初三上期期末考试题
九年级(上)期末数学试卷(附答案)

九年级(上)期末数学试卷一、选择题(共15小题,每小题3分,满分45分)1.在平面直角坐标系中,点(3,﹣4)关于原点对称的点的坐标是()A.(3,4) B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)2.下图中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列事件中,属于随机事件的有()①太阳东升西落②投一枚骰子得到的点数是奇数③买一张彩票中一等奖④从日历本上任选一天为星期天.A.①②③B.②③④C.①③④D.①②④4.如图,在△ABC中,DE∥BC,若AD=2,DB=4,则的值为()A.B.C.D.5.关于一元二次方程x2﹣2x+3=0 的根的情况正确的是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定6.抛物线y=(x﹣1)2﹣2 的顶点是()A.(1,﹣2)B.(﹣1,2)C.(1,2) D.(﹣1,﹣2)7.用配方法解一元二次方程x2+6x+6=0,则方程可变形为()A.(x﹣3)2=3 B.(x+3)2=3 C.(x﹣6)2=30 D.(x+6)2=308.某条抛物线向左平移1个单位,再向上平移2个单位后,所得到的方程是y=x2,那么原抛物线方程为()A.y=(x+1)2+2 B.y=(x+1)2﹣2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2 9.一套运动服原价a元,连续两次降价x%后售价为b元,下面所列方程中正确的是()A.b(1+x%)2=a B.a(1﹣x%)2=b C.a(1+x%)2=b D.a(1﹣2x%)=b 10.从标有a、b、c、1、2 的五张卡牌中随机抽取一张,抽到数字卡牌的概率是()A.1 B.2 C.2 D.311.在同一坐标系中,函数y=和y=kx+1的图象大致是()A.B.C.D.12.一个圆锥的母线长为4,侧面展开图是半圆,则圆锥的侧面积是()A.2πB.4πC.8πD.16π13.两圆的半径和两圆的圆心距都是2,那么这两圆交点个数为()A.0 B.1 C.2 D.无数14.非等边三角形的三条边都是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.6 B.8 C.10 D.8 或1015.如图所示的二次函数y=ax2+bx+c 的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a+b+c>0;④2a﹣3b=0;⑤c﹣4b>0.其中正确信息是()A.①②③B.①②④C.①②⑤D.①②③④二、填空题(共5题,每题3分,共15分)16.反比例函数的图象位于象限.17.一条弦把圆分为长度比为3:2 的两段弧,那么这条弦所对的圆周角度数为.18.一元二次方程x2+mx+5=0 有两个相同的实根,则常数m 的值是.19.如图,在Rt△ABC中,∠C=90°,CA=CB=4,分别以A、B、C为圆心,以AC 为半径画弧,三条弧与边AB所围成的阴影部分的面积是.20.如图,已知等腰Rt△ABC的直角边为1,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边.画第三个Rt△ADE,…,依此类推直到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为.三、解答题(共6题,21、22题8分,23、24题10分,25、26题12分,共60分)21.解方程(1)x2+4x﹣21=0(2)x2﹣x﹣1=0.22.如图,点A的坐标为(3,3),点B的坐标为(4,0).点C的坐标为(0,﹣1).(1)请在直角坐标系中画出△ABC绕着点C逆时针旋转90°后的图形△A′B′C;(2)直接写出:点A′的坐标(,),点B′的坐标(,).23.甲乙两人做游戏,游戏规则如下:口袋中装着标有1、2、3 的三个球(除标号外其余特征相同),甲先摸出一个球,记下数字后放回口袋中搅拌均匀,然后乙再摸出一个球并记下数字,规定谁的数字大谁获胜.请你利用树状图或列表的方法分析游戏规则对双方是否公平,并说明理由.24.如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN ⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.25.某商店新到一种电子产品,通过试销售后发现如下规律:若每件赚40元,则每天可售出20件,同时若该电子产品每降价1元,则每天可多卖出2件.(1)若该商家计划每天赚1200元,这种电子产品应降价多少元?(2)这种电子产品降价多少元,能使该商家每天赚的最多,并求出最多赚多少元?26.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.在平面直角坐标系中,点(3,﹣4)关于原点对称的点的坐标是()A.(3,4) B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)【考点】关于原点对称的点的坐标.【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:由题意,得点(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故选:C.2.下图中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行分析即可.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.3.下列事件中,属于随机事件的有()①太阳东升西落②投一枚骰子得到的点数是奇数③买一张彩票中一等奖④从日历本上任选一天为星期天.A.①②③B.②③④C.①③④D.①②④【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:①太阳东升西落是必然事件,②投一枚骰子得到的点数是奇数是随机事件,③买一张彩票中一等奖是随机事件,④从日历本上任选一天为星期天是随机事件,故选:B.4.