5.4有理数加法(2)

合集下载

最新版初中数学教案《有理数的加减混合运算2》精品教案(2022年创作)

最新版初中数学教案《有理数的加减混合运算2》精品教案(2022年创作)

有理数的减法第2课时有理数的加减混合运算一、导学1.课题导入:前面我们学习了有理数的加法和减法运算,本节课我们来学习有理数的加减混合运算.2.三维目标:〔1〕知识与技能使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.〔2〕过程与方法通过加减法的相互转化,培养学生的应变能力,口头表达能力及计算能力.〔3〕情感态度敢于面对数学活动中的困难,并获得独立克服困难和运用知识解决问题的成功体验.3.学习重、难点:重点:加减法统一成加法.难点:有理数加法的省略写法和读法.4.自学指导:〔1〕自学内容:教材第23页至24页内容.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本,然后在组内交流讨论有理数加减法的运算步骤及本卷须知.〔4〕自学参考提纲:①例5中,根据有理数减法法那么,把原算式统一为加法运算.②例5的计算过程中,使用了哪些运算律?加法交换律,加法结合律.③引入相反数后,加减混合运算可以统一为加法运算,用字母表示是a+b-c=a+b+(-c).④有理数的加法运算可以省略算式中的括号和加号,你会做吗?简化后的算式你会读吗?会计算吗?用下面算式检验一下:计算:(-8)+(-5)+(+3)+(+6)原式=-8-5+3+6=-4⑤完成课本上的探究,可得结论:数轴上两点A、B的距离AB与这两点所对应的数a、b的关系为:AB=a-b.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:〔1〕明了学情:深入学生之中,了解学生学习情况,特别是探究的结果是否正确,存在哪些问题.〔2〕差异指导:对学习困难的学生予以帮助.2.生助生:学生通过相互交流探讨解决一些自学中的疑难问题.四、强化1.解题要领:〔1〕引入相反数后,加减运算可以统一成加法运算.〔2〕遇到一个式子既有加法,又有减法,第一步应该先把减法转化为加法,然后再运用加法法那么运算,并要注意运用运算律进行简便运算.2.数轴上两点之间的距离等于这两个点所对应的数的差的绝对值.3.练习:〔1〕1-4+3-0.5;〔2〕-2.4+3.5-4.6+3.5;〔3〕〔-7〕-〔+5〕+〔-4〕-〔-10〕;〔4〕34-72+〔-16〕-〔-23〕-1答案:〔1〕-0.5;〔2〕0;〔3〕-6;〔4〕-134.五、评价1.学生的自我评价〔围绕三维目标〕:对自己的自学、交流的收获和缺乏进行自我评价.2.教师对学生的评价:〔1〕表现性评价:对本节课同学们自主学习和合作交流的积极表现和缺乏之处进行总结.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本课时主要通过学生习题的训练,稳固有理数加法、减法及加减混合运算的法那么与技能,教师要认真归纳学生在进行有理数加法、减法运算时常犯的错误,以便在本节课教学时针对性指导.训练以学生自主解答为主,教师根据学生所做的解法,及时指出最具代表性的方法给学生指明解题方向.一、根底稳固〔70分〕1.〔20分〕把18-〔+33〕+〔-21〕-〔-42〕写成省略括号的和是〔B〕A.18+(-33)+(-21)+42B.18-33-21+42D.18+33-21-422.〔20分〕算式-3-5不能读作〔C〕B.-3与-5的和3.〔30分〕计算.〔1〕-4.2+5.7-8.4+10 〔2〕-14+56+23-12〔3〕12-(-18)+(-7)-15 〔4〕4.7-(-8.9)-7.5+(-6) (6)-23+0-516+-456+-913解:〔1〕3.1;(2)34;(3)8;(4)0.1;(5)-634;(6)0.二、综合应用〔20分〕4.〔10分〕计算:-1+2-3+4-5+6-7+8-9+…+ 2021-2021.解:原式=(-1+2)+(-3+4)+…+(-2021+2021)-2021=1+1+…+1-2021=-1014.5.〔10分〕一天早晨的气温是-7 ℃,中午上升了11 ℃,半夜又下降了9 ℃,半夜的气温是多少摄氏度?解:半夜的气温为-7+11-9=-5(℃).三、拓展延伸〔10分〕6.〔10分〕一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价比开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元,计算每天的最高价与最低价的差,以及这些差的平均值.平均值:〔0.5+0.3+0.13〕÷答:第一天最高价与最低价的差为0.5元,第二天最高价与最低价的差为0.3元,第三天最高价与最低价的差为0.13元;差的平均值是0.31元.第1课时教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P1图.教师表达: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形〞这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形〞.教师提问:上述对三角形的描述中你认为有几个局部要引起重视.学生答复:一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P2,第一局部至思考,一段课文,并答复以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展开议论,并指定答复以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.四、议一议1.在同一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?六、练一练有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以答复这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业课本P8习题11.2第1、2、6、7题.。

