复数高考题型总结
复数的知识点总结与题型归纳

复数的知识点总结与题型归纳一、知识要点 1.复数的有关概念我们把集合C ={}a +b i|a ,b ∈R 中的数,即形如a +b i(a ,b ∈R)的数叫做复数,其中i 叫做虚数单位.全体复数所成的集合C 叫做复数集.复数通常用字母z 表示,即z =a +b i(a ,b ∈R),这一表示形式叫做复数的代数形式.对于复数z =a +b i ,以后不作特殊说明都有a ,b ∈R ,其中的a 与b 分别叫做复数z 的实部与虚部.说明:(1)复数集是最大的数集,任何一个数都可以写成a +b i(a ,b ∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b 而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式. 2.复数相等在复数集C ={}a +b i|a ,b ∈R 中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R),我们规定:a +b i 与c +d i 相等的充要条件是a =c 且b =d .3.复数的分类对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i 可以分类如下:复数z ⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)(当a =0时为纯虚数).说明:复数集、实数集、虚数集、纯虚数集之间的关系4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b ) (2)复数z =a +b i(a ,b ∈R) ――――→一一对应平面向量OZ ――→. 5.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R). 说明:实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.6.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i. 7.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 8.复数加、减法的几何意义设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→的终点并指向OZ 1――→的向量所对应的复数.它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.9.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.10.复数乘法的运算律 对任意复数z 1,z 2,z 3∈C ,有11.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,则 (1)z 1,z 2互为共轭复数的充要条件是a =c 且b =-d . (2)z 1,z 2互为共轭虚数的充要条件是a =c 且b =-d ≠0. 12.复数代数形式的除法法则: (a +b i)÷(c +d i)=a +b ic +d i =ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i ≠0). 说明:在进行复数除法时,分子、分母同乘以分母的共轭复数c -d i ,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.二、题型总结题型一:复数的概念及分类[典例] 实数x 分别取什么值时,复数z =x 2-x -6x +3+(x 2-2x -15)i 是(1)实数?(2)虚数?(3)纯虚数?[解] (1)当x 满足⎩⎪⎨⎪⎧x 2-2x -15=0,x +3≠0,即x =5时,z 是实数.(2)当x 满足⎩⎪⎨⎪⎧x 2-2x -15≠0,x +3≠0,即x ≠-3且x ≠5时,z 是虚数.(3)当x 满足⎩⎪⎨⎪⎧x 2-x -6x +3=0,x 2-2x -15≠0,x +3≠0,即x =-2或x =3时,z 是纯虚数.复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件设复数z =a +b i(a ,b ∈R),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0,且b =0题型二、复数相等[典例] 已知关于x 的方程x 2+(1-2i)x +(3m -i)=0有实数根,则实数m 的值为________,方程的实根x 为________.[解析] 设a 是原方程的实根,则a 2+(1-2i)a +(3m -i)=0, 即(a 2+a +3m )-(2a +1)i =0+0i ,所以a 2+a +3m =0且2a +1=0, 所以a =-12且⎝ ⎛⎭⎪⎫-122-12+3m =0,所以m =112.题型三:复数与点的对应关系[典例] 求实数a 分别取何值时,复数z =a 2-a -6a +3+(a 2-2a -15)i(a ∈R)对应的点Z 满足下列条件:(1)在复平面的第二象限内. (2)在复平面内的x 轴上方.[解](1)点Z 在复平面的第二象限内,则⎩⎪⎨⎪⎧a 2-a -6a +3<0,a 2-2a -15>0,解得a <-3.