七年级上册数学有理数单元测试卷及答案
【3套精选】七年级数学(上)第一章有理数单元达标测试卷(有答案)

人教版初中数学七年级上册第1章《有理数》单元测试题一、选择题(本大题共10小题,每小题3分,共30分)1.若汽车向南行驶30米记作+30米,则-50米表示()A.向东行驶50米B.向西行驶50米C.向南行驶50米D.向北行驶50米2.-|-2|的值是()A.-2 B.2 C.±2 D.43.大于-1且小于3的整数共有()A.2个B.3个C.4个D.5个4.下列四个数中,与-2018的和为0的数是()1 A.-2018 B.2018 C.0 D.-20185. “中国天眼”即500米口径球面射电望远镜(FAST),是世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面.将数据4600表示成a×10n(其中1≤a<10,n为整数)的形式,则n的值为()A.-1 B.2 C.3 D.46.检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,下列最接近标准质量的是()A B C D7.图1所示的数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点B表示的数是()A.-4 B.-2 C.0 D.4图18.下列说法中不正确的是()A.在数轴上能找到表示任何有理数的点B.若a ,b 互为相反数,则ba=-1 C.若一个数的绝对值是它本身,则这个数是非负数D.近似数7.30所表示的准确数的范围是大于或等于7.295,小于7.3059. 如图2,数轴上点A 表示的有理数为a ,点B 表示的有理数为b ,则下列式子中成立的是( )A .a+b >0B .a+b <0C .a-b >0D .|a|=|b|图210.用十进制计数法表示正整数,如365=300+60+5=3×102+6×101+5,用二进制计数法来表示正整数,如:5=4+1=1×22+0×21+1×1,记作5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作14=(1110)2,则(10101)2表示数() A. 41B. 21C. 20D. 24二、填空题(本大题共6小题,每小题4分,共24分)11.在有理数-0.2,0,321,-5中,整数有____________. 12. 计算:(-1)6+(-1)7=____________.13. 两会期间,百度APP 以图文、图案、短视频、直播等多种形式展现两会内容.据统计,直播内容237场,峰值观看人数一度高达3 800 000人,将数据3 800 000用科学记数法表示为 .14.已知线段AB 在数轴上,且它的长度为4,若点A 在数轴上对应的数为-1,则点B 在数轴上对应的数为 .15.已知一张纸的厚度是0.1 mm ,若将它连续对折10次后,则它折后的厚度为 mm .16.观察下列数据,找出规律并在横线上填上适当的数:1,-43,95,-167, , , ,… 三、解答题(本大题共6小题,共52分)17.(每小题3分,共6分)比较下列各组数的大小:(1)|-4+5|与|-4|+|5|; (2)2×32与(2×3)2.18.(每小题4分,共8分)计算: (1)|-2|-(-3)×(-15)÷(-9); (2)-12018+(-21+32-41)×24.19.(7分)当温度每上升1℃时,某种金属丝伸长0.002 mm ;反之,当温度每下降1℃时,金属丝缩短0.00 2mm.把15℃的这种金属丝加热到60 ℃,再使它冷却降温到5 ℃,求最后的长度比原来伸长了多少.20.(9分)计算6÷(-21+31)时,李明同学的计算过程如下,原式=6÷(-21)+6÷31=-12+18=6.请你判断李明的计算过程是否正确,若不正确,请你写出正确的计算过程,并正确计算出(21-61+91)÷(-361).21.(10分)如图3,已知点A 在数轴上表示的数为-1,从点A 出发,沿数轴向右移动3个单位长度到达点C ,点B 所表示的有理数是5的相反数,按要求完成下列各题. (1)请在数轴上标出点B 和点C ;(2)求点B 所表示的数与点C 所表示的数的乘积;(3)若将该数轴进行折叠,使得点A 和点B 重合,则点C 和哪个数所对应的点重合?图322.(12分)一辆货车从仓库装满货物后在东西街道上运送水果,规定向东为正方向,某次到达的五个地点分别为A,B,C,D,E,最后回到仓库,货车行驶的记录(单位:千米)如下:+1,+3,-6,-l,-2,+5.(1)请以仓库为原点,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)求出该货车共行驶了多少千米;(3)如果货车运送的水果以l00千克为标准质量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果质量可记为:+50,-l5,+25,-l0,-15,则该货车运送的水果总质量是多少千克?附加题(共20分,不计入总分)1.(8分)如图,点P,Q在数轴上表示的数分别是-8,4,点P以每秒2个单位长度的速度向右运动,点Q以每秒1个单位长度的速度向左运动,当运动秒时,P,Q 两点相距3个单位长度.2.(12分)对于有理数a,b,定义运算“⊕”:a⊕b=ab-2a-2b+1.(1)计算5⊕4的结果;(2)计算[(-2)⊕6]⊕3的结果;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.(第一章 有理数测试题参考答案一、1.D 2.A 3.B 4. B 5.C 6.C 7.B 8.B 9. A 10.B二、11. 0,-5 12.013. 3.8×106 14.3或-5 15. 102.4 16.259,-3611,4913 提示:第n 个数,分母是n 2,分子是2n-1,第奇数个数是正数,第偶数个数是负数.三、17.(1)|-4+5|=|1|=1,|-4|+|5|=4+5=9,所以|-4+5|<|-4|+|5|. (2)2×32=2×9=18,(2×3)2=62=36,所以2×32<(2×3)2.18. 解:(1) 原式=2+3×15×91=2+5=7. (2)原式=−1−21×24+32×24−41×24=−1−12+16−6=−3. 19. 解:(60-15)×0.002-(60-5)×0.002 =45×0.002-55×0.002 =(45-55)×0.002 =(-10)×0.002 =-0.02(mm ).答:最后的长度比原来伸长了-0.02 mm.20.解:李明的计算过程不正确,正确计算过程为:6÷(-21+31)=6÷(-61)=-36.原式=(21-61+人教版七年级数学(上)第一章有理数单元达标测试卷(有答案) 一、选择题(每题3分,共30分)1.如果向东走7 km 记作+7 km ,那么-5 km 表示( )A .向北走5 kmB .向南走5 kmC .向西走5 kmD .向东走5 km 2.在0,4,-3,-4这四个数中,最小的数是( )A .0B .4C .-3D .-43.在有理数|-1|,0,-122,(-1)2 019中,负数的个数为( )A .1B .2C .3D .44.某市去年共引进世界500强外资企业19家,累计引进外资410 000 000美元.410 000 000用科学记数法表示为( )A .41×107B .4.1×108C .4.1×109D .0.41×109 5.下列计算错误的是( )A .(-2)×(-3)=2×3=6B .-3-5=-3+(+5)=2C .4÷⎝ ⎛⎭⎪⎫-12=4×(-2)=-8 D .-(-32)=-(-9)=96.下列每对数中,不相等...的一对是( ) A .(-2)2 019和-22 019 B .(-2)2 020和22 020 C .(-2)2 020和-22 020 D .|-2|2 019和|2|2 0197.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab 的值是( )(第7题)A .负数B .正数C .0D .正数或0 8.