如图,在△ABC中,DE∥BC,若AD=2,DB=4,则的值为()A.B.C.D.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,可得:△ADE∽△ABC,所以=,然后根据AD=2,DB=4,求出的值为多少即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===.故选:C.5.关于一元二次方程x2﹣2x+3=0 的根的情况正确的是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵△=(﹣2)2﹣4×1×3=﹣8<0,∴方程没有实数根.故选C.6.抛物线y=(x﹣1)2﹣2 的顶点是()A.(1,﹣2)B.(﹣1,2)C.(1,2) D.(﹣1,﹣2)【考点】二次函数的性质.【分析】根据顶点式的坐标特点直接写出顶点坐标.【解答】解:∵y=(x﹣1)2﹣2是抛物线解析式的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,﹣2).故选A.7.用配方法解一元二次方程x2+6x+6=0,则方程可变形为()A.(x﹣3)2=3 B.(x+3)2=3 C.(x﹣6)2=30 D.(x+6)2=30【考点】解一元二次方程﹣配方法.【分析】将常数项移到等式的右边后,再两边都配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:∵x2+6x=﹣6,∴x2+6x+9=﹣6+9,即(x+3)2=3,故选:B.8.某条抛物线向左平移1个单位,再向上平移2个单位后,所得到的方程是y=x2,那么原抛物线方程为()A.y=(x+1)2+2 B.y=(x+1)2﹣2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2【考点】二次函数图象与几何变换.【分析】由题意,可得原抛物线是抛物线y=x2向右平移1个单位,再向下平移2个单位后得到的,根据“左加右减,上加下减”的规律即可求解.【解答】解:∵某条抛物线向左平移1个单位,再向上平移2个单位后,所得到的方程是y=x2,∴原抛物线是抛物线y=x2向右平移1个单位,再向下平移2个单位后得到的,∴原抛物线方程是y=(x﹣1)2﹣2,故选D.9.一套运动服原价a元,连续两次降价x%后售价为b元,下面所列方程中正确的是()A.b(1+x%)2=a B.a(1﹣x%)2=b C.a(1+x%)2=b D.a(1﹣2x%)=b 【考点】由实际问题抽象出一元二次方程.【分析】根据降价后的价格=原价(1﹣降低的百分率),本题可先用800(1﹣x%)表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【解答】解:当商品第一次降价x%时,其售价为a﹣ax%=a(1﹣x%);当商品第二次降价x%后,其售价为a(1﹣x%)﹣a(1﹣x%)x%=a(1﹣x%)2.∴a(1﹣x%)2=b.故选B.10.从标有a、b、c、1、2 的五张卡牌中随机抽取一张,抽到数字卡牌的概率是()A.1 B.2 C.2 D.3【考点】概率公式.【分析】根据概率公式即可得.【解答】解:∵从标有a、b、c、1、2 的五张卡牌中随机抽取一张有5种等可能结果,其中抽到数字卡片的有2种可能,∴抽到数字卡牌的概率是,故选:C.11.在同一坐标系中,函数y=和y=kx+1的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k的情况对反比例函数与一次函数的图象位置进行讨论即可.【解答】解:当k>0时,反比例函数的图象分布于一、三象限,一次函数的图象经过一、二、三象限,当k<0时,反比例函数的图象分布于二、四象限,一次函数的图象经过一、二、四象限,联立可得:kx2+x﹣k=0,△=1+4k2>0,所以此时反比例函数与一次函数的有两个交点.故选(A)12.一个圆锥的母线长为4,侧面展开图是半圆,则圆锥的侧面积是()A.2πB.4πC.8πD.16π【考点】圆锥的计算;几何体的展开图.【分析】圆锥的侧面积为半径为10的半圆的面积.【解答】解:圆锥的侧面积=半圆的面积=π×42÷2=8π,故选C.13.两圆的半径和两圆的圆心距都是2,那么这两圆交点个数为()A.0 B.1 C.2 D.无数【考点】圆与圆的位置关系.【分析】由两圆的半径都为2,圆心距为2,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系得出两圆位置关系,继而求得答案.【解答】解:∵两圆的半径都为2,∴半径和为4,半径差为0,∵圆心距为2,∴两圆相交,∴两圆的交点个数为:2个.故选C.14.非等边三角形的三条边都是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.6 B.8 C.10 D.8 或10【考点】解一元二次方程﹣因式分解法;三角形三边关系.【分析】因式分解法解方程求得x的值,根据三角形三边间的关系确定三角形的三边,从而得出答案.【解答】解:∵(x﹣2)(x﹣4)=0,∴x﹣2=0或x﹣4=0,解得:x=2或x=4,当三角形的三边为2、2、4时,由2+2=4知不能构成三角形,舍去;当三角形的三边为2、4、4时,周长为2+4+4=10,故选:C.15.如图所示的二次函数y=ax2+bx+c 的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a+b+c>0;④2a﹣3b=0;⑤c﹣4b>0.其中正确信息是()A.①②③B.①②④C.①②⑤D.①②③④【考点】二次函数图象与系数的关系.【分析】根据函数图象可得各系数的关系:a>0,b<0,c<0,再结合图象判断各结论.【解答】解:由函数图象可得各系数的关系:a>0,b<0,c<0,则①c<0,正确;②abc>0,正确;③当x=1,a+b+c<0,错误;④对称轴x=﹣=,2a+3b=0,错误;⑤由于a﹣b+c>0,则c﹣b>0,又﹣b>0,c﹣4b>0,正确.故正确的结论有①②⑤,故选:C.二、填空题(共5题,每题3分,共15分)16.