(2)点Z 在x 轴上方,则⎩⎪⎨⎪⎧a 2-2a -15>0,a +3≠0,即(a +3)(a -5)>0,解得a >5或a <-3.题型四:复数的模[典例] (1)若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i(2)设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B .(-1,1) C .(1,+∞)D .(0,+∞)[解析] (1)依题意可设复数z =a +2a i(a ∈R),由|z |=5得 a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i. (2)因为|z 1|= a 2+4,|z 2|=4+1=5,所以a 2+4<5,即a 2+4<5,所以a 2<1,即-1<a <1. [答案] (1)D (2)B题型五:复数与复平面内向量的关系[典例] 向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,则OZ 1――→+OZ 2――→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i[解析] 因为向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,所以OZ 1――→=(-5, 4), OZ 2――→=(5, -4),所以OZ 2――→=(5,-4)+(-5,4)=(0,0),所以OZ 1――→+OZ 2――→对应的复数是0.[答案] C题型六:复数代数形式的加、减运算[典例] (1)计算:(2-3i)+(-4+2i)=________.(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以⎩⎪⎨⎪⎧5x -5y =5,-3x +4y =-3,解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|= 2. [答案] (1)-2-i (2)2题型七:复数加减运算的几何意义[典例] 如图所示,平行四边形OABC 的顶点O ,A ,C分别表示0,3+2i ,-2+4i.求:(1) AO ――→表示的复数; (2)对角线CA ――→表示的复数; (3)对角线OB ――→表示的复数.[解] (1)因为AO ――→=-OA ――→,所以AO ――→表示的复数为-3-2i.(2)因为CA ――→=OA ――→--OC ――→,所以对角线CA ――→表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB ――→=OA ――→+OC ――→,所以对角线OB ――→表示的复数为(3+2i)+(-2+4i)=1+6i.题型八:复数模的最值问题[典例] (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( ) A .1 B.12 C .2D. 5(2)若复数z 满足|z +3+i|≤1,求|z |的最大值和最小值.[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z 1,Z 2,Z 3, 因为|z+i|+|z-i|=2,|Z 1Z 2|=2,所以点Z 的集合为线段Z 1Z 2.问题转化为:动点Z 在线段Z 1Z 2上移动,求|ZZ 3|的最小值,因为|Z 1Z 3|=1. 所以|z+i+1|min=1. [答案] A(2)解:如图所示, |OM ――→|=(-3)2+(-1)2=2.所以|z |max =2+1=3,|z |min =2-1=1.题型九:复数代数形式的乘法运算[典例](1)已知i 是虚数单位,若复数(1+a i)(2+i)是纯虚数,则实数a 等于( )A .2 B.12 C .-12D .-2(2)(江苏高考)复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. [解析] (1)(1+a i)(2+i)=2-a +(1+2a )i ,要使复数为纯虚数,所以有2-a =0,1+2a ≠0,解得a =2.(2)(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5.题型十:复数代数形式的除法运算[典例] (1)若复数z 满足z (2-i)=11+7i(i 是虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5iD .-3-5i(2)设i 是虚数单位,复数1+a i2-i为纯虚数,则实数a 为( ) A .2 B .-2 C .-12D.12[解析] (1)∵z (2-i)=11+7i ,∴z =11+7i2-i =(11+7i)(2+i)(2-i)(2+i)=15+25i5=3+5i.(2)1+a i2-i =(1+a i)(2+i)(2-i)(2+i)=2-a 5+1+2a 5i ,由1+a i 2-i 是纯虚数,则2-a 5=0,1+2a 5≠0,所以a =2.[答案] (1)A (2)A题型十一:i 的乘方的周期性及应用[典例] (1)(湖北高考)i 为虚数单位,i 607的共轭复数为( ) A .iB .-iC.1 D.-1(2)计算i1+i2+i3+…+i2 016=________.[解析](1)因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.(2)法一:原式=i(1-i2 016)1-i=i[1-(i2)1 008]1-i=i(1-1)1-i=0.法二:∵i1+i2+i3+i4=0,∴i n+i n+1+i n+2+i n+3=0(n∈N),∴i1+i2+i3+…+i2 016,=(i1+i2+i3+i4)+(i5+i6+i7+i8)+…+(i2 013+i2 014+i2 015+i2 016)=0. [答案](1)A(2)0说明:虚数单位i的周期性(1)i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1(n∈N*)(2)i n+i n+1+i n+2+i n+3=0(n∈N)。