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高约为161 cm”中的数是准确数9.已知|m |=4,|n |=6,且|m +n |=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一根100 m 长的小棒,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14……如此下去,直到截去剩下的1100,则剩下的小棒长为( )A.12 m B .1 m C .2 m D .4 m 二、填空题(每题3分,共24分)11.如果全班某次数学测试的平均成绩为90分,某位同学考了93分,记作+3分,那么得分86分应记作__________.12.-2 019的相反数是________,绝对值是________,倒数是________. 13.将数59 840精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-2,以点A 为圆心、1个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是____________.(第15题)16.如果|a +2|+(b -3)2=0,那么a b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.(第17题) (第18题)18.一个质点P从距原点1个单位长度的点A处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从点A1跳动到OA1的中点A2处,第三次从点A2跳动到OA2的中点A3处,…如此不断跳动下去,则第五次跳动后,该质点到原点O的距离为________;第n次跳动后,该质点到原点O的距离为________.三、解答题(19,24题每题12分,20题16分,21题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|;(2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36;(4)-42÷(-2)3+(-1)2 020-49÷23.21.现规定一种新运算“*”:a *b =a b-2,例如:2*3=23-2=6.试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450 g,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450±5 g,求该食品的抽样检测的合格率.23.某景区工作人员接到任务后,驾驶电瓶车从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该工作人员能否在电瓶车一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P表示的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P表示的数;(3)如果点P,Q在点A,B人教版七年级数学上册第一章有理数单元测试(含答案)一、单选题1.在有理数-3,0,23,-85,3.7中,属于非负数的个数有()A.4个B.3个C.2个D.1个2.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.B.C.D.3.下列各式中结果为负数的是()A.﹣(﹣2) B.|﹣2| C.(﹣2)2D.﹣|﹣2|4.下列说法不正确的是:()① a一定是正数;②0的倒数是0 ;③最大的负整数-1;④只有负数的绝对值是它的相反数;⑤相反数等于本身的有理数只有0A.②③④B.①②④⑤C.②③④⑤D.①②④5.在数轴上与-3的距离等于4的点表示的数是()A.1 B.-7 C.1或-7 D.无数个6.已知p与q互为相反数,且p≠0,那么下列关系式正确的是()A.p•q=1B.p1q=C.p-q=0 D.p+q=07.56-的相反数是()A.56B.56-C.65D.65-8.实数-2019的绝对值是()A. B.2019 C. D.9.下列计算正确的是( ) A .5+(﹣6)=﹣11 B .﹣1.3+(﹣1.7)=﹣3 C .(﹣11)﹣7=﹣4 D .(﹣7)﹣(﹣8)=﹣110.|-6|的倒数是( ) A .6B .-6C .16 D .-1611.﹣|﹣3|的倒数是( ) A .﹣3B .﹣13C .13D .312.一个数和它的倒数相等,则这个数是 ( ) A .1 B .-1 C .±1 D .±1和0二、填空题13.中国的领水面积约为3700000km 2,将3700000用科学记数法表示为_____. 14.0.7808用四舍五入法精确到十分位是_____. 15.计算:1001-1-6-)6÷⨯()(=_________16.用“>”或“<”填空: 3--______ ( 3.1)--; 78-____67-; 17.一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则点A 所表示的数是__.三、解答题 18.计算: (1)1+(-2)+|-2-3|-5 (2) 51557-÷ (3) (-16+34-512)⨯(12)- (4)(-1)2012-(-512)×411+(-8)÷[(-3)+5] (5)()2014322321-+--⨯-19.用☉定义一种新运算:对于任意有理数a 、b ,都有21ab b =+。
(完整版)七年级上册数学第一章《有理数》测试题(含答案)

七年级数学(上) 第一章 有理数单元测试题(120分)一、选择题(3分×10=30分)1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、20081 2、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8)4、计算(-1)÷(-5)×51的结果是( ) A 、-1 B 、1 C 、251 D 、-25 5、两个互为相反数的有理数的乘积为( )A 、正数B 、负数C 、0D 、负数或0 6、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1×20)mmB 、(0.1×40)mmC 、(0.1×220)mmD 、(0.1×202)mm二、填空题(5分×3=15)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么 _____12、一个正整数,加上-10,其和小于0,则这个正整数可能是 (写出两个即可)13、绝对值小于2008的所有整数的和是( )14、观察下列各数,按规律在横线上填上适当的数。
七年级数学上册《第1章 有理数》单元测试卷及答案详解

人教新版七年级上册《第1章有理数》单元测试卷(2)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)在,0,1,﹣9四个数中,最大的数是()A.B.0C.1D.﹣92.(3分)下列各数中与+()的和为0的数是()A.B.C.D.3.(3分)据报道,2020年4月9日,黄石市重点园区(珠三角)云招商财富推介会上,现场共签约项目20多个,总投资137.6亿元人民币,用科学记数法表示137.6亿元为()A.1.376×109B.1.376×1010C.1.376×1011D.1.376×108 4.(3分)若等式0□3=﹣3成立,则“□”内的运算符号为()A.+B.﹣C.×D.÷5.(3分)下列各对数中互为相反数的是()A.32与﹣23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.﹣2×32与(2×3)26.(3分)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁7.(3分)若(a﹣2009)2+|b+2010|=0,则(a+b)2020的值为()A.0B.1C.﹣1D.20208.