反比例函数的图象位于一,三象限.【考点】反比例函数的性质.【分析】本题考查反比例函数的图象和性质.【解答】解:∵反比例函数y=中,k=2>0,∴函数的图象位于一、三象限.17.一条弦把圆分为长度比为3:2 的两段弧,那么这条弦所对的圆周角度数为72°或108°.【考点】圆周角定理.【分析】先求出这条弦所对圆心角的度数,然后分情况讨论这条弦所对圆周角的度数.【解答】解:如图,连接OA、OB.弦AB将⊙O分为3:2两部分,则∠AOB=×360°=144°;∴∠ACB=∠AOB=72°,∠ADB=180°﹣∠ACB=108°;故这条弦所对的圆周角的度数为72°或108°故答案为72°或108°.18.一元二次方程x2+mx+5=0 有两个相同的实根,则常数m 的值是±2.【考点】根的判别式.【分析】根据方程有两个相等实数根可得△=m2﹣4×1×5=0,解之即可.【解答】解:∵一元二次方程x2+mx+5=0 有两个相同的实根,∴△=m2﹣4×5=0,∴m=±2,故答案为±219.如图,在Rt△ABC中,∠C=90°,CA=CB=4,分别以A、B、C为圆心,以AC 为半径画弧,三条弧与边AB所围成的阴影部分的面积是8﹣2π.【考点】扇形面积的计算.【分析】由于三条弧所对的圆心角的和为180°,根据扇形的面积公式可计算出﹣三个扇三个扇形的面积和,而三条弧与边AB所围成的阴影部分的面积=S△ABC=•4•4=8,然后代入即可得形的面积和,再利用三角形的面积公式计算出S△ABC到答案.【解答】解:∵∠C=90°,CA=CB=4,=•4•4=8,∴AC=2,S△ABC∵三条弧所对的圆心角的和为180°,三个扇形的面积和==2π,∴三条弧与边AB所围成的阴影部分的面积=S﹣三个扇形的面积和=8﹣2π.△ABC故答案为8﹣2π.20.如图,已知等腰Rt△ABC的直角边为1,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边.画第三个Rt△ADE,…,依此类推直到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为15.5.【考点】等腰直角三角形;规律型:图形的变化类;勾股定理.【分析】根据△ABC是边长为L的等腰直角三角形,利用勾股定理分别求出Rt △ABC、Rt△ACD、Rt△ADE的斜边长,然后利用三角形面积公式分别求出其面积,找出规律,再按照这个规律得出第四个、第五个等腰直角三角形的面积,相加即可.【解答】解:∵△ABC是边长为1的等腰直角三角形,∴S △ABC =×1×1==21﹣2;AC==,AD==2…, ∴S △ACD =××=1=22﹣2;S △ADE =×2×2=2=23﹣2… ∴第n 个等腰直角三角形的面积是2n ﹣2,∴S △AEF =24﹣2=4,S △AFG =25﹣2=8,由这五个等腰直角三角形所构成的图形的面积为+1+2+4+8=15.5.故答案为:15.5三、解答题(共6题,21、22题8分,23、24题10分,25、26题12分,共60分)21.解方程(1)x 2+4x ﹣21=0(2)x 2﹣x ﹣1=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【分析】(1)左边利用十字相乘法因式分解,求解可得;(2)套用求根公式求解可得.【解答】解:(1)∵(x ﹣3)(x +7)=0,∴x ﹣3=0或x +7=0,解得:x=3或x=﹣7;(2)∵a=1,b=﹣1,c=﹣1,∴△=1﹣4×1×(﹣1)=5>0,则x=.22.如图,点A的坐标为(3,3),点B的坐标为(4,0).点C的坐标为(0,﹣1).(1)请在直角坐标系中画出△ABC绕着点C逆时针旋转90°后的图形△A′B′C;(2)直接写出:点A′的坐标(﹣4,2),点B′的坐标(﹣1,3).【考点】作图﹣旋转变换.【分析】(1)利用旋转的性质,找出各个关键点的对应点,连接即可;(2)根据(1)得到的图形即可得到所求点的坐标.【解答】解:(1)如图所示:;(2)由(2)可得,点A′的坐标(﹣4,2),点B′的坐标(﹣1,3).故答案为:﹣4,2,﹣1,3.23.甲乙两人做游戏,游戏规则如下:口袋中装着标有1、2、3 的三个球(除标号外其余特征相同),甲先摸出一个球,记下数字后放回口袋中搅拌均匀,然后乙再摸出一个球并记下数字,规定谁的数字大谁获胜.请你利用树状图或列表的方法分析游戏规则对双方是否公平,并说明理由.【考点】游戏公平性;列表法与树状图法.【分析】首先利用列表法求出两人的获胜概率,判断双方取胜所包含的情况数目是否相等,即可得出答案.【解答】解:列表如下:123甲乙1(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)由表可知,P(甲获胜)=,P(乙获胜)=,∵P(甲获胜)=P(乙获胜),∴游戏规则对双方公平.24.如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN ⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.【考点】切线的性质;全等三角形的判定与性质;勾股定理;矩形的判定与性质.【分析】(1)连接OA,由切线的性质可知OA⊥AP,再由MN⊥AP可知四边形ANMO是矩形,故可得出结论;(2)连接OB,则OB⊥BP由OA=MN,OA=OB,OM∥AP.可知OB=MN,∠OMB=∠NPM.故可得出Rt△OBM≌△MNP,OM=MP.设OM=x,则NP=9﹣x,在Rt△MNP利用勾股定理即可求出x的值,进而得出结论.【解答】(1)证明:如图,连接OA,则OA⊥AP,∵MN⊥AP,∴MN∥OA,∵OM∥AP,∴四边形ANMO是矩形,∴OM=AN;(2)解:连接OB,则OB⊥BP∵OA=MN,OA=OB,OM∥AP.∴OB=MN,∠OMB=∠NPM.∴Rt△OBM≌Rt△MNP,∴OM=MP.设OM=x,则NP=9﹣x,在Rt△MNP中,有x2=32+(9﹣x)2∴x=5,即OM=5.25.某商店新到一种电子产品,通过试销售后发现如下规律:若每件赚40元,则每天可售出20件,同时若该电子产品每降价1元,则每天可多卖出2件.