第章电磁波测距及其距离测量
电磁波测距的原理

电磁波测距的原理
电磁波测距的原理基于电磁波的传播速度恒定不变这一性质,利用发射器发送出的电磁波,经过被测对象的反射后被接收器接收到,然后通过测量电磁波从发射器到接收器的时间差,可以间接得出被测对象与测距设备之间的距离。
具体来说,电磁波测距可利用无线电波、雷达、激光测距等技术实现。
无论采用哪种技术,测距设备都包括一个发射器和一个接收器。
发射器会发出一定频率的电磁波,经过空气传播,当遇到被测对象时,部分电磁波会被对象反射回来并被接收器接收到。
电磁波测距的原理即是利用这部分反射的电磁波来计算距离。
当发射器发出电磁波后,通过计时器记录发射时刻,然后在接收器接收到反射的电磁波后立即停止计时,记录接收时刻。
通过计算发射和接收的时间差,再结合电磁波在真空中传播速度(近似等于光速),就可以推算出被测对象与测距设备之间的距离。
需要注意的是,由于电磁波在不同介质中传播速度会有所变化,所以在实际应用中需要根据介质的不同对测距结果进行修正。
另外,电磁波测距还需要考虑到多路径效应、噪声干扰等因素,以提高测距精度。
电磁波测距

已知:时标脉冲频率f=15 MHz,电磁波速度C=3×10E+8 m/s, 时标脉冲个数 n=100。
求: 距离 D。
D= 1/f × n×C / 2= 1000 米
测距前,电子门是关闭的,时标脉冲不能进入计数系统。 测距时,在光脉冲发射的瞬间,主脉冲把电子门打开,时标脉 冲就一个一个经过电子门进入计数系统,计数系统开始记录脉 冲数目。当回波脉冲到达时电子门关闭,计数系统停止计数, 计数系统记录下来的脉冲数目就是所测距离值。
光脉冲发射器
光电接收器
电
子
时标脉冲
门
振荡器
取样棱镜
脉冲法测距的工作原理框图
计数及显 示系统
t 2D nt (光脉冲在测线上往返传播的时间)
D
1 2
Ct2 D
D C nt nd 2
只要选定一个d值(10m、 5m、1m),记录计数系 统的脉冲数目n,就可把 所测距离(nd)显示出 来。
式中:n为时标脉冲的个数;d=C·t/2,即在时间t内光脉冲 所走的一个单位距离。
4.1.1 调制的意义和分类
光波调制:使光波的振幅、频率或相位发生有规律变化的 过程。调制有调幅、调频、调相三种。激光测距仪大多用调幅。
电磁波测距仪中的光波调制是利用了某些物体在外信号的 作用下所具有的物理现象和效应(如光电效应、磁光效应,声 光效应等),其完成调制过程。激光器和调 制器是一个整体。GaAs半导体激光器或发光二极管。
4.2.1 电磁波和电磁波谱 电磁波:根据麦克斯韦电磁场理论,变化的电场能够在它
的周围引起变化的磁场,这个变化的磁场又在较远的区域内 引起新的变化电场,并在更远的区域内引起新的变化磁场。 这种变化的电场和磁场交替产生,以有限的速度由近及远在 空间内传播的过程称为电磁波。
电磁波测距

电磁波测距电磁波测距是用仪器发射并接收电磁波,通过测量电磁波在待测距离上往返传播的时间解算出距离。
一、概述电磁波测距是用电磁波(光波或微波)作为载波,传输测距信号,以测量两点间距离的一种方法。
与传统的钢尺量距和视距测量相比,具有测程长、精度高、作业快、工作强度低、几乎不受地形限制等优点。
电磁波测距的英文全称是:Electro-magnetic Distance Measuring,所以又简称为EDM。
电磁波测距仪按其所采用的载波可分为:①用微波段的无线电波作为载波的微波测距仪;②用激光作为载波的激光测距仪;③用红外光作为载波的红外测距仪。
后两者又统称为光电测距仪。
微波和激光测距仪多用于长程测距,测程可达60 km,一般用于大地测量;而红外测距仪属于中、短程测距仪(测程为15kffi以下),一般用于小地区控制测量、地形测量。
地籍测量和工程测量等。
本节主要介绍光电测距仪的基本原理和测距方法速发展~红外光电测距仪采用的是CaAs(砷化钦)发光二极管作为光源,不同的caAs发光二极管发光波长范围为0.82~0.93Pm。
由于GaAs发光管具有注人电流小、耗电省、寿命长、体积小、抗震性强及连续发光的特点,使测距仪体积大为减小。