(3分)在下列执行异号两数相加的步骤中,错误的是()①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④9.(3分)对于下面的题目及解法,正确的说法是()计算:解:A.(﹣2)3计算错了,应该是8B.(﹣2)3计算错了,应该是﹣6C.计算错了,应该是D.计算错了,应该是10.(3分)观察下列算式:21=2;22=4;23=8;24=16;25=32;……,则22021+3的末尾数字是()A.5B.7C.9D.11二、填空题(每题3分,共15分)11.(3分)﹣3.5的倒数是.12.(3分)对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)=.13.(3分)有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c|+|c﹣a|=.14.(3分)找出下列各图形中数的规律,依此,a的值为.15.(3分)我们平常用的数是十进制的数,如1234=1×103+2×102+3×101+4×1,表示十进制的数要用十个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用的是二进制,只要两个数码0和1,如:二进制中,101=1×22+0×21+1等于十进制的数5;10111=1×24+0×23+1×22+1×21+1等于十进制的数23.请问二进制中的1011101等于十进制中的数为.三、解答题(共8题,共75分)16.(8分)把下列有理数填在相应的大括号里:15,,0,﹣7,|﹣1|,,1.5,0.232032003……整数集合{…};分数集合{…};正数集合{…};非负有理数集合{…}.17.(16分)计算(1);(2);(3);(4).18.(7分)小玲在电脑中设置了一个程序,输入数a,按“*”键,再输入b,就可以运算a*b=(a﹣2b)÷(2a﹣b),根据该运算程序,求的值?19.随着智能手机的普及,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小亮把自己家的红薯产品也放到网上,他原计划每天卖出100千克,由于各种原因,实际每天的销售量与计划量相比有出入,下表是国庆小长假期间的销售情况(超出记为正,不足记为负.单位:千克)时间1日2日3日4日5日6日7日与计划量的差值+5﹣2+15+22﹣4﹣7﹣5(1)根据上表可知前三天一共卖出千克;(2)销售量最多的一天比销售量最少的一天多销售千克;(3)若每千克按2元出售,并需付运费平均每千克0.5元,则小亮国庆小长假期间一共收入多少钱?20.如图,点A,B,C,D,是数轴上的四个点,点C位于2、3正中间.(1)指出A、B、C、D分别表示的数;(2)C、B两点之间的距离是多少?C、D两点之间的距离是多少?21.(阅读与应用)学习有理数乘法后,老师让同学们计算:,看谁算得又快又对,有两位同学的解法如下:小丽:原式=;小军:原式=.(1)对于以上两种解法,你认为谁的解法较好?你还有更好的解法吗?如果有,请把它写出来;(2)用你认为最合适的方法计算:.22.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.23.观察下列三行数并按规律填空:﹣1,2,﹣3,4,﹣5,,,…;1,4,9,16,25,,,…;0,3,8,15,24,,,…(1)第一行数按什么规律排列?(2)第二行数、第三行数分别与第一行数有什么关系?(3)取每行数的第10个数,计算这三个数的和.人教新版七年级上册《第1章有理数》单元测试卷(2)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)在,0,1,﹣9四个数中,最大的数是()A.B.0C.1D.﹣9【考点】有理数大小比较.【分析】根据正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小可得答案.【解答】解:∵,∴这四个数中,最大的数是1.故选:C.2.(3分)下列各数中与+()的和为0的数是()A.B.C.D.【考点】有理数;相反数;绝对值.【分析】利用绝对值的性质和互为相反数的定义得出答案.【解答】解:∵+()=,﹣()=7,∴与+()的和为0的数是﹣().故选:A.3.(3分)据报道,2020年4月9日,黄石市重点园区(珠三角)云招商财富推介会上,现场共签约项目20多个,总投资137.6亿元人民币,用科学记数法表示137.6亿元为()A.1.376×109B.1.376×1010C.1.376×1011D.1.376×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【解答】解:137.6亿=137****0000=1.376×1010.故选:B.4.(3分)若等式0□3=﹣3成立,则“□”内的运算符号为()A.+B.﹣C.×D.÷【考点】有理数的混合运算.【分析】根据有理数的加、减、乘、除法法则,进行计算即可解答.【解答】解:∵0﹣3=0+(﹣3)=﹣3,∴若等式0□3=﹣3成立,则“□”内的运算符号为:﹣,故选:B.5.(3分)下列各对数中互为相反数的是()A.32与﹣23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.﹣2×32与(2×3)2【考点】有理数的乘方;相反数.【分析】根据有理数的乘方与相反数的定义对各选项分析判断后利用排除法求解.【解答】解:A、32=9,﹣23=﹣8,不是互为相反数,故本选项错误;B、﹣23=﹣8,(﹣2)3=﹣8,不是互为相反数,故本选项错误;C、﹣32=﹣9,(﹣3)2=9,是互为相反数,故本选项正确;D、﹣2×32与=﹣2×9=﹣18,(2×3)2=36,不是互为相反数,故本选项错误.故选:C.6.(3分)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁【考点】绝对值;数轴.【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.【解答】解:甲:由数轴有,0<a<3,b<﹣3,甲的说法正确,乙:∵0<a<3,b<﹣3,∴a+b<0乙的说法错误,丙:∵0<a<3,b<﹣3,∴|a|<|b|,丙的说法正确,丁:∵0<a<3,b<﹣3,∴<0,丁的说法错误.故选:C.7.(3分)若(a﹣2009)2+|b+2010|=0,则(a+b)2020的值为()A.0B.1C.﹣1D.2020【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:a﹣2009=0,b+2010=0,解得:a=2009,b=﹣2010,则(a+b)2020=(2009﹣2010)2020=1.故选:B.8.(3分)在下列执行异号两数相加的步骤中,错误的是()①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④【考点】有理数的加法;绝对值.【分析】根据有理数加法法则:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进【解答】解:执行异号两数相加的步骤:①求两个有理数的绝对值,正确;②比较两个有理数绝对值的大小,正确;③将绝对值较大数的符号作为结果的符号,正确;④将两个有理数绝对值的和作为结果的绝对值,错误.故选:D.9.(3分)对于下面的题目及解法,正确的说法是()计算:解:A.(﹣2)3计算错了,应该是8B.(﹣2)3计算错了,应该是﹣6C.计算错了,应该是D.计算错了,应该是【考点】有理数的混合运算.【分析】根据有理数的乘方,乘法,加减法法则进行计算即可解答.【解答】解:(﹣2)3﹣3×(﹣)4=﹣8﹣3×=﹣8﹣=﹣8,所以,(﹣)4计算错了,应该是,故选:D.10.(3分)观察下列算式:21=2;22=4;23=8;24=16;25=32;……,则22021+3的末尾数字是()A.5B.7C.9D.11【考点】规律型:数字的变化类;尾数特征.【分析】通过观察21=2,22=4,23=8,24=16,…可知,他们的末尾数字是4个数一个循环,2,4,8,6,…因数2021÷4=505…1,所以22021的与21的末尾数字相同是2,从而可求解.