(1)若该商家计划每天赚1200元,这种电子产品应降价多少元?(2)这种电子产品降价多少元,能使该商家每天赚的最多,并求出最多赚多少元?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)利用每件商品的利润×销量=总利润,进而得出等式求出答案;(2)利用每件商品的利润×销量=总利润,进而配方法求出最值.【解答】解:(1)设这种电子产品应降价x元,据题意得:(40﹣x)(20+2x)=1200,解得:x=10或x=20.答:这种电子产品应降价10元或20元;(2)设该商家每天赚y元,则y=(40﹣x)(20+2x)=﹣2(x﹣15)2+1250当x=15时,y最大为1250答:这种电子产品降价15元,能使该商家每天赚的最多,最多赚1250元.26.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.【考点】二次函数综合题.【分析】(1)根据题意可知,将点A、B代入函数解析式,列得方程组即可求得b、c的值,求得函数解析式;(2)根据题意可知,边AC的长是定值,要想△QAC的周长最小,即是AQ+CQ 最小,所以此题的关键是确定点Q的位置,找到点A的对称点B,求得直线BC 的解析式,求得与对称轴的交点即是所求;(3)存在,设得点P的坐标,将△BCP的面积表示成二次函数,根据二次函数最值的方法即可求得点P的坐标.【解答】解:(1)将A(1,0),B(﹣3,0)代y=﹣x2+bx+c中得,∴.∴抛物线解析式为:y=﹣x2﹣2x+3;(2)存在.理由如下:由题知A、B两点关于抛物线的对称轴x=﹣1对称,∴直线BC与x=﹣1的交点即为Q点,此时△AQC周长最小,∵y=﹣x2﹣2x+3,∴C的坐标为:(0,3),直线BC解析式为:y=x+3,Q点坐标即为,解得,∴Q(﹣1,2);(3)存在.理由如下:设P点(x,﹣x2﹣2x+3)(﹣3<x<0),∵S△BPC =S四边形BPCO﹣S△BOC=S四边形BPCO﹣,若S四边形BPCO 有最大值,则S△BPC就最大,∴S四边形BPCO=S△BPE+S直角梯形PEOC,=BE•PE+OE(PE+OC)=(x+3)(﹣x2﹣2x+3)+(﹣x)(﹣x2﹣2x+3+3)=,当x=﹣时,S四边形BPCO最大值=,∴S△BPC最大=,当x=﹣时,﹣x2﹣2x+3=,∴点P坐标为(﹣,).第21页(共21页)。
九年级语文第一学期期末考试卷(含答案)

九年级语文第一学期期末考试卷(含答案)考生注意:1.本试卷共7页,满分120分,考试时间120分钟。
2.答题前将答题纸上卷头部分填写清楚。
3.答案务必写在答题卡上。
写在试卷上无效。
4.须用黑色钢笔或签字笔书写。
5.考试结束后,只收答题卡。
第一部分(1—4题,22分)1.阅读下面文字,回答后面的问题。
(6分)【甲】2020年是极不平凡的一年。
面对突如其来的新冠肺炎疫情,我们以人民至上、生命至上quán shì()了人间大爱,用众志成城、坚忍不拔书写了抗疫史诗。
【乙】艰难方显勇毅,mó lì()始得玉成。
我们克服疫情影响,(统筹,统计)疫情防控和经济社会发展取得重大成果。
【丙】世界各国人民要携起手来,风雨同舟,早日(驱赶,驱散)疫情的阴霾..(),努力建设更加美好的地球家园。
【丁】2021年是中国共产党百年华诞。
百年征程波澜壮阔,百年初心历久弥坚。
从上海石库门到嘉兴南湖,一艘小小红船承载..()着人民的重托、民族的希望,越过急流险滩,穿过惊涛骇浪,成为领航中国行稳致远的巍巍巨轮。
(1)根据【甲】【乙】两段文字中的拼音写出相应汉字。
(2分)quán shì()mó lì()(2)给【丙】【丁】两段文字中加的词语注音。
(2分)阴霾..()..()承载(3)从【乙】【丙】两段文字中的括号内选择符合语境的词语,分别填入两文字的空缺处。
(2分)2.古诗文默写(7分)(1)但愿人长久,。
(苏轼《水调歌头·明月几时有》)(2),忽复乘舟梦日边。
(李白《行路难》(3)舂谷持作饭,。
(《十五从军征》)(4)臣本布衣,躬耕于南阳,,。
(诸葛亮《出师表》)(5)李商隐在《无题》中“,”这两句诗,利用双关手法歌颂至死不渝的爱情,今天我们用它表现无私奉献的精神。
3.下面是学校食堂张贴的宣传标语,请选出你最喜欢的一条,并说出理由。
(3分)①“盘中餐,皆辛苦”,请珍惜粮食吧!②做“光盘一族”,成“节约达人”。
2022-2023学年重庆市渝中区九年级上学期期末考试数学试卷含详解

(2)用关于 的代数式表示线段 ,求 的最大值及此时点 的坐标;
(3)过点 作 于点 , ,
①求点 的坐标;
②连接 ,在 轴上是否存在点 ,使得 为直角三角形,若存在,求出点 的坐标;若不存在,请说明理由.
25.如图,在直角 中, ,点D是 上一点,连接 ,把 绕点A逆时针旋转90°,得到 ,连接 交 于点M.
A. B. C. D.
12.二次函数 ( 、 、 是常数,且 )的自变量 与函数值 的部分对应值如表:
1
2
3
4
3
有下列四个结论:① ;②抛物线 的对称轴是直线 ;③0和1是方程 的两个根;④若 ,则 .其中正确结论的个数是().
A.4B.3C.2D.1
二、填空题(本大题4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卷上对应的横线上.
(1)求证: 是 切线;
(2)若 , ,求 的长.
23.渝中区正在进行旧城改造和旅游升级,即将改造完毕的大田湾体育场外广场正在打造体育生态公园,实现体育与环境的完美结合,为周边群众创造更加舒适的健身休闲环境.体育场准备利用一堵呈“ ”形的围墙(粗线 表示墙,墙足够高)改建室外篮球场,如图所示,已知 , 米, 米,现计划用总长为121米的围网围建呈“日”字形的两个篮球场,并在每个篮球场开一个宽2米的门,如图所示(细线表示围网,两个篮球场之间用围网 隔开),为了充分利用墙体,点 必须在线段 上.
∵ 是 的直径,
∴ ,
∴ ,
∵ 与 都是弧 所对圆周角,
∴ ,
故选C,
.
【点睛】本题考查圆周角定理:同弧或等弧所对圆周角相等,直径所对圆周角等于 .
10.飞机着陆后滑行的距离 (单位:米)与滑行的时间 (单位:秒)的函数解析式是 ,那么飞机着陆后滑行()秒才能停下来.