近几年来又将光电测距仪与电子经纬仪和野外记录及数据处理器结合,;组成电子速测仪,同时进行角度和距离的测量,还能自动记录、存储、输出观测值及有关处理数据也能直接显示乎距、高差、坐标增量等,使测量工作大为简化。
所以红外测距仪在小面积的控制测量、地形测量和各种工程测量中得到广泛的应用。
二、红外测距仪基本原理若用红外测距仪测定AB二点间的距离D.如图5-12。
测距仪安置在A点,反光镜安置在B点。
由仪器发出的光束经过待测距离D到达反光镜,经反射回到仪器。
如果能测出光在距离D上往返传播为时间,则距离可按公式(5-19)求得。
如果测距仪发出的是光脉冲,通过测定发射的光脉冲和接收到波光脉冲的时间差t测定距离,称为脉冲法测距。
电磁波测距原理和其距离测量方式

D
2
c f1
1 2
f2 2
相位法测距的基本原理
▪ 相位法
间接测尺频率 相当于测尺频率 测尺长度 精度
f1=15MHZ
15MHZ
10m
1cm
f2=0.9f1
f1-f2=1.5MHZ 100m 10cm
f3=0.99f1 f4=0.999f1 f5=0.9999f1
f1-f3=150KHZ f1-f4=15KHZ f1-f5=1.5KHZ
相位法测距的基本原理
▪ 相位法
u D N 0 D u N
u增大,误差大
一组测尺: 精测尺保证精度 粗测尺保证测程
频率相差大 仪器不稳定
频率相近 频率差为测尺频率
测尺频率 15MHZ 1.5MHZ 150KHZ 15KHZ 1.5KHZ 测尺长度 10m 100m 1km 10km 100km
e1
Δφ
φ1 φ
ek e2
光波测距仪的检验
▪ 周期误差
▪ 改正计算公式
D0 d d 123
d n-1 n
▪ 平V台i 法 Asin(0 i )
D0 v0 D1z V1 K Asin(0 1) D0 v0 d D2z V2 K Asin(0 2 )
D0 v0 39d D40z V40 K Asin(0 40 )
1
D1z
2
360
i
1
d
(i
1)
2
360
1
(i
1)ቤተ መጻሕፍቲ ባይዱ
工程测量4距离测量

1.电磁波测距技术发展简介
A
B
反光镜 Reflecting Prism
(Reflector)
反射棱镜
Polemounted
Rotatable
Tribrachmounted
1.1 测距仪分类
按测距方式分
−脉冲式,以激光作光源 −相位式,以红外光作光源,近来还出现了以微波
4. 全站仪具有如下特点
博飞
Leica
Leica
Topcon
Nikon
4 实训室现有全站仪认识
苏一光 RTS612
1、仪器结构 该全站仪采用红外光测距装置,采用棱镜反射、反射片 反射。配备了普通光学气泡、屏幕显示电子气泡和激光 对中器,微动螺旋和制动螺旋同轴,竖盘指标自动补偿, 其他结构和电子经纬仪相同。
土木工程测量
§4 距离测量
§4 距离测量
§4.1 钢尺量距 §4.2 视距测量 §4.3 电磁波测距
一般介绍
在工程测量中使用三种距离:
− 斜距(slope distance)
− 水平距离(horizontal distance)
− 垂直距离或高差(vertical distance, height difference)
b)设A、B两点互相通视,要在A、B两点的直线上 标出分段点1、2点。
c) 两点间定线,一般应由远到近,即先定1点, 再定2点。
d) 定线时,乙所持标杆应竖直,利用食指和 姆指夹住标杆的上部,稍微提起,利用重 心使标杆自然竖直。此外,为了不挡住甲 的视线,乙应持标杆站立在直线方向的左
侧或右侧。
3.平坦地面的距离丈量
测量员岗位知识 第四章 距离测量

l l l0
l l l0
任一长的温度与钢尺检定时的温度不同,尺长会 发生变化。
lt (t t0 )l
式中: 0.0000125 / 10 C, 钢尺膨胀系数
•倾斜改正
lh d l (l 2 h 2 )1/ 2 l h 2 1/ 2 l[(1 2 ) 1] l h2 1 h4 l[(1 2 4 ) 1] 2l 8 l h2 2l