【解答】解:由21=2,22=4,23=8,24=16,…;可以发现他们的末尾数字是4个数一个循环,2,4,8,6,…∵2021÷4=505…1,∴22021的与21的末尾数字相同是2,∴22021+3的末尾数字2+3=5.故选:A.二、填空题(每题3分,共15分)11.(3分)﹣3.5的倒数是.【考点】倒数.【分析】根据倒数的定义.【解答】解:﹣3.5=﹣的倒数是.故﹣3.5的倒数是.12.(3分)对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)=7.【考点】有理数的混合运算.【分析】根据新定义把新运算转化为常规运算进行解答便可.【解答】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.13.(3分)有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c|+|c﹣a|=a+b﹣c.【考点】数轴;绝对值.【分析】根据数轴,先判断a、b、c的正负,再根据加减法的符号法则,判断b﹣c、c ﹣a的正负,最后化简绝对值计算出结果.【解答】解:由图知:c<b<0<a,∴b﹣c>0,c﹣a<0,∴|b﹣c|﹣|c|+|c﹣a|=b﹣c+c+a﹣c=a+b﹣c.故答案为:a+b﹣c.14.(3分)找出下列各图形中数的规律,依此,a的值为226.【考点】规律型:数字的变化类.【分析】由0+2=1×2,2+10=3×4,4+26=5×6,6+50=7×8,得出规律:左下和右下的两数和等于另外两数的积,即可得出a的值.【解答】解:根据题意得出规律:14+a=15×16,解得:a=226.故答案为:226.15.(3分)我们平常用的数是十进制的数,如1234=1×103+2×102+3×101+4×1,表示十进制的数要用十个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用的是二进制,只要两个数码0和1,如:二进制中,101=1×22+0×21+1等于十进制的数5;10111=1×24+0×23+1×22+1×21+1等于十进制的数23.请问二进制中的1011101等于十进制中的数为93.【考点】科学记数法—表示较大的数;有理数的混合运算.【分析】认真观察已知给出的两个式子:101=1×22+0×21+1等于十进制的数5;10111=1×24+0×23+1×22+1×21+1等于十进制的数23,得出规律,再计算.【解答】解:1011101=1×26+0×25+1×24+1×23+1×22+0×21+1=64+0+16+8+4+0+1=93.故答案为:93.三、解答题(共8题,共75分)16.(8分)把下列有理数填在相应的大括号里:15,,0,﹣7,|﹣1|,,1.5,0.232032003……整数集合{15,0,﹣7,|﹣1|…};分数集合{,,1.5…};正数集合{15,|﹣1|,,1.5,0.232032003………};非负有理数集合{15,0,|﹣1|,,1.5…}.【考点】有理数;绝对值.【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数).【解答】解:整数集合{15,0,﹣7,|﹣1|…};分数集合{,,1.5…};正数集合{15,|﹣1|,,1.5,0.232032003………};非负有理数集合{15,0,|﹣1|,,1.5…}.故答案为:15,0,﹣7,|﹣1|;,,1.5;15,|﹣1|,,1.5,0.232032003……;15,0,|﹣1|,,1.5.17.(16分)计算(1);(2);(3);(4).【考点】有理数的混合运算.【分析】(1)先算乘方和去绝对值,然后再算乘除法,最后算减法即可;(2)先算乘方和去绝对值,然后再算乘除法,最后算减法即可;(3)先算乘方和括号内的式子,然后再算括号外的乘法,最后算减法即可;(4)先算乘方和括号内的式子,然后再算括号外的乘法,最后算减法即可.【解答】解:(1)=﹣5×1﹣4÷=﹣5﹣4×4=﹣5﹣16=﹣21;(2)=5﹣3×﹣8÷=5﹣﹣8×4=5﹣﹣32=﹣27;(3)=(﹣27)﹣×(﹣8)﹣(﹣)=(﹣27)﹣×(﹣)+=(﹣27)++=﹣=﹣;(4)=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.18.(7分)小玲在电脑中设置了一个程序,输入数a,按“*”键,再输入b,就可以运算a*b=(a﹣2b)÷(2a﹣b),根据该运算程序,求的值?【考点】有理数的混合运算.【分析】根据新定义列式计算即可.【解答】解:∵a*b=(a﹣2b)÷(2a﹣b),∴=[﹣4﹣2×(﹣)]÷[2×(﹣4)﹣(﹣)]=(﹣4+)÷(﹣8+)=﹣÷(﹣)=﹣×(﹣)=.19.随着智能手机的普及,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小亮把自己家的红薯产品也放到网上,他原计划每天卖出100千克,由于各种原因,实际每天的销售量与计划量相比有出入,下表是国庆小长假期间的销售情况(超出记为正,不足记为负.单位:千克)时间1日2日3日4日5日6日7日与计划量的差值+5﹣2+15+22﹣4﹣7﹣5(1)根据上表可知前三天一共卖出318千克;(2)销售量最多的一天比销售量最少的一天多销售29千克;(3)若每千克按2元出售,并需付运费平均每千克0.5元,则小亮国庆小长假期间一共收入多少钱?【考点】正数和负数.【分析】(1)根据前三天销售量相加计算即可;(2)将销售量最多的一天与销售量最少的一天相减计算即可;(3)将总数量乘以价格差解答即可.【解答】解:(1)5﹣2+15+300=318(千克).答:根据记录的数据可知前三天共卖出318千克.(2)22+7=29(kg).答:销售量最多的一天比销售量最少的一天多销售29kg.(3)[(5﹣2+15+22﹣4﹣7﹣5)+7×100]×(2﹣0.5)=1086(元).答:小亮国庆小长假期间一共收入1086元.故答案为:318;29.20.如图,点A,B,C,D,是数轴上的四个点,点C位于2、3正中间.(1)指出A、B、C、D分别表示的数;(2)C、B两点之间的距离是多少?C、D两点之间的距离是多少?【考点】数轴.【分析】(1)根据题意,直接写出对应的数即可;(2)两点间的距离,就是右边的数减去左的数,或者是两个数的差的绝对值.【解答】解:(1)A表示的数是﹣4;B表示的数是﹣1;C表示的数是2.5;D表示的数是6;(2)CB=2.5﹣(﹣1)=3.5,CD=6﹣2.5=3.5.21.(阅读与应用)学习有理数乘法后,老师让同学们计算:,看谁算得又快又对,有两位同学的解法如下:小丽:原式=;小军:原式=.(1)对于以上两种解法,你认为谁的解法较好?你还有更好的解法吗?如果有,请把它写出来;(2)用你认为最合适的方法计算:.【考点】有理数的混合运算.【分析】(1)根据两人的计算过程,即可判断小军的解法好,把39写成(40﹣),然后利用乘法分配律进行计算即可解答;(2)把﹣19写成(﹣20+),然后利用乘法分配律进行计算即可解答.【解答】解:(1)小军的解法较好,还有更好的解法,=(40﹣)×(﹣5)=40×(﹣5)﹣×(﹣5)=﹣200+=﹣199;(2)=(﹣20+)×8=﹣20×8+×8=﹣160+=﹣159.22.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【考点】有理数的混合运算.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果最小即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.23.观察下列三行数并按规律填空:﹣1,2,﹣3,4,﹣5,6,﹣7,…;1,4,9,16,25,36,49,…;0,3,8,15,24,35,48,…(1)第一行数按什么规律排列?(2)第二行数、第三行数分别与第一行数有什么关系?(3)取每行数的第10个数,计算这三个数的和.【考点】规律型:数字的变化类.【分析】(1)首先发现数字是正整数的排列,符号奇数位置为负,偶数位置为正由此找出通项即可;(2)通过比较容易发现第二行数是与第一行数的每一个相对应的数的平方,第三行数是由第一行数的每一个相对应的数的平方减1得到;(3)由(1)(2)求得的通项,求出相对应三行数的第10个数,计算这三个数的和即可解答.【解答】解:根据数据变化规律得出:空格分别填:6,﹣7;36,49;35,48.(1)第一行数是﹣1,2,﹣3,4,﹣5,…,即(﹣1)n n.(2)对于一、二两行中位置对应的数,可以发现:第二行数是与第一行数的每一个相对应的数的平方第三行每一个数是第二行对应的数减1得到的,即为第一行数的每一个相对应的数的平方减1得到.(3)根据规律得出:第一行数第10个数为10,第二行数第10个数为100,第三行数第10个数为99,则这三个数的和为:10+100+99=209.。