2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
初三数学上期末试卷(附答案)

初三数学上期末试卷(附答案)一、选择题1.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°2.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°4.下列四个图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .5.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为( )A .100°B .130°C.50°D.65°6.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A.59B.49C.56D.137.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流 B.锄禾日当午 C.大漠孤烟直 D.手可摘星辰8.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.459.下列函数中是二次函数的为()A.y=3x-1B.y=3x2-1 C.y=(x+1)2-x2D.y=x3+2x-310.以3942cx±+=为根的一元二次方程可能是()A.230x x c--=B.230x x c+-=C.230-+=x x c D.230++=x x c 11.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.3512.与y=2(x﹣1)2+3形状相同的抛物线解析式为()A.y=1+12x2B.y=(2x+1)2C.y=(x﹣1)2D.y=2x2二、填空题13.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.14.如图,将半径为6的半圆,绕点A逆时针旋转60°,使点B落到点B′处,则图中阴影部分的面积是_____.15.如图,在直角坐标系中,已知点30A (,)、04B (,),对OAB 连续作旋转变换,依次得到1234、、、,则2019的直角顶点的坐标为__________.16.四边形ABCD 内接于⊙O ,∠A =125°,则∠C 的度数为_____°.17.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.18.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.19.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.20.在一空旷场地上设计一落地为矩形ABCD 的小屋,AB +BC =10m ,拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S (m 2).(1)如图1,若BC =4m ,则S =_____m 2.(2)如图2,现考虑在(1)中矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为____m.三、解答题,,,要求作一个四边形使这三个点在这个四边形的21.如图,方格纸中有三个点A B C边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)22.某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.(1)求y与x之间的函数关系;(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?23.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了________名学生; (2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率. 24.如图,等腰Rt△ABC 中,BA=BC ,∠ABC=90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE (1)求∠DCE 的度数;(2)若AB=4,CD=3AD ,求DE 的长.25.有4张看上去无差别的卡片,上面分别写着1,2,3,4,随机抽取1张后,放回并混在一起,再随机抽取1张.(1)请用树状图或列表法等方法列出各种可能出现的结果; (2)求两次抽到的卡片上的数字之和等于5的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数.根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯= 因为BD 为直径,所以可得23818058COD ︒︒︒∠=-= 由于COP ∆为直角三角形 所以可得905832P ︒︒︒∠=-= 故选A. 【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.2.C解析:C 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、图形既不是轴对称图形是中心对称图形,B 、图形是轴对称图形,C 、图形是轴对称图形,也是中心对称轴图形,D 、图形是轴对称图形. 故选C . 【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.C解析:C 【解析】试题解析:∵CC′∥AB , ∴∠ACC′=∠CAB=65°,∵△ABC 绕点A 旋转得到△AB′C′, ∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°, ∴∠CAC′=∠BAB′=50°.4.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.B解析:B【解析】【分析】根据三角形的内切圆得出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【详解】∵点O是△ABC的内切圆的圆心,∴∠OBC=12∠ABC,∠OCB=12∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故选B.【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.6.B解析:B【解析】【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.7.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.C解析:C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C9.B解析:B 【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y =(x +1)2−x 2不含二次项,故C 错误;D. y =x 3+2x −3是三次函数,故D 错误; 故选B.10.A解析:A 【解析】 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】设x 1,x 2是一元二次方程的两个根,∵x =∴x 1+x 2=3,x 1∙x 2=-c ,∴该一元二次方程为:21212()0x x x x x x -++=,即230x x c --=故选A. 【点睛】此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.11.A解析:A 【解析】 【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率: 【详解】 列表如下:∴63P2010==两次红,故选A.12.D解析:D【解析】【分析】抛物线的形状只是与a有关,a相等,形状就相同.【详解】y=2(x﹣1)2+3中,a=2.