解: DAB nl q 4 30 m 9.98 m 129.98 m
DBA nl q 4 30 m 10.02 m 130.02 m
1 1 Dav ( DAB DBA ) (129.98 m 130.02 m) 130.00 m 2 2
DAB DBA 129.98 m 130.02 m 0.04 m 1 K Dav 130.00 m 130.00 m 3250
A
1
2
3
4
5
B
仪器定线:如下图
4.两点间互不通视的定线 如图4-7所示,设AB两点在山头两侧,互不通视。定 线时,甲持标杆选择靠近AB方向的①1点立标杆,① 1点要靠近A点并能看见B点。甲指挥乙将所持标杆 定在①1B直线上,标定出②1点位置,要求②1点靠近 B点,并能看见A点。然后由乙指挥甲把标杆移动到 ②1A直线上,定出①2点。这样互相指挥,逐渐趋近, 直到①点在A②直线上,②点在①B直线上为止。这 时①、②两点就在A、B直线上了。
量距记录表
工程名称:×-× ×× 钢尺型号:5#(30m) 日期:2006. 01.08 天气:晴天 量距:×××; × 记录:×××
测线
整尺 段
零尺段
总计
电磁波测距基本原理

§4.1 电磁波测距基本原理4.1.1 概述建立高精度的水平控制网,需要测定控制网的边长。
过去精密距离测量,都是用因瓦基线尺直接丈量待测边的长度,虽然可以达到很高的精度,但丈量工作受地形条件的限制,速度慢,效率低。
从六十年代起,由于电磁波测距仪不断更新、完善和愈益精密,它以速度快,效率高取代了因瓦基线尺,广泛用于水平控制网和工程测量的精密距离测量中。
随着近代光学、电子学的发展和各种新颖光源(激光、红外光等)相继出现,电磁波测距技术得到迅速的发展,出现了以激光、红外光和其他光源为载波的光电测距仪和以微波为载波的微波测距仪。
因为光波和微波均属于电磁波的范畴,故它们又统称为电磁波测距仪。
由于光电测距仪不断地向自动化、数字化和小型轻便化方向发展,大大地减轻了测量工作者的劳动强度,加快了工作速度,所以在工程控制网和各种工程测量中,多使用各种类型的光电测距仪。
光电测距仪按仪器测程大体分三大类:(1)短程光电测距仪:测程在3km以内,测距精度一般在lcm左右。
这种仪器可用来测量三等以下的三角锁网的起始边,以及相应等级的精密导线和三边网的边长,适用于工程测量和矿山测量。
这类测程的仪器很多,如瑞士的ME3000,精度可达±(0.2mm+0.5 ×10-6D);DM 502、 DI3S、DI4,瑞典的AGA-112、AGA-116,美国的HP3820A,英国的CD6,日本的RED2,SDM3E,原西德的ELTA 2,ELDI2等,精度均可达±(5mm+5×10-6D);原东德的EOT 2000,我国的HGC-1、DCH-2、DCH3、DCH-05等。
短程光电测距仪,多采用砷化镓(GaAs或GaAlAs)发光二极管作为光源(发出红外荧光),少数仪器也用氦-氖(He-Ne)气体激光器作为光源。
砷化镓发光二极管是一种能直接发射调制光的器件,即通过改变砷化镓发光二极管的电流密度来改变其发射的光强。
第四章距离测量..

精度
1cm 10cm
1m
10m 100m
控制LO测GO量
可以采用一组测尺共同测距,以短测尺(精 测尺)保证精度,长测尺(粗测尺)保证测 程,从而也解决了“多值性”的问题。 根据仪器的测程与精度要求,即可选定测尺 数目和测尺精度。
控制LO测GO量
❖ 当待测距离较长时,为了既保证必需的测距精度, 又满足测程的要求。在考虑到仪器的测相精度为千 分之一情况下,我们可以在测距仪中设置几把不同 的测尺频率,即相当于设置了几把长度不同、最小 分划值也不相同的“尺子”,用它们同测某段距离, 然后将各自所测的结果组合起来,就可得到单一的、 精确的距离值。
相位式测距仪:测定仪器发射的测距信号往返于被测距离的 滞后相位来间接推算信号的传播时间,从而求得所测距离的 一类测距仪。
控制LO测GO量
一、电磁波测距仪的分类
思考:取v=3*108m/s,f=15MHZ,当要求测距 误差小于1cm时,脉冲法测距的计时精度、相 位法测距时的测定相位角的精度应达到多少?