第一章 有理数 单元测试卷(含答案) 初中数学人教版(2024)七年级上册

人教版(2024新教材)七年级(上)单元测试卷第一章《有理数》满分100分时间80分钟题型选择题填空题解答题分值一.选择题(共10小题,满分30分,每小题3分)1.下列数中,属于负数的是( )A.2024B.﹣2024C.D.12.零上5℃记作+5℃,零下3℃可记作( )A.3℃B.﹣3℃C.3D.﹣33.﹣2的相反数是( )A.﹣2B.2C.﹣D.±24.下列四个数中,属于负整数的是( )A.﹣2.5B.﹣3C.0D.65.一名同学画了四条数轴,只有一个正确,你认为正确的是( )A.B.C.D.6.在﹣1,0,3.5,﹣4这四个数中,最大的数是( )A.﹣1B.3.5C.﹣4D.07.下列各式中,等式不成立的是( )A.|﹣2|=2B.﹣|2|=﹣|﹣2|C.|﹣2|=|2|D.﹣|2|=28.如图,点A在数轴上表示的数为1,将点A向左移动4个单位长度得到点B,则点B表示的数为( )A.﹣2B.﹣3C.﹣5D.59.在数轴上,到表示﹣1的点的距离等于6的点表示的数是( )A.5B.﹣7C.5或﹣7D.810.若a、b为有理数,a<0,b>0,且|a|>|b|,那么a,b,﹣a,﹣b的大小关系是( )A.﹣b<a<b<﹣a B.b<﹣b<a<﹣a C.a<﹣b<b<﹣a D.a<b<﹣b<﹣a二.填空题(共8小题,满分24分,每小题3分)11.在3,﹣0.01,0,﹣2,+8,,﹣100中,负分数有 个.12.计算:﹣(﹣2024)= .13.比较大小:﹣ ﹣.14.某种零件,标明要求是φ25±0.2mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件 (填“合格”或“不合格”).15.如图,数轴上A,B两点表示的数是互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是 .16.数轴上表示2的点与表示﹣5的点之间的距离为 .17.若|a|+|b﹣2|=0,则a= ,b= .18.一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数个数是 .三.解答题(共6小题,满分46分)19.(8分)把下列各数填在相应的集合内(1)整数集合:{ …};(2)负分数集合:{ …};(3)非负数集合:{ …};(4)有理数集合:{ …}.20.(6分)在一条东西方向的大街上,约定向东前进为正,向西前进为负,某天某出租车自A地出发,到收工时所走路程(单位:千米)分别为:+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.(1)收工时在A地的 面(哪个方向);距A地有 (多远);(2)若每千米耗油0.5升,问从A地出发到收工时共耗油多少升?21.(8分)如图是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:﹣3;3.5;;﹣|﹣1|.22.(8分)六一到了,嘉嘉和同学要表演节目.嘉嘉骑车到同学家拿东西,再到学校,她从自己家出发,向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,然后又向西骑了4.5km到达学校.演出结束后又向东骑回到自己家.(1)以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A 表示出淇淇家,用点B表示出小敏家,用点C表示出学校的位置;(2)求淇淇家与学校之间的距离;(3)如果嘉嘉骑车的速度是300m/min,那么嘉嘉骑车一共用了多长时间?23.(8分)(1)如果|a|=5,|b|=2,且a,b异号,求a、b的值.(2)若|a|=5,|b|=1,且a<b,求a,b的值.24.(8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5×5的方格(每个小方格的边长表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点B,C,D,E处的某只羊,规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为A→B(+1,+3),从点B到点A记为B→A(﹣1,﹣3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向的移动情况.(1)填空:从点C到点D记为C→D .(2)若灰太狼从点A处出发去找点E处的喜羊羊,行走路线依次为(+3,+2),(+1,+2),(﹣3,﹣1),(+1,﹣1),请在图中标出喜羊羊的位置点E.(3)在(2)中,若灰太狼每走1米消耗0.5焦耳的能量,则灰太狼寻找喜羊羊的过程共消耗多少焦耳的能量?参考答案一.选择题1.B.2.B.3.B.4.B.5.C.6.B.7.D.8.B.9.C.10.C.二.填空题11.1.12.2024.13.>.14.合格.15.﹣2.16.7.17.0,2.18.120.三.解答题19.(8分)解:(1)整数集合:{﹣8,+5,0,……}.故答案为:﹣8,+5,0;(2)负分数集合:{﹣5.15,,﹣5%,……}.故答案为:﹣5.15,,﹣5%;(3)非负数集合:{+5,0.06,0,π,1.5,……}.故答案为:+5,0.06,0,π,1.5;(4)有理数集合:{﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5,……}.故答案为:﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5.20.(6分)解:(1)答案为:东;41千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|+12|+|+8|+|+5|=67(千米),67×0.5=33.5(升).答:从A地出发到收工时共耗油33.5升.21.(8分)解:(1),﹣|﹣1|=﹣1,(2)由数轴可得,.22.(8分)解:(1)根据题意得:∵以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,且向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,则1×2=2,2+1.5=3.5;∴淇淇家的位置对应的数为2,小敏家的位置对应的数为3.5,学校的位置对应的数为﹣1,如图所示:;(2)依题意,2﹣(﹣1)=3(km).答:淇淇家与学校之间的距离是3km.(3)依题意2+1.5+|﹣4.5|+1=9(km),则9km=9000m,∴9000÷300=30(min).答:嘉嘉骑车一共用了30min.23.(8分)解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2,∵a,b异号,∴a=5,b=﹣2,或a=﹣5,b=2;(2)∵|a|=5,|b|=1,∴a=±5,b=±1,∵a<b,∴a=﹣5,b=﹣1,或a=﹣5,b=1.24.(8分)解:(1)故答案为:(+1,﹣2);(2)如图:;(3)(3+2+1+2+3+1+1+1)×0.5×10=70(焦耳),故灰太狼共消耗了70焦耳能量.。
人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