故选D.【点睛】本题考查了抛物线的形状与a的关系,比较简单.二、填空题13.3【解析】【分析】根据旋转的性质知AB=AE在直角三角形ADE中根据勾股定理求得AE长即可得【详解】∵四边形ABCD是矩形∴∠D=90°BC=AD=3∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG解析:【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴,∴,故答案为.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.14.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB ′+S扇形ABB′﹣S半圆AB而根据旋解析:24π【解析】【分析】根据整体思想,可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′,再利用扇形面积公式计算即可.【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋转的性质可知S半圆AB′=S半圆AB∴S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′而由题意可知AB=12,∠BAB′=60°即:S阴影=2 6012360π⋅⋅=24π故答案为24π.【点睛】本题考查了扇形面积的相关计算,根据整体思想求出表示阴影部分面积的方法,再用公式计算扇形的面积即可.15.【解析】【分析】根据勾股定理列式求出AB的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第201解析:()8076,0【解析】【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),∴,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2019÷3=673,∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.16.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性解析:【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=55°,故答案为:55.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键. 17.﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0再解关于k的方程然后根据一元二次方程的定义确定k的值即可【详解】把x=2代入kx2+(k2﹣2)x解析:﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因为k≠0,所以k的值为﹣3.故答案为:﹣3.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18.(2)【解析】由题意得:即点P 的坐标解析:(2 ,2).【解析】由题意得:441a a =⇒= 2y x ⇒=2222OD x x =⇒=⇒= ,即点P 的坐标()2,2. 19.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM 中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0解析:20【解析】【分析】抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20.【详解】抛物线的解析式为y=x 2-6x-16,则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2b a=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10, 圆的半径为12AB=5, 在Rt △COM 中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=20.故答案是:20.【点睛】考查的是抛物线与x 轴的交点,涉及到圆的垂径定理.20.88π;【解析】【分析】(1)小狗活动的区域面积为以B为圆心10m为半径的圆以C为圆心6m为半径的圆和以A为圆心4为半径的圆的面积和据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心10为半解析:88π;5 2【解析】【分析】(1)小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4为半径的14圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的34圆,以A为圆心、x为半径的1 4圆、以C为圆心、10-x为半径的30360圆的面积和,列出函数解析式,由二次函数的性质解答即可.【详解】解:(1)如图,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4m为半径的14圆的面积和,∴S=34×π•102+14•π•62+14•π•42=88π;(2)如图,设BC=x,则AB=10-x,∴S=34•π•102+14•π•x2+30360•π•(10-x)2=π3(x2-5x+250)=π3(x-52)2+325π4,当x=52时,S取得最小值,∴BC=5 2 .故答案为:(1)88π;(2)5 2 .【点睛】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.三、解答题21.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】可以从特殊四边形着手考虑,平行四边形是中心对称图形但不是轴对称图形,等腰梯形是轴对称图形但不是中心对称图形,正方形既是轴对称图形又是中心对称图形【详解】解:如图:22.(1)y=﹣10x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为6250元【解析】【分析】(1)由一次函数的图象可知过(30,400)和(40,300),利用待定系数法可求得y与x的关系式;(2)利用x可表示出p,再利用二次函数的性质可求得p的最大值.【详解】(1)设一次函数解析式为y=kx+b(k≠0),由图象可知一次函数的过(30,400)和(40,300),代入解析式可得30400 40300k bk b+=⎧⎨+=⎩,解得:10700kb=-⎧⎨=⎩,∴y与x的函数关系式为y=﹣10x+700;(2)设利润为p元,由(1)可知每天的销售量为y千克,∴p=y(x﹣20)=(﹣10x+700)(x﹣20)=﹣10x2+900x﹣14000=﹣10(x﹣45)2+6250.∵﹣10<0,∴p=﹣10(x﹣45)2+6250是开口向下的抛物线,∴当x=45时,p有最大值,最大值为6250元,即销售单价为45元时,每天可获得最大利润,最大利润为6250元.【点睛】本题考查了二次函数的应用,求得每天的销售量y与x的函数关系式是解答本题的关键,注意二次函数最值的求法.23.(1)200;(2)答案见解析;(3)12.【解析】【分析】(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)C组人数:200-40-70-30=60(名)B组百分比:70÷200×100%=35%如图(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:61 122=.【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.24.解:(1)90°;(2)5【解析】试题分析:(1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.试题解析:(1)∵△ABCD为等腰直角三角形,∴∠BAD=∠BCD=45°.由旋转的性质可知∠BAD=∠BCE=45°.∴∠DCE=∠BCE+∠BCA=45°+45°=90°.(2)∵BA=BC,∠ABC=90°,∴2242AB BC+=.∵CD=3AD,∴2,2.由旋转的性质可知:2.∴2225CE DC+=考点:旋转的性质.25.(1)见解析;(2)1 4【解析】【分析】(1)直接用树状图或列表法等方法列出各种可能出现的结果;(2)由(1)可知所有16种等可能的结果数,再找出两次抽到的卡片上的数字之和等于5的结果数。