数学复数高考知识点总结

数学复数高考知识点总结一、复数的概念和表示方法1.1 复数的定义复数是由实数和虚数构成的数,一般形式为a+bi,其中a为实部,bi为虚部,i为虚数单位,满足i²=-1。
1.2 复数的表示方法复数可以用直角坐标系和极坐标系表示。
在直角坐标系中,复数z=a+bi可以表示为有序数(a,b),其中a为实部,b为虚部;在极坐标系中,复数z=a+bi可以表示为z=r(cosθ+isinθ),其中r为模,θ为幅角。
1.3 复数的加减法复数的加减法与实数的加减法类似,实部与实部相加减,虚部与虚部相加减。
1.4 复数的乘法复数的乘法可利用分配律和i²=-1进行计算,即(a+bi)×(c+di)=ac+adi+bci+bdi²=(ac-bd)+(ad+bc)i。
1.5 复数的除法复数的除法需要将除数与被除数同时乘以共轭复数,然后利用分配律进行计算。
1.6 复数的共轭复数z=a+bi的共轭是z的实部不变,虚部取负数,即z的共轭为a-bi。
1.7 复数的模和幅角复数z=a+bi的模是z距离原点的长度,又可以表示为|z|=√(a²+b²);复数z的幅角是z与正实轴之间的夹角,一般取在-π<θ≤π的区间内。
1.8 二次根式对于复数z=a+bi,其二次根式为±√z=±(√r)(cos(θ/2)+isin(θ/2)),其中r为z的模,θ为z 的幅角。
二、复数的应用2.1 复数的几何意义复数可以表示平面上的点,实部代表横坐标,虚部代表纵坐标;复数的模代表点到原点的距离,复数的幅角代表点与正实轴之间的夹角。
2.2 解析式解析式是指利用复数形式的代数式表示函数值,在一些复杂的数学问题中,可以利用复数的解析式简化计算。
2.3 需解方程部分方程的解需要引入复数,如一元二次方程的解可能为复数,解方程时需考虑复数根的情况。
2.4 矩阵计算在一些特定矩阵的计算中,可能出现复数,需要利用复数的运算规则进行计算。
高考复数知识点与题型

高考复数知识点与题型高考是每个学生都必须面对的重要考试,其中涵盖的知识点众多。
在数学这一科目中,复数是一个重要且常见的知识点。
复数在数学中具有广泛的应用,不仅贯穿于高中数学的各个章节中,而且在高考考试的题目中也经常出现。
本文将重点分析与复数相关的知识点和题型。
一、复数的定义与运算复数由实部和虚部组成,一般表示为a+bi的形式,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。
在运算方面,复数的加减法与实数类似,可以将实部与虚部分别相加减。
复数的乘法中,需要注意虚数单位的性质,即i²=-1。
复数的除法可以通过有理化操作将分母变为实数,然后进行分子分母的分别除以实数的运算。
高考常见的复数题型包括求复数的共轭、复数的乘除法、复数的加减法等。
二、复数的平方根和幂次方复数的平方根是指复数的某个平方等于给定复数的性质。
一般来说,复数的平方根有两个解,其中一个解是正实数根,另一个解是负实数根。
对于n次方的复数运算,可以使用De Moivre公式将复数的n次方转化为它的幅角与辐角的函数。
高考中常见的题型包括求复数的平方根或者幂次方。
三、复数的模与辐角复数的模表示复数的长度,也可以理解为复数到原点的距离。
一般使用竖线表示,也可以用绝对值表示。
复数的辐角指的是复数与正实数轴之间的夹角,通常用θ表示。
复数的模和辐角可以通过公式计算出来,也可以通过坐标系进行几何解释。
高考中常见的题型包括给出复数求模和辐角,或者给出模和辐角求复数。
四、复数的几何意义复数在数学中具有重要的几何意义。
可以将复数看作是平面上的向量,复数的实部和虚部可以分别表示向量在x轴和y轴的投影。
将复数在坐标系中表示出来,可以画出复平面图。
复数的加减法可以理解为向量的相加减,复数的乘法可以理解为放缩和旋转。
通过复平面图,可以直观地理解复数的运算与几何意义。
在高考题目中,经常会利用复数的几何意义进行分析和解答。
五、复数方程与不等式复数方程和不等式是高考中较为复杂的考点之一。
2024年高考数学高频考点题型总结一轮复习 复数(精练:基础+重难点)

2024年高考数学高频考点题型归纳与方法总结第26练复数(精练)一、单选题1.(2022·全国·统考高考真题)(22i)(12i)+-=()A .24i -+B .24i --C .62i+D .62i-【答案】D【分析】利用复数的乘法可求()()22i 12i +-.【详解】()()22i 12i 244i 2i 62i +-=+-+=-,故选:D.2.(2021·全国·统考高考真题)已知2i z =-,则()i z z +=()A .62i -B .42i -C .62i+D .42i+【答案】C【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.3.