人教版七年级上册数学第一章《有理数》单元测试卷(Word版,含答案)

人教版七年级上册数学第一章《有理数》单元测试卷(满分100分,时间90分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个..是正确的).1.下列说法正确的是( )A .所有的整数都是正数B .不是正数的数一定是负数C .0不是最小的有理数D .正有理数包括整数和分数2. 下列说法正确的有( )①0是绝对值最小的数 ②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小.A .1个B .2个C .3个D .4个3.2--的相反数是( )A .2B .21 C .-12 D .-2 4.在2222,(2),(2),2,(2)--------中,负数的个数是( )A. l 个B. 2个 C . 3个 D . 4个5.下列有理数大小关系判断正确的是( )A .11()910-->-- B . 100-> C . 33+<- D. 01.01->- 6. 如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A 点,则A 点表示的数是( )A .﹣π+1B .﹣π﹣1C .π+1D .π﹣17. 若|x |=﹣x ,则x 一定是( )A .负数B .负数或零C .零D .正数 8. 若|2|1x -=则x 的值是( ).A. 3B. 1 C . 1或 D . 3或1-9. 已知:2000199920012000M =-,1999199820001999N =-,那么M +N 的值必定是( )A .正数B .零C .负数D .不能确定10. 如图,数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB=BC=3CD .若A ,D 两点所表示的数分别是﹣5和6,且线段BE=2,EF=1则离原点最近的点是( )A .B B .EC .FD .C二、填空题(本大题共10小题,每小题2分,共20分).11.一次考试中,老师采取一种记分制:得120分记为+20分,那么86分应记为 分,李明的成绩记为 ﹣8分,那么他的实际得分为 分. 12.在15,38-,0.15,-30,-12.8,225中,负分数的有 . 13. 绝对值最小的数是 ;一个数的平方是它本身,这个数是 ;绝对值是它本身的数是 .14.有理数a 、b 、c 在数轴上的位置如图所示,试化简:(1)|a |= ;(2)|a +c |+|a +b |﹣|b ﹣c |= .15.若,则的值为 .16.近似数5.3万精确到 位;近似数5.27×610有 个有效数字;将87000保留两个有效数字用科学记数法表示为 .17.在数轴上任取一条长度为120169的线段,则此线段在这条数轴上最多能盖住的整数点的个数是 . 18.已知P 是数轴上的一个点.把点P 向左移动3个单位后,再向右移动一个单位,这时它到原点的距离是4个单位,则P 点表示的数是______.19. 有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +1, a ⊕(b +1)= n -2 现在已知1⊕1 = 2,那么20122012⊕= .20.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层 多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆 圈的个数为(1)1232n n n +++++=.图1 图2 图3 图4如果图1中的圆圈共有12层,23(2)0m n -++=2m n +第2层 第1层 …… 第n 层⊕ 我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的数是 ;⊕ 我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,则图4中所有圆圈中各数的绝对值之和为 .三、解答题21.计算:(12分)⊕ 13323(2)5(8)4545+---- ⊕ 7115[45()36]59126--+⨯÷⊕ 322012111()()(1)(2)(1)2216⎡⎤--÷--⨯-÷-⎢⎥⎣⎦ ⊕()2431(2)453⎡⎤-+-÷⨯--⎣⎦22.(5分)若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求的值.。
人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)

人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。
初中数学七年级上册第一章:有理数测试题(含答案)

《第1章有理数》单元测试卷一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣12.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣3.2015的相反数是()A.B.﹣C.2015D.﹣20154.﹣的相反数是()A.2B.﹣2C.D.﹣5.6的绝对值是()A.6B.﹣6C.D.﹣6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是17.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是() A.﹣10℃B.10℃C.14℃D.﹣14℃8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是09.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为__________.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是__________,第n个数是__________(n为正整数).13.﹣3的倒数是__________,﹣3的绝对值是__________.14.数轴上到原点的距离等于4的数是__________.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是__________.16.在数轴上点P到原点的距离为5,点P表示的数是__________.17.绝对值不大于2的所有整数为__________.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:__________.负数集:__________.有理数集:__________.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)20.已知3m+7与﹣10互为相反数,求m的值.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(__________)2=__________.根据以上规律填空:(1)13+23+33+…+n3=(__________)2=[__________]2.(2)猜想:113+123+133+143+153=__________.新人教版七年级上册《第1章有理数》单元测试卷解析版一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣1【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数大小比较的法则,可得﹣1<﹣,所以在﹣,0,,﹣1这四个数中,最小的数是﹣1.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.3.2015的相反数是()A.B.﹣C.2015D.﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2015的相反数是:﹣2015,故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.4.