加法(2)

加法(2)
问题2. 10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5.
问(1)10筐苹果共超过(不足)多少千克?
(2)10筐苹果共重多少千克?
问题3.从某点O出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10.试问:小虫最后能否回到出发点O?
2.能运用加法运算律简化运算;
3.经历有理数加法运算律的探索,体会观察、实践、归纳等活动在数学中的作用.
【学习重点】会运用有理数加法运算律简化运算.
【学习难点】能灵活运用加法运算律简化运算
【知识链接】(或新课导入)(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:
【合作探究】有理数加法运算律的应用
问题1.计算
(1)(-23)+(+58)+(-17)(2)(-2.8)+(-3.6)+(-1.5)+3.6
(3)(+4.56)+(-3.45)+(+4.44)+(+2.45)(4)(-11)+8+(-14)
(5)0.35+(-0.6)+0.25+(-5.4)(6)(-36.35)+(-7.25)+26.35+(+7.25)错误!不能通过编辑域代码创建对象。
□+○和○+□
(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:

有理数的加法第二课时

有理数的加法第二课时

三步五环教学模式《1.3.1有理数的加法(第2课时)》教学设计及评析4、(-0.9)+(-1.8)2、叙述有理数的加法法则.①同号两数相加,取____的符号,并把绝对值____②异号两数相加,绝对值相等时和为__;绝对值不相等时,其和的符号取_____加数的符号,其和的绝对值为较大的绝对值____较小的绝对值;③一个数同零相加_______ 定和鼓励3、出示问题2让学生温故知新,为本节课做铺垫。

【学生活动】1、口答问题1.2、口答问题2.教师予以强调。

活动二诱导尝试,探究新知(20分钟) 1、看哪一组的人算的又对又快第一组第二组你有什么发现?2、小学我们学过加法交换律,在有理【教师活动】1、演示课件2、参与各小组的计算,对学生回答给予肯定和鼓励,交流中与学生探究归纳出有理数加法的运算侓。

3、结合情境归纳运算侓并板书。

【学生活动】1、小组合作交流,比赛算的速度。

并汇报计算结果。

2、通过具体的实例,组【媒体使用】略【赏析】依次出示问题探讨一到四内容。

(1)引入竞争机制,将数学活动趣味化,全员参与,体现“人人学有价值的数学”的课程理念。

(2)经历“特殊——般”的认知过程帮助学生获得观察类比、归纳猜想的数学活动经验,培养学生清晰而有条理地表达自己的思考过程的能力和科学意识,进一步发展演绎推理能力。

(3)让学生自探数学知识,自获数学结论,自由发表见解,自觉积累数学活动经验、建构新的认知结构,发展学生。

2.4有理数的加法(2)教学案

2.4有理数的加法(2)教学案

2.4有理数的加法(2)姓名_________ 班级 ________ 等第 学习目的:1.经历探索有理数加法运算律的过程,理解有理数的加法运算律的实质;2.能运用加法运算率简化加法运算;学习重点:1.有理数加法的运算律及其实质2.运用有理数加法法则简化运算学习难点:灵活运用加法运算律简化运算学习过程:一、情景设计情景1: 情景2:3+(-5)= []=-+-+)7()5(3 (-5)+ 3 = []=-+-+)7()5(3二、总结提升总结交流上面两个情景中所使用的数学运算律:1.加法的交换律:2.加法的结合律:小组交流提高:三、展示交流例1 计算:1、 (-23)+(+58)+(-17)2、(-2.8)+(-3.6)+(-1.5)+3.63练习:计算:1. (-11)+8+(-14)2. (-4)+(-3)+(-4)+33. 4. 8+(-2)+(-4)+1+(-3)5. 0.35+(-0.6)+0.25+(-5.4)6. 四、拓展提升计算:1. 12+(-8)+11+(-2)+(-12)2. (-20.75)+923+(-4.25)+(+ 9719)3. 6.35+(-0.6)+3.25+(-5.4) 4 . 1+(-2)+3+(-4)+ …+2007+(-2008)5. 小虫从某点O 出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10. 试问:小虫最后能否回到出发点O?五、课堂练习1. 计算: (-5)+9+(-6)+7 =2. 绝对值小于5的所有整数的和为3. 在括号里填写每步运算的根据:(-8)+(-5)+8 = (-8)+8+(-5) ( ) =〔(-8)+8〕+(-5) ( )= 0+(-5) ( )=-5 ( )4.计算)61(31)21()2(-++-+-32)41()32()43(+-+-+-(1)8)89)2()1(+-+-+- (2) )4(1)3()1(3-++-+-+(3))2(9465195-+++ (4))127(25)125()23(-++-+-4. 运用有理数的加法解下列各题:(1)一天早晨的气温是-7ºC,中午上升了11ºC ,半夜又降了9ºC ,则半夜的气温是多少?(2)一只电子跳骚从数轴上的原点出发,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳骚到原点的距离是多少?(3)农贸市场里一名摊贩一周中每天的盈、亏情况(盈余为正,单位:元)如下:128.5,―25.6,―15,27,―7,36.3,97。