(2021·全国·高考真题)已知()21i 32i z -=+,则z =()A .31i2--B .31i2-+C .3i2-+D .3i2--【答案】B【分析】由已知得32i2iz +=-,根据复数除法运算法则,即可求解.【详解】()21i 2i 32i z z -=-=+,()32i i 32i 23i 31i 2i 2i i 22z +⋅+-+====-+--⋅.故选:B.4.(2022·全国·统考高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则()A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-【答案】A【分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可【详解】12z i=-【A组在基础中考查功底】一、单选题根据复数模的几何意义可知,如图可知,i z +的最小值是点故选:B.26.(2022·全国·高三专题练习)设A .13i22-C .31i 22--【答案】C【分析】首先利用诱导公式将复数出其共轭复数;【详解】解:因为sin15z =+ 所以()22sin15i cos15z =+= 22sin 15cos 152sin15cos15=-+ cos30sin 30i =-+ 31i 22=-+所以2z 的共轭复数是3122--故选:C【B 组在综合中考查能力】一、单选题1.(2023春·安徽亳州·高三校考阶段练习)已知A .3±B .3【答案】C。
新高考复数知识点总结归纳

新高考复数知识点总结归纳一、名词的复数形式名词的复数形式通常有以下几种情况:1. 一般情况下,在名词末尾加-s:book→books, dog→dogs。
2. 以-s, -sh, -ch, -x结尾的名词,在末尾加-es:dish→dishes,box→boxes。
3. 以辅音字母+y结尾的名词,将y改为i,再加-es:city→cities, baby→babies。
4. 以-f或-fe结尾的名词,将f或fe改为v,再加-es:wolf→wolves, knife→knives。
5. 一些特殊名词的复数形式需要单独记忆:child→children,man→men, woman→women。
二、不可数名词与可数名词1. 不可数名词是指不能用数目进行计数的名词,一般用单数形式。
常见的不可数名词有:water, milk, bread, information等。
2. 可数名词是指可以进行数目上的计数的名词,可以有复数形式。
常见的可数名词有:book, cat, dog, apple等。
3. 有些名词可以既作不可数名词,又作可数名词,表示不同的意思。
比如:glass可以表示"玻璃杯",是可数名词;也可以表示"玻璃",是不可数名词。
三、复数名词的用法1. 表示一般复数概念:They have three cats.2. 表示某些事物的一部分:I ate two slices of pizza.3. 表示一种人或一类东西:The Chinese are good at math.4. 表示许多或一定数量的人或物:Many students go to school by bus.5. 表示两种东西:I want both apples and oranges.四、不规则名词的复数形式有一些名词的复数形式是不规则的,需要单独记忆。
下面列举一些常见的不规则名词的复数形式:1. child→children2. man→men3. woman→women4. tooth→teeth5. foot→feet6. goose→geese7. mouse→mice8. ox→oxen九、对不可数名词进行量化对不可数名词进行量化时,可以使用以下方法:1. 使用量词或数量短语来修饰:a bottle of water, a piece of cake。
复数知识点与历年高考经典题型

复数知识点与历年高考经典题型Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT数系的扩充与复数的引入知识点(一)1.复数的概念: (1)虚数单位i ;(2)复数的代数形式z=a+bi ,(a, b ∈R); (3)复数的实部、虚部、虚数与纯虚数。
2.复数集3.复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。
应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。
4.复数的四则运算若两个复数z1=a1+b1i ,z2=a2+b2i , (1)加法:z1+z2=(a1+a2)+(b1+b2)i ; (2)减法:z1-z2=(a1-a2)+(b1-b2)i ; (3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ;(4)除法:11212211222222()()z a a b b a b a b i z a b ++-=+;(5)四则运算的交换率、结合率;分配率都适合于复数的情况。
(6)特殊复数的运算:① ni (n 为整数)的周期性运算; ②(1±i)2 =±2i ;③ 若ω=-21+23i ,则ω3=1,1+ω+ω2=0.5.共轭复数与复数的模(1)若z=a+bi ,则z a bi =-,z z +为实数,z z -为纯虚数(b ≠0).(2)复数z=a+bi 的模, 且2||z z z ⋅==a 2+b 2.6.根据两个复数相等的定义,设a, b, c, d ∈R ,两个复数a+bi 和c+di 相等规定为a+bi=c+di a c b d =⎧⇔⎨=⎩. 由这个定义得到a+bi=0⇔00a b =⎧⎨=⎩.两个复数不能比较大小,只能由定义判断它们相等或不相等。