﹣的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.5.6的绝对值是()A.6B.﹣6C.D.﹣【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:6是正数,绝对值是它本身6.故选:A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是1【考点】绝对值;有理数;相反数.【分析】分别利用绝对值以及有理数和相反数的定义分析得出即可.【解答】解:A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D、最小的正整数是1,正确.故选:D.【点评】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键.7.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃B.10℃C.14℃D.﹣14℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温,然后根据有理数的减法运算法则减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12℃﹣2℃=10℃.故选:B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是0【考点】相反数;倒数;有理数大小比较;有理数的减法.【分析】根据相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:﹣2的相反数是2,A正确;3的倒数是,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选:D.【点评】本题考查的是相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较,掌握有关的概念和法则是解题的关键.9.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D【考点】实数与数轴;估算无理数的大小.【分析】先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.【解答】解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1【考点】绝对值.【分析】根据|a|=a时,a≥0,因此|a﹣1|=a﹣1,则a﹣1≥0,即可求得a的取值范围.【解答】解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,故选A【点评】此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为5.3×10﹣7.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】较小的数的科学记数法的一般形式为:a×10﹣n,在本题中a应为5.3,10的指数为﹣7.【解答】解:0.00000053=5.3×10﹣7.故答案为:5.3×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是8,第n 个数是(n为正整数).【考点】规律型:数字的变化类.【专题】规律型.【分析】观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n 个数是(n+1).【解答】解:第7个数是(7+1)=8;第n 个数是(n+1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.13.﹣3的倒数是﹣,﹣3的绝对值是3.【考点】倒数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣3的倒数是﹣,﹣3的绝对值是3,故答案为:,3.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.14.数轴上到原点的距离等于4的数是±4.【考点】数轴.【分析】根据从原点向左数4个单位长度得﹣4,向右数4个单位长度得4,得到答案.【解答】解:与原点距离为4的点为:|4|,∴这个数为±4.故答案为:±4.【点评】本题考查的是数轴的知识,灵活运用数形结合思想是解题的关键,解答时,要正确理解绝对值的概念.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是0或4或﹣4.【考点】有理数的混合运算;绝对值.【分析】根据绝对值的性质求出a的值,根据平方根求出b的值,再根据|a+b|=a+b可知,a+b≥0,然后确定出a、b的值,再代入进行计算即可.【解答】解:∵|a|=4,∴a=2或﹣2,∵b2=4,∴b=2或﹣2,∵|a+b|=a+b,∴a+b≥0,∴a=2时,b=2,或a=2时,b=﹣2,或a=﹣2时,b=2,∴a﹣b=2﹣2=0,或a﹣b=2﹣(﹣2)=4,或a﹣b=(﹣2)﹣2=﹣4,综上所述,a﹣b的值是0或4或﹣4.故答案为:0或4或﹣4.【点评】本题考查了有理数的混合运算,绝对值的性质,平方根的概念,根据题意求出a、b的值是解题的关键.16.在数轴上点P到原点的距离为5,点P表示的数是±5.【考点】数轴.【专题】推理填空题.【分析】根据数轴上各点到原点距离的定义进行解答.【解答】解:∵在数轴上点P到原点的距离为5,即|x|=5,∴x=±5.故答案为:±5.【点评】本题考查的是数轴上各数到原点距离的定义,即数轴上各点到原点的距离等于各点所表示的数绝对值.17.绝对值不大于2的所有整数为0,±1,±2.【考点】绝对值.【专题】计算题.【分析】找出绝对值不大于2的所有整数即可.【解答】解:绝对值不大于2的所有整数为0,±1,±2.故答案为:0,±1,±2.【点评】此题考查了绝对值,熟练掌握绝对值的意义是解本题的关键.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:5%、﹣2.3、、3.1415926、﹣、.负数集:﹣11、﹣2.3、﹣、﹣9.有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:分数集:5%、﹣2.3、、3.1415926、﹣、;负数集:﹣11、﹣2.3、﹣、﹣9;有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9;故答案为:5%、﹣2.3、、3.1415926、﹣、;﹣11、﹣2.3、﹣、﹣9;﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】根据运算顺序先算括号中的乘方运算,23表示三个2的乘积,计算后再根据负因式的个数为2个,得到积为正数,约分后,最后利用异号两数相加的法则即可得到最后结果.【解答】解:原式=﹣+×(8﹣1)×(﹣5)×(﹣)=﹣+×7×(﹣5)×(﹣)=﹣+4=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号中的,同级运算从左到右依次进行,然后按照运算法则运算,有时可以利用运算律来简化运算.20.已知3m+7与﹣10互为相反数,求m的值.【考点】相反数.【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=11+19﹣18﹣12=30﹣30=0;(2)原式=35﹣80=﹣45;(3)原式=﹣4﹣6+9=﹣1;(4)原式=﹣×﹣12×=﹣﹣18=﹣19;(5)原式=3+12××(﹣3)﹣5=3﹣9﹣5=﹣11;(6)原式=﹣1+0+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据卖出股票金额减去买入股票金额,减去成交额费用,减去手续费,可得收益情况.