❖ 中程光电测距仪:测程在3~15km左右的仪器称为中程 光电测距仪,这类仪器适用于二、三、四等控制网的边 长测量。
❖ 远程激光测距仪:测程在15km以上的光电测距仪,精度 一般可达±(5mm+1×10-6),能满足国家一、二等控制 网的边长测量。
控制LO测GO量
一、电磁波测距仪的分类
3、按载波源,测距仪分为 光波 微波
各等级边长测距的主要技术要求,应符合下表的规定。
平面 控制 网等
级
三等
四等
一级 二、 三级
仪器型号
观测 次数
往返
≤ 5 mm级仪器 11
≤10 mm级仪器 ≤5 mm级仪器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24 /21
控制测量学
电磁波在大气中的传播
大气对电磁波测距的影响 速度变化,增加传播时间 电磁波传播的波道弯曲,观测距离大于实际距离 需要解决的问题 确定具体工作条件下的电磁波的实际传播速度 电磁波波道的弯曲改正
16.06.2020 2:37
25 /21
控制测量学
电磁波在大气中的传播
16 /21
控制测量学
干涉法测距的基本原理
略
16.06.2020 2:36
17 /21
控制测量学
光波测距仪的合作目标
反射器 激光、红外、微波测距仪的合作目标 全反射棱镜:激光、红外测距仪 有源反射器:微波测距仪
全反射棱镜(反光镜) 四面体的光学玻璃,三面互相垂直 平行性:反射光线与入射光线平行
16.06.2020 2:36
2 /21
控制测量学
本章提要
[知识点及学习要求] 1、电磁波在大气中的传播 2、测距成果的归算 3、误差来源及精度估计
16.06.2020 2:36
[重点] 误差来源及精度估
3 /21
控制测量学
电光调制和光电转换
省略
16.06.2020 2:36
4 /21
控制测量学
16.06.2020 2:37
38 /21
控制测量学
电磁波在大气中的传播
平均折射率的测定问题 大气模型 双指数函数模型
N (H ) N t(H ) N f(H ) N tex H H tp ) N (fex H H p t)( f
Nt和Nf为大气的折射指数的干、湿分量 气象条件是限制电磁波测距精度的主要因素,如
16.06.2020 2:37
32 /21
控制测量学
电磁波在大气中的传播
光波的折射率 微波的折射率 温度:1℃, 1.4ppm 气压:1mb, 0.3ppm 湿度:1mb, 4.6ppm 测定微波折射率的关键是水汽分压的测定 由于微波受大气气象元素的影响较大,因此微波 测距的精度低于光波测距的精度
何克服和进一步减少其影响,时当前电磁波测距 技术的一个重要课题
16.06.2020 2:37
39 /21
控制测量学
电磁波在大气中的传播
电磁波的波道弯曲
波道的曲率半径
r n
sin dn
dH
r 1 106 dn dN dH dH
曲率半径与大气折射率的梯度有关,确定波道曲 率半径的问题可归结为确定折射率的梯度问题
每3-5min测定一次
16.06.2020 2:37
34 /21
控制测量学
电磁波在大气中的传播
大气参数的测定 大气压的测定: 使用精度高于1mb的高质量空盒气压计测量, 气压计放在阴凉处一段时间后再读数 大气湿度的测定: 测定方法有两种:湿度计和通风干湿计
16.06.2020 2:37
35 /21
36 /21
控制测量学
电磁波在大气中的传播
平均折射率的测定问题
路程的平均速度
V D/ D dx dx
0 v(x)
路程上的每一个点
v(x)C0/n(v) V 1
C0
C0
D
n(v)dx
n
D0
C0 1
D
n(v)dx
n D0
目前采用的方法是在测线的一端或两端,再加测线中 间几个点测定大气气象元素,计算大气的折射率,取 平均值作为平均折射率。
f1f2=1.5 MHZ
100 m
10c m
f3=0.99 f1
f1f3=150 1km 1m KHZ
16.06f.420=200 .29:396
f1f4=15
10k
10m
15 /21
控制测量学
相位法测距的基本原理
相位法
Mekometer ME5000
16.06.2020 2:36
m D0 .2 m m 0 .2pp D m
波长误差为5nm时,引起的折射率误差为0.3ppm, 所以电磁波波长需要精确确定
16.06.2020 2:37
31 /21
控制测量学
电磁波在大气中的传播
光波的折射率 气象元素误差对折射率的影响大小
温度:1℃, 1ppm
气压:1mb, 0.3ppm 湿度:1mb, 0.04ppm 为保证折射率的测定精度,精确确定温度是关键 在测站两端分别测量温度,计算折射率取平均值
