(尤其是群楼)。
因此建议按视频电缆长度的1/2~1/3计算。
方式二:按每8只摄像机敷设一根电源线缆:电源线需要总数=(摄像机总数/8)*视频电缆计算中的实际电缆平均长度。
3.1.2 控制电缆计算方法:(云台+变焦摄像机),RVS2*1.0规格。
电缆平均长度=(最远摄像机距离+最近摄像机距离)/2实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)电缆需要总数=摄像机总数x实际电缆平均长度(米)注:最远、最近摄像机距离是指从监控中心机房到离机房最远摄像机、最近摄像机的实际距离,(注意楼层高度)。
当有群楼的长、宽、与主楼的长、宽有较大差距时,要求分别计算实际电缆平均长度。
3.2 防盗报警系统3.2.1 二芯报警线缆计算方法:RVV2*0.5规格。
线缆平均长度=(最远报警前端设备距离+最近报警前端设备距离)/2实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)线缆需要总数=前报警端设备总数x实际电缆平均长度(米)注:最远、最近报警前端距离是指从安防中心机房(或报警键盘、扩展模块)或到离机房(或报警键盘、扩展模块)最远、最近报警前端设备的实际距离,(注意楼层高度)。
当有群楼的长、宽、与主楼的长、宽有较大差距时,要求分别计算实际电缆平均长度。
四芯报警线缆计算方法同上。
RVV4*0.5规格3.2.2 报警联网总线计算方法:由于报警联网总线多数为一根(或一路),少数为两根(路)或多根(路),因此要求按实际的总线路由计算。
线缆需要总数=实际总线路由长度×1.1+ 端接容限(米)注:端接容限=总线上需要联接的设备(通常是报警键盘、扩展模块)数量* 64、背景音乐及紧急广播系统4.1 水平线缆计算方法:水平部分线缆(通常为ZR-RVS 2*1.0):ZR--阻燃RVS--软(R)铜(V)绞(S)线电缆平均长度=(最长水平距离+最短水平距离)/2+H (H—楼层高)实际电缆平均长度=电缆平均长度×1.1+(扬声器端接容限)电缆需要总数=水平电缆总根数(即广播分区数)x实际电缆平均长度(米) 注1:最长、最短楼层水平距离是从楼层弱电间到最长楼层、最短楼层的实际距离。
注2:若在一个楼层(即一个广播分区)需要有两个扬声器回路,如酒店的客房(或办公楼的办公间)与公共走廊需分为两个回路,则上述的“电缆平均长度”应分别计算,然后再计算出“实际电缆平均长度”,并要注意此时的“水平电缆总根数(即广播分区数)”需“加倍”。
注3:扬声器端接容限=所测量水平距离楼层的扬声器数量*(客房或办公室取9,走廊取6);4.2 主干电缆计算方法:广播主干线缆(通常为ZR-RVS 4*1.0),线缆用量计算方法:电缆平均长度=(最远楼层分配箱距离+最近楼层分配箱距离)/2实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)电缆需要总数=楼层分配箱总数x实际电缆平均长度(米)注:最远、最近楼层分配箱(广播分区)距离是从楼层分配箱到广播中心机房的实际距离,主要取决于楼层高度和弱电井到广播中心机房的水平距离。
5、多媒体数字会议及扩声系统由于本系统设备种类繁多,连接线的类型也多,但数量(长度)并不长,因此本系统的线缆计算方式,建议按照辅材的方式进行报价,并按系统设备总价的1.5~2%计算。
数字会议系统专用联接电缆应另行报价,计算数量为数字会议控制主机到放置主席机或代表机的实际距离*1.1+(端接容限,通常取3)。
6、楼宇设备监控系统6.1 传感器、执行器的监控点到DDC箱的各类线缆计算方法:通常有RVV2*1.0、RVS2*1.0、BVS2*2.5、RVVP2*1.0、RVV8*1.0(用于DDC箱到设备配电箱)等规格。
线缆平均长度=(最远监控点距离+最近监控点距离)/2 +H(H—楼层高度)实际线缆平均长度=线缆平均长度×本DDC监控总点数×1.1+(端接容限,通常取3) 线缆需要总数=监控点总数x实际电缆平均长度(米)注:最远、最近监控点距离是从DDC箱到监控点或监控设备的实际距离。
各种类别的线缆应分别计算。
若DDC箱安装在被控设备间内,如冷热源机房、空调机组、新风机组等设备间,则冷热源机房内的“实际线缆平均长度”可按15米计算(但要注意监控冷却塔的DDC安装位置);空调机组、新风机组等设备间内的“实际线缆平均长度”可按10米计算。
6.2 DDC联网线缆计算方法:RVSP2*1.0规格线缆需要总数=按照联网实际路由计算联网总长度×1.1+ DDC箱数量×(端接容限,取6)。