【解答】解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5‰﹣1000×9.9×1.5‰﹣1000×9.9×1‰=9900﹣15﹣14.85﹣9.9﹣10000=﹣139.75(元).答:该股民的收益情况是亏了139.75元.【点评】本题考查了正数和负数,利用了炒股知识:卖出股票金额减去买入股票金额,减去成交额费用,减去手续费.23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】新定义.【分析】首先根据运算的定义,根据3⊕x的值小于13,即可列出关于x的不等式,解方程即可求解.【解答】解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【考点】整式的混合运算.【专题】换元法.【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=.【点评】本题考查了整式的混合运算,有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(1+2+…+n)2=[]2.(2)猜想:113+123+133+143+153=11375.【考点】整式的混合运算.【专题】规律型.【分析】观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,(1)根据上述规律填空,然后把1+2+…+n 变为个(n+1)相乘,即可化简;(2)对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.【解答】解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.【点评】此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级第一单元---有理数测试卷
姓名学号得分
一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题4分,共40分)
1、下列说法正确的是()
A 整数就是正整数和负整数
B 负整数的相反数就是非负整数
C 有理数中不是负数就是正数
D 零是自然数,但不是正整数
2、下列各对数中,数值相等的是()
A -27与(-2)7
B -32与(-3)2
C -3×23与-32×2
D ―(―3)2与―(―
2)3
3、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是()
A -12
B -9
C -0.01
D -5
4、如果一个数的平方与这个数的差等于0,那么这个数只能是()
A 0
B -1
C 1
D 0或1
5、绝对值大于或等于1,而小于4的所有的正整数的和是()
A 8
B 7
C 6
D 5
6、计算:(-1)100+(-1)101的是()
A 0
B -1
C 1
D 2
7、比-7.1大,而比1小的整数的个数是()
A 6
B 7
C 8
D 9
8、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )
A.1.205×107 B.1.20×108 C.1.21×107 D.1.205×104
9、下列代数式中,值一定是正数的是( )
A.x2 B.|-x+1| C.(-x)2+2 D.-x2+1
10、已知8.622=73.96,若x2=0.7396,则x的值等于()
A 86. 2
B 862
C ±0.862
D ±862
二、填空题(本题共有9个小题,每小题4分,共36分)11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。
12、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为___________。
13、某数的绝对值是5,那么这个数是。
134756≈(保留四个有效数字)
14、( )2=16,(- )3=。
15、数轴上和原点的距离等于3 的点表示的有理数是。
16、计算:(-1)6+(-1)7=____________。
17、如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m2=_______。
18、+5.7的相反数与-7.1的绝对值的和是。
19、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车。
三、解答题
20、计算:(本题共有8个小题,每小题5分,共40分)
(1)8+(― )―5―(―0.25) (2)―82+72÷36
(3)7 ×1 ÷(-9+19) (4)25×(―18)+(―25)×12+25×(-10 )
(5)(-79)÷2 +×(-29) (6)(-1)3-(1-7)÷3×[3―(―3)2]
(7)2(x-3)-3(-x+1) (8) –a+2(a-1)-(3a+5)
21、一天小明和冬冬利用温差来测量山峰的高度。
冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?6分
22、有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24。
例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)
现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24。
运算式如下:(1),
(2),(3)。
另有四个有理数3,-5,7,-13,可通过运算式
(4)使其结果等于24。
(4分)
23、(6分)下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数)。
现在的北京时间是上午8∶00
(1)求现在纽约时间是多少?
(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?
24、(6分)画一条数轴,并在数轴上表示:3.5和它的相反数,-4和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来。
25、(6分)体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩斐然记录,其中"+"表示成绩大于15秒.
问:(1)这个小组男生的达标率为多少?()
(2)这个小组男生的平均成绩是多少秒?
26、有若干个数,第一个数记为a
1
,第二个数记为a
2
,…,第n个数记为a
n。
若a
1
=1/2,
从第二个数起,每个数都等于“1与它前面那个数的差的倒数”。
试计算:a
2
=______,
a
3
=____,a
4
=_____,a
5
=______。
这排数有什么规律吗?由你发现的规律,请计算a
2004是多少?(6分)
七年级数学有理数单元测试题答案
一、1:D 2:A 3:C 4:D 5:C
6:D 7:C 8:A 9:C 10:C
二、填空题
11:+2;-1;地下第2层;地面上第9层. 12:-5,+1 13: ±5;1.348×
105 14:±4;-8/27 15: ±
3.5 16:0 17:3 18 :1.4 19:12
三、解答题:
20: 计算:(本题共有8个小题,每小题6分,共48分)
① 3 ②-80 ③21/16 ④ 0
⑤ -48 ⑥ 0 ⑦5x-9 ⑧ -2a-7
21:解: (4-2)÷0.8×100=250(米)
22:略
23: ①8-(-13)=21时②巴黎现在的时间是1时,不可以打电话.
24:解:数轴略;-3.5<-3<-2<-1<-0.5<1<3<3.5
25: ①成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%
②-0.8+1-1.2+0-0.7+0.6-0.4-0.1=-1.6
15-1.6÷8=14.8秒
26 a
2=2,a
3
=-1,a
4
=1/2,a
5
=2。
这排数的规律是:1/2,2,-1循环. a
2004=-1。