初三上学期期末试卷【三篇】

【导语】期末考试是指每个学期快结束时,学校往往以试卷的形式对各门学科进⾏该学期知识掌握的检测,对上⼀学期知识的查漏补缺,⼀般由区或市统考,也可能是⼏个学校进⾏联考。
下⾯是为您整理的初三上学期期末试卷【三篇】,仅供⼤家参考。
初三上学期物理期末试卷 ⼀、选择题(每题3分,共36分) 1.以下物态变化现象中,吸热的是() A.春天,冰雪消融汇成潺潺流⽔B.夏天,清晨草叶上出现晶莹的露珠 C.秋天,⾬后泰⼭上出现缥缈的云雾D.冬天,室内窗玻璃上出现美丽的冰花 2.关于内能及其利⽤,下列说法正确的是() A.温度⾼的物体内能⼀定⼤B.做功和热传递都可以改变物体的内能 C.⽐热容跟物体吸收或放出的热量有关D.热机的做功冲程是将机械能转化为内能 3.如图,是⼀个能吹冷风、温风、热风的电吹风的简化电路,其中M是电动机,通电后能吹风,R1、R2是阻值相等的发热电阻丝,通电后能发热,电吹风接通电源且开关S闭合后() A.若闭合S1、S2,则吹出的是冷风 B.若闭合S1、S2,则吹出的是温风 C.若闭合S1或S2,则吹出的是温风 D.若断开S1、S2,则吹出的是温风 4.通常情况下,关于⼀段粗细均匀的镍铬合⾦丝的电阻,下列说法中正确的是() A.合⾦丝的电阻跟该合⾦丝的长度有关 B.合⾦丝的电阻跟合⾦丝的横截⾯积⽆关 C.合⾦丝两端的电压越⼤,合⾦丝的电阻越⼩ D.通过合⾦丝的电流越⼩,合⾦丝的电阻越⼤ 5.如图是⼀种可测定油箱内油⾯⾼度的装置,R′是定值电阻,R是滑动变阻器,它的⾦属划⽚是杠杆的⼀端,油量表由电流表改装⽽成,通过两只电表的⽰数变化可以反映油⾯的⾼度变化,关于此装置的⼯作原理,下列说法中正确的是() A.当油⾯⾼度升⾼时,油量表⽰数减⼩ B.当油⾯⾼度升⾼时,电压表⽰数增⼤ C.当油⾯⾼度降低时,油量表⽰数增⼤ D.当油⾯⾼度降低时,电压表⽰数不变 6.下列说法正确的是() A.可以⽤湿⽑⼱擦点亮的电灯 B.家⽤电器的⾦属外壳应该接在零线上 C.试电笔可以检测出家庭电路的零线和⽕线 D.绝缘体不导电是因为内部没有电⼦ 7.下列数据中,最接近实际情况的是() A.普通家⽤照明灯的⼯作电流约为2AB.电饭锅加热档的功率约为100W C.家⽤电风扇的额定功率约为2000WD.⼀节新⼲电池的电压约为1.5V 8.甲、⼄两个灯泡的铭牌分别是“PZ220﹣25”、“PZ220﹣100”,关于这两个灯泡的描述正确的是() A.甲灯的灯丝粗,电阻⼤B.甲灯的灯丝细,电阻⼤ C.⼄灯的灯丝细,电阻⼩D.⼄灯的灯丝粗,电阻⼤ 9.下列电器中,利⽤电流热效应来⼯作的是() A.电冰箱B.洗⾐机C.电视机D.电饭锅 10.关于磁场,下列说法中正确的是() A.磁体周围的磁感线从磁体N极发出,回到磁体S极 B.磁极间的相互作⽤不都是通过磁场发⽣的 C.磁感线是磁场中真实存在的⼀些曲线 D.地磁场的N极在地理北极附近,S极在地理南极附近,与地球两极并不完全重合 11.对于图中所⽰的四幅图,以下说法正确的是() A.甲中通电导线周围存在着磁场,如果将⼩磁针移⾛,该磁场将消失 B.⼄中闭合开关,通电螺线管右端为N极 C.丙中闭合开关,保持电流⽅向不变,对调磁体的N、S极,导体的运动⽅向不变 D.丁中绝缘体接触验电器⾦属球后验电器的⾦属箔张开⼀定⾓度,说明该棒带正电 12.关于⼲电池,下列说法中正确的是() A.有的⼲电池提供直流电,有的⼲电池提供交流电 B.⼲电池是把电能转化为化学能的装置 C.常⽤的1号、2号、5号、7号⼲电池的电压都是1.5V D.电路两端有电压电路中就⼀定有电流 ⼆、填空题(每空2分,共18分) 13.电视⽚《⾆尖上的中国》展现了博⼤精深的中国饮⾷⽂化.厨师烹饪排⾻时,主要通过__________(选填“热传递”或“做功”)的⽅式改变了排⾻的内能,使排⾻的温度__________,从⽽由⽣到熟. 14.物理学中,通过其效应对⾃然界中看不到的事物进⾏研究,这种研究⽅法叫转换法.如我们通过⼩灯泡是否发光来判断灯丝中有⽆__________通过;通过电磁铁吸引铁钉的多少来显⽰电磁铁的磁性__________. 15.如图所⽰电路,若在甲、⼄两处分别接⼊电压表,闭合开关S,甲、⼄两表读数之⽐为1:2,此时R1与R2________联;断开两开关S,在甲、⼄两处分别接⼊电流表,⼄处电流表⽰数为0.3A,则⼲路电流为__________A. 16.⼩明家的电⼦式电能表标有“3200imp/(kW•h)”等字样(imp表⽰电能表指⽰灯闪烁的次数).他将标有“220V1000W”的电饭煲单独接⼊家庭电路,正常⼯作⼀段时间后,电能表指⽰灯闪烁了800次,电饭煲消耗的电能是__________kW•h,其正常⼯作的时间是__________h. 17.右图中测电笔的两种使⽤⽅法,正确的是__________. 三、实验探究题(每空2分,共26分) 18.在探究“电流与电压、电阻的关系”实验中, (1)请将图的事物电路连接完整; (2)闭合开关S前,应把滑动变阻器的滑⽚P置于______(选填“A”或“B”)端; (3)在探究“电流与电压的关系”实验中,滑动变阻器除了保护电路外,其作⽤主要是_______________________. 实验所测数据如表,分析数据可得结论是:_________________________。
2022-2023学年四川省成都市成华区九年级上学期期末考试数学试卷

2022-2023学年度上期期末学业水平阶段性监测九年级数学A 卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列各点在反比例函数3y x =-图象上的是( ) A .()3,1-- B .()1,3-C .()1,3D .()3,1 2.如图是《九章算术》中“堑堵”的立体图形,它的左视图为( )A .B .C .D .3.下列一元二次方程有实数解的是( )A .220x +=B .2210x x -+=C .2220x x -+=D .2320x x +-=4.下列命题为假命题的是( )A .对角线相等的平行四边形是矩形B .对角线互相垂直的平行四边形是菱形C .有一个角是直角的平行四边形是正方形D .有一组邻边相等的矩形是正方形5.关于x 的一元二次方程260x x c ++=配方后得到方程2(3)2x c +=,则c 的值为( )A .-3B .0C .3D .96.在同一平面直角坐标系中,函数()10y kx k =+≠和(0)k y k x=≠的图象可能是( ) A . B . C . D .7.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E 是边AD 的中点,点F 在对角线AC 上,且14AF AC =,连接EF .若AC =10,则EF 的长为( ) A .52B .3C .4D .5 8.如图,在ABC △中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF ,已知四边形BDEF 是平行四边形,13DE BC =.若ADE △的面积为1,则平行四边形BDEF 的面积为( ) A .3 B .4C .5D .6第Ⅱ卷(非选择题,共68分) 二、填空题(本大题共5个小题,每小题4分,共20分)9.已知2(0)3a c b d b d ==+≠,则a c b d+=+______. 10.历史上数学家皮尔逊(Pearson )曾在实验中掷均匀的硬币24000次,正面朝上的次数是12012次,频率约为0.5.由此实验,我们可得掷一枚均匀的硬币,正面朝上的概率是______.11.如图,点A 是反比例函数2y x=图象上任意一点,过点A 作AB x ⊥轴于点B ,连接OA ,则AOB △的面积是______. 