高考复数的知识点总结

高考复数的知识点总结复数是英语语法中一个非常重要的概念,常常出现在高考的考试题目中。
在此,我将对高考所涉及的复数知识点进行总结,希望对同学们备考有所帮助。
一、复数的基本规则1. 名词一般通过在词尾加-s表示复数形式,如books、pens等。
2. 以s、x、ch、sh等结尾的词,复数形式在词尾加-es,如buses、boxes。
3. 以辅音字母+y结尾的词,将y变为i,再加-es,如ladies、stories。
4. 以-o结尾的词,一般在词尾加-es,如potatoes、tomatoes。
但也有例外,如photos、pianos。
二、不规则复数形式1. 有些名词的复数形式完全不规则,需记忆,如child—children、man—men、woman—women等。
2. 有些名词的复数形式与单数形式相同,需通过上下文来判断,如fish、sheep等。
三、复数形式与动词一致1. 当主语为复数形式时,谓语动词需用复数形式,如The students are studying.2. 当主语为两者或多者共同进行的动作时,谓语动词也可使用复数形式,如The dog and the cat are playing.四、复数名词的所有格1. 在复数名词的结尾加-apostrophe,如girls'、birds'。
2. 若复数名词已以-s结尾,则只需要在词尾加-apostrophe,如students'、teachers'。
五、部分复数形式1. 一些名词既有单数形式,又有复数形式,含义不同,如news、means。
2. 一些名词无单数形式,只有复数形式,如scissors、trousers。
六、可数名词与不可数名词的复数形式1. 不可数名词没有复数形式,如water、milk。
2. 可数名词和不可数名词均可以表示复数概念,如two coffees、three books。
七、高考常见考点1. 单复数一致:在句子中主语与谓语动词需要保持单复数一致。
第12章复数章末题型归纳总结 高考数学

又∠ ∈ , ,所以∠ = .
故答案为:
−
,
= ,
试卷讲评课件
例11.(2024 ⋅高一·江苏·专题练习)在复平面内,O是原点,向量OZ对应
的复数是−1 +
− 2
复数为_____.
π
i,将OZ绕点O按逆时针方向旋转 ,则所得向量对应的
4
【解析】如图,由题意可知 = −, ,与
经典题型六:复数的三角表示
模块三:数学思想与方法
①分类与整合思想②等价转换思想③
数形结合的思想
试卷讲评课件
模块一:本章知识思维导图
试卷讲评课件
模块二:典型例题
经典题型一:复数的概念
例1.(2024
z
⋅高三·河南商丘·阶段练习)若复数z满足 为纯虚数,且
2+i
z = 1,则z的虚部为(
√
2 5
A.±
若 = ,则有 = , = , ∴ = ,反之由 = ,
推不出 = ,如 = +, = − 时, = ,故C正确;
D中两个复数不能比较大小,但任意两个复数的模总能比较大小,∴
错.
选.
试卷讲评课件
【解析】复数 = + ,则 = +
= − + = −,
−=
又是实数,因此
,解得 = −,
= −
所以实数的值是−.
试卷讲评课件
z1
z1
(2)若 是纯虚数,求
z2
z2
+
z1 2
z2
+
z1 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数高考题型
一、复数概念
1.在复平面内,复数(12)z i i =+对应的点位于( ).
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.若复数12429,69,z i z i =+=+其中i 是虚数单位,则复数12()z z i -的实部为 . 3.若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为( ).
A .1-
B .0
C .1
D .1-或1 4.已知复数12z i =-,那么1z
=( ).
A +
B
C .1255i +
D .1255
i - 二、复数相等
1.i 是虚数单位,若17(,)2i a bi a b R i
+=+∈-,则乘积ab 的值是( ). A .-15
B .-3
C .3
D .152.若21a bi i
=+-(i 为虚数单位,,a b R ∈ )则a b +=_________. 3.已知
=+-=+ni m i n m ni i m 是虚数单位,则是实数,,,其中11( ). (A)1+2i (B) 1-2i (C)2+i (D)2- i
三、复数计算
1.复数
31i i --等于( ). A .i 21+ B .12i - C .2i + D .2i -
2.已知复数z 3i )z =3i ,则z=( ).
A .32 B. 34 C. 32 D.34 3.复数32322323i i i i
+--=-+( ). A .0 B .2 C .-2i D .2
4.复数2
(12)34i i
+-的值是( ). A .-1 B.1 C.-i D.i
5.设1z i =+(i 是虚数单位),则22z z
+=( ). A .1i -- B .1i -+ C .1i - D . 1i +四、其他题型
1.已知2,ai b i ++是实系数一元二次方程20x px q ++=的两根,则,p q 的值为( ).