平台法 D0v0 D1z V1KAsin(01) D0v0dD2z V2KAsin(02)
D0v039dD40z V40KAsin(040)
1D1z
3
2
60
i1d(i1)23601(i1)
16.06.2020 2:37
22 /21
控制测量学
光波测距仪的检验
仪器常数
仪器加常数
仪器加常数
D 0D ' K iK rD ' K
测量连续的调制信号在待测距离上往返传播产 生的相位变化间接测定传播时间
e1 emsint
e 2 e m sitn t2 D
t2D
t2D
Dv2 t 1 2c 1 2c2 f 4 cf
16.06.2020 2:36
11 /21
控制测量学
相位法测距的基本原理
相位法
2
N2
N2 Dv2 t 1 2c 1 2c2 f 4 cf
2mm2ppm
16.06.2020 2:36
7 /21
控制测量学
脉冲法测距的基本原理
脉冲 直接测定器发射的脉冲信号往返于被测距离的传 播时间,而得到距离值
f1 T
16.06.2020 2:36
8 /21
控制测量学
脉冲法测距的基本原理
脉冲法的时间测定
光脉冲发生器
主脉冲
回波脉冲
计数系统
高频 电脉冲
16.06.2020 2:37
控制测量学
电磁波在大气中的传播
光波的折射率 巴热尔-希尔斯公式
N g 0 (n g 0 1 )16 0 2.6 8 0 7 3 4 1 .6 22 5 8 0 .0 8 4136
埃德伦公式
N g 0 (n g 0 1 )16 0 2.8 57 8 3 3 1 .6 4 21 5 3 0 .0 4 414
D 4 c f2 N 2 c f N 2 2 N N
Du(NN) 测尺:多义性
16.06.2020 2:36
12 /21
控制测量学
相位法测距的基本原理
相位法
uD N0 DuN
u增大,误差大
一组测尺: 精测尺保证精度 粗测尺保证测程
频率相差大 仪器不稳定
频率相近 频率差为测尺频率
空中悬浮颗粒会引起无法控制的的吸收
16.06.2020 2:37
27 /21
控制测量学
电磁波在大气中的传播
电磁波的传播速度 电磁波速度
c c0 n 大气折射率与大气实际介质性质的气体成分、
温度、压力、湿度及波长有关
nf(,T,P,e)
纯单色波的相折射率
群波的群折射率
n
c0 c
ng
n
dn d
第四章 电磁波测距及其距离测量
西南林业大学 土木工程学院
刁建鹏
1 /2
控制测量学
本章提要
4.1 电磁波测距的物理原理及分类 4.2 电磁波测距的基本原理和应用 4.3 光波测距仪的合作目标及检验 4.4 电磁波在大气中的传播 4.5 测距成果的归算 4.6 误差来源及精度估计 4.7 微波测距概要
控制测量学
电磁波在大气中的传播
平均折射率的测定问题 不同点处的折射率不同,为便于计算距离,应使 用整条光程上的平均速度
DVt2D/2
电磁波通过微分光程dx的时间为: d t dx/v(x)
电磁波往返传播的时间为:
t2D02Dvd(xx)20Dvd(xx)dx
16.06.2020 2:37
16.06.2020 2:37
33 /21
控制测量学
电磁波在大气中的传播
大气参数的测定
取决于测距仪的类型、内精度、测距精度以及距 离测长短
至少测定仪器站和反光镜战的干温、湿温、气压
大气温度的测定:
通风干湿计或遥测通风干湿计,连同湿度一起 测定。干、湿温的测定精度为0.2℃和0.1℃
温度放在阴凉、通风处、离地物等 1.5m外,
电磁波在大气中传播时的现象 电磁波辐射能量的大气衰减,测程减少 电磁波有关参数的随机变化 降低了信噪比 解决方法 选择有利的观测时间 日出后1小时和日落前1小时
16.06.2020 2:37
26 /21
控制测量学
电磁波在大气中的传播
电磁波的大气衰减 大气衰减的原因 大气分子的吸收 大气密度的变化及空中微粒的散射 强度衰减与大气折射率、传播距离及波长有关 影响 电磁波的测程
通过电子路线补偿
反光镜常数
乘常数
D标D实 (1R)
16.06.2020 2:37
23 /21
控制测量学
光波测距仪的检验
仪器常数
六段解析法
D
n1 n2 n3 nd
n
D K (d 1 K ) (d 2 K ) (d n K )(d i K )
i 1
n
D di
K
i1
n 1
16.06.2020 2:37
16.06.2020 2:36
18 /21
控制测量学
光波测距仪的合作目标
全反射棱镜(反光镜) 单棱镜、三棱镜、六棱镜、九棱镜
16.06.2020 2:37
19 /21
控制测量学
光波测距仪的检验