12.关于x 的一元二次方程240x x k -+=无实数解,则k 的取值范围是______.13.如图,在ABC △中,BC =3,AC =4,∠ACB =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A ,D 为圆心,大于12AD 的长为半径画弧,两弧交于点M ,N ,作直线MN ,分别交AC ,AB 于点E ,F ,则线段EF 的长为______.三、解答题(本大题共5个小题,共48分)14.(本小题满分10分,每题5分)(1)解方程:(x +8)(x +1)=-12;(2)解方程:22(23)(32)x x +=+. 15.(本小题满分8分)为落实国家“双减”政策,学校在课后托管时间里开展了“A -音乐、B -体育、C -文学、D -美术”四项社团活动.学校从全校1200名学生中随机抽取了部分学生进行“你最喜欢哪一种社团活动”的问卷调查(每人必选且只选一种),并根据调查结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题: (1)参加调查的学生共有______人;条形统计图中m 的值为______;扇形统计图中α的度数为______;根据调查结果,可估计该校1200名学生中最喜欢“音乐”社团的约有______人;(2)现从“文学”社团里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.16.(本小题满分10分)某市从2020年起连续投入资金用于“建设美丽城市,改造老旧小区”.已知每年投入资金的增长率相同,其中2020年投入资金1000万元,2022年投入资金1440万元.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2022年老旧小区改造的平均费用为每个80万元.2023年为提高老旧小区品质,每个小区改造费用计划增加20%.如果投入资金年增长率保持不变,求该市2023年最多可以改造多少个老旧小区?17.(本小题满分10分)如图,点E 是正方形ABCD 的对角线CA 延长线上一点,连接BE ,将BE 绕点B 顺时针旋转90°至BF ,连接EF ,EF 交AD 于点G .(1)求证:ABE AEG ∽△△;(2)若正方形ABCD 的边长为4,点G 为AD 的中点,求AE 的长.18.(本小题满分10分)如图,一次函数()20y kx k =+≠的图象与反比例函数()0,0m y m x x=>>的图象交于点()2,A n ,与y 轴交于点B ,与x 轴交于点()4,0C -.(1)求k 与m 的值;(2)点(),0P a 为x 轴正半轴上的一点,且APB △的面积为72,求a 的值. (3)在(2)的条件下,在平面内是否存在一点Q ,使以点A ,B ,P ,Q 为顶点的四边形为平行四边形?若存在,请直接写出点Q 的坐标;不存在,请说明理由.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.已知反比例函数6y x=-的图象经过点()4,a ,则a 的值为______. 20.已知m ,n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为______.21.如图,点E ,F ,G ,H 分别是正方形ABCD 四边的中点,AG ,BH ,CE ,DF 围成图中阴影部分.随机地往正方形ABCD 内投掷飞镖,飞镖击中阴影部分的概率是______.22.如图是某风车的示意图,其大小相同的四个叶片均匀分布,点M 在旋转中心O的正下方.某一时刻,太阳光恰好垂直照射叶片OA ,OB ,叶片影子为线段CD ,测得MC =8.5米,CD =13米,此时垂直于地面的标杆EF 与它的影子FG 的比为2:3(其中点M ,C ,D ,F ,G 在水平地面上),则OM 的高度为______米,叶片OA 的长为______米.23.如图,矩形ABCD 中,AB =5,AD =10,点E 是边AD 上一个动点,过点E 作AC 的垂线,交直线BC 于点F ,则AF +FE +EC 的最小值为______.二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)为防控疫情,学校对学生宿舍进行消毒工作,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,宿舍内空气中含药量y (3mg/m )与时间x (min )之间的函数图象如图所示,打开门窗前为线段OA 和线段AB ,打开门窗后为反比例函数关系. (1)求线段OA 和反比例函数的表达式;(2)当室内空气中的含药量不低于34mg/m 且持续时间不低于30分钟时,才能有效消毒,请问这次消毒工作是否有效?25.(本小题满分10分)如图,点A 在反比例函数(0,0)m y m x x =>>的图象上,点A 的纵坐标为3.过点A 作x 轴的平行线交反比例函数(,0)n y n m x x=>>的图象于点C .点P 为线段AC 上一动点,过点P 作AC 的垂线,分别交反比例函数m y x =和n y x=的图象于点B ,D . (1)当m =4,n =16时,①若点P 的横坐标为4(如图1),求直线AB 的函数表达式;②若点P 是AC 的中点(如图2),试判断四边形ABCD 的形状,并说明理由;(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,说明理由.26.(本小题满分12分)如图,在ABC △中,∠ACB =90°,BC =3cm ,AC =4cm ,将ABC △绕点A 逆时针旋转90°得到ADE △.点P ,Q 分别是AB ,AD 上的动点,且BP =AQ ,连接PQ ,CP ,EQ ,CD .时(如图1),求BP的长;(1)当EQ AD∥时(如图2),求BP的长;(2)当PQ CD7.4cm若存在,请求出BP的长;若不存在,请说明(3)是否存在点P,Q,使四边形PCDQ的面积为2理由.。
初三上册期末考试试题及答案新人教版

初三上册期末考试试题及答案新人教版一、基础知识积累与运用。
(33分)1.下列加点字注音全都正确的一项是( )(3分)A.一坏黄土(p6u) 桑梓(zi) 恣睢(sui) 褴楼(kan)B.热枕( chen) 抽噎(ye) 布衾(cen)、阴晦(hui)C.星宿( xiu) 拮据(ju) 匿名(ni) 妖娆(r60)D.谮害(zen) 龟裂( gui) 栈桥(zhan) 脚踝(lu6)2.下列词语书写有误的一项是( )(3分)A.凭掉天赋重蹈复辙B.深邃睿智恪尽职守C.狡黠慨叹根深蒂固D.斟酌恢弘恃才放旷3.下列加点的成语使用不恰当的一项是( )(3分)A.我确信“敬业乐业”四个字,是人类生活的不二法门。
B.他活过的八十四年,经历了登峰造极的君主政体和曙光初觋的革命年代。
C.上帝在这对男女的眼睛中看到了无与伦比的美和更大的力量。
D.日本文部省别具匠心地一再修改历史教科书,掩盖其战争的罪行。
4.下列没有语病的一句是( )(3分)A.随着电脑的普及,网民越来越多,随之而生的网络性心理障碍也引起人们的广泛关注。
B.我们要确保安全生产,防止万无一失。
C.出版界在出版创新方面进行了成功尝试并取得突破性进展不在少数。
D.你完全没有把事情弄明白,就说这全是我一个人的错。
5.下列说话最得体的一项是( )(4分)在教室里,王飞忽然发现自己带的《悟空传》不见了,他说:“____ ”A.哪位拿了我的《悟空传》?B.咳,这倒怪了,我的《悟空传》怎么说不见就不见啦!C.同学们,谁看见我的《悟空传》啦?D.我的《悟空传》自己长腿了吗?6.诗句默写填空(14分)(1) ,童稚携壶浆。
(自居易《观刈麦》)(2)江山如此多娇,________。
(毛泽东《沁园春雪》)(3)浊酒一杯家万里,____ 一。
(范仲淹《渔家傲秋思》)(4)- ,西北望,射天狼。
(苏轼《江城子密州出猎》)(5)辛弃疾的《破阵子为陈同甫赋壮词以寄之》描写战斗场面的句子是:____,(6)当任命一个人来挽救局面时,人们常引用《出师表》中的一句名言:____,(7)大雁这种候鸟,因其迁徙的生活习性,常被诗人融人诗中以寄托情思。