A .4,5p q =-=
B .4,5p q ==
C .4,5p q ==-
D .4,5p q =-=- 2.i 是虚数单位,238i 2i 3i 8i ++++= .(用i a b +的形式表示,a b ∈R ,)
3.若cos sin z i θθ=+(i 为虚数单位),则21z =-的θ值可能是( ).
A .6π
B .4π
C .3π
D .2π
2006-2009年高考题
一.选择题:
1.(全国一4)设a ∈R ,且2()a i i +为正实数,则a =( )
A .2
B .1
C .0
D .1-
2.(全国二2)设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( )
A .223b a =
B .223a b =
C .229b a =
D .229a b =
3.(四川卷)复数()221i i +=( )
(A)4- (B)4 (C)4i -
(D)4i
4.(安徽卷1)复数 32(1)i i +=( )
A .2
B .-2
C . 2i
D . 2i -
5.(山东卷2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则z z
等于
(A )1 (B )-i (C)±1 (D) ±i
6.(江西卷1)在复平面内,复数sin 2cos2z i =+对应的点位于
A .第一象限
B .第二象限
C .第三象限
D .第四象限
7.(湖北卷11)设211z z iz =-(其中1z 表示z 1的共轭复数),已知z 2的实部是1-,则z 2的虚部为 。
8.(湖南卷1)复数31
()i i -等于( )
A.8
B.-8
C.8i
D.-8i
9.(陕西卷1)复数(2)
12i i i +-等于( )
A .i
B .i -
C .1
D .1-
10.(重庆卷1)复数1+22
i =
(A)1+2i (B)1-2i (C)-1 (D)3
11.(福建卷1)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为
A.1
B.2
C.1或2
D.-1
12.(广东卷1)已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是(
)
A .(15),
B .(13),
C .
D .
13.(浙江卷1)已知a 是实数,i i
a +-1是春虚数,则a =
(A )1 (B )-1 (C )2 (D )-2
14.(辽宁卷4)复数1
1
212i i +-+-的虚部是( )
A .15i
B .15
C .15i -
D .15
- 15.(海南卷2)已知复数1z i =-,则2
1
z z =-( ) A. 2 B. -2 C. 2i D. -2i
16(2006年广东)若复数z 满足方程220z +=,则3z =( ).
A .±
B .-
C .-
D .±
17(2007年广东文理2)若复数(1+bi )(2+i)是纯虚数(i 是虚数单位,b 为实数),则b=( ).
A .-2
B .-1
2 C .12 D .2
18(2008年广东卷1)已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( ).
A .(15),
B .(13),
C .
D .(1
19(2009年广东卷理)设z 是复数,()a z 表示满足1n z =的最小正整数n ,则对虚数单位i ,()a i =( ).
A .8
B .6
C .4
D .2
二.填空题:
1.(上海卷3)若复数z 满足(2)z i z =- (i 是虚数单位),则z = .
2.(北京卷9)已知2()2a i i -=,其中i 是虚数单位,那么实数a = 。
3.(江苏卷3)11i i
+-表示为a bi +(),a b R ∈,则a b +== . 4.已知复数z 与 (z +2)2-8i 均是纯虚数,则 z = ____________.
5.若复数z 满足z (1+i )=2,则z 的实部是__________.
6.在复平面内,O 是原点,OA ,OC ,AB 表示的复数分别为-+++23215i i i ,,,那么BC 表示的复数为________.
7.z z C z z z z z 1212122
222402,,,∈-+==||,那么以|z 1|为直径的圆的面积为_______。
三、解答题:
1.已知复数z 1满足(1+i )z 1=-1+5i , z 2=a -2-i , 其中i 为虚数单位,a ∈R, 若
21z z -<|z 1|,求a 的取值范围.
2.已知复数z 1=c osθ-i ,z 2=s in θ+i ,求| z 1·z 2|的最大值和最小值.
3.已知z 、?为复数,(1+3i )z 为实数,?=,||2z i
ωω=+且求. 4、已知:复数1cos () z b C a c i =++,2(2)cos 4 z a c B i =-+,且12z z =,其中B 、C 为△ABC 的内角,a 、b 、c 为角A 、B 、C 所对的边.
(Ⅰ)求角B 的大小;
(Ⅱ) 若b =,求△ABC 的面积.。