数学 第三讲有理数的四则运算

数学 第三讲有理数的四则运算

第三讲有理数的四则运算二有理数的加减法1. 有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

(3)一个数同0相加,仍得这个数。

2. 有理数加法的运算步骤法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:(1)先确定加法类型(同号还是异号);(2)确定和的符号;(3)绝对值的加减运算。

3. 有理数加法的运算律(1)两个加数相加,交换加数的位置,和不变。

a+b=b+a(加法交换律)(2)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

(a+b)+c=a+(b+c)(加法结合律)4. 有理数加法的运算技巧(1)分数与小数均有时,应先化为统一形式。

(2)带分数可分为整数与分数两部分参与运算。

(3)多个加数相加时,若有互为相反数的两个数,可先结合相加,得零。

(4)若有可以凑整的数,即相加得整数时,可先结合相加。

(5)若有同分母的分数或易通分的分数,应先结合在一起。

(6)符号相同的数可以先结合在一起。

5. 有理数的减法法则减去一个数,等于加这个数的相反数。

a-b=a+(-b)6. 有理数减法的运算步骤(1)把减号变为加号(改变运算符号)(2)把减数变为它的相反数(改变性质符号)(3)把减法转化为加法,按照加法运算的步骤进行运算。

7. 有理数加减法混合运算的步骤(1)把算式中的减法转化为加法;(2)省略加号与括号;(3)利用运算律及技巧简便计算,求出结果。

注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即求几个正数、负数和0的和,这个和称为代数和。

为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式,例如:(+3)+(-0.15)+(-9)+(+5)+(-11)=3-0.15-9+5-11,它的含义是正3,负0.15,负9,正5,负11的和。

人教版七年级上册数学第1章 有理数 有理数的加法运算律 (2)

人教版七年级上册数学第1章 有理数  有理数的加法运算律 (2)
解:原式=[(-1)+-56]+(-5)+-23+(24+34)+3+12= [(-1)+(-5)+24+3]+[(-56)+-23+34+12]=21+-14=2034;
(2)(中考·铜仁)12+16+112+210+310+…+9
1 900.
提示:n(n1+1)=n1-n+1 1
解:原式=1×12+2×13+3×14+4×15+5×16+…+99×1100=1-12+12 -13+13-14+14-15+15-16+…+919-1010=1-1010=19090.
(2)若汽车耗油量为aL/km,这天下午汽车共耗油多少升?
解:这天下午小李行驶的路程和为|+15|+|-3|+|+14|+ |-11|+|+10|+|-12|+|+4|+|-15|+|+16|+|-18|= 118(km). 所以这天下午汽车共耗油118aL.
18.“数学王子”高斯从小就善于观察和思考,他在读小学 时就能在课堂上快速地计算出1+2+3+…+98+99+ 100=5050.今天我们可以将高斯的做法归纳如下:
算.
8.(教材 P19 例 2 变式)计算(-20)+379+20+-79,最简便的做 法是( A ) A.把一、三两个加数结合,二、四两个加数结合 B.把一、二两个加数结合,三、四两个加数结合 C.把一、四两个加数结合,二、三两个加数结合 D.把一、二、四这三个加数结合
9.计算 314+-235+534+-825时,用运算律最为恰当的是( B ) A.314+-235+534+-825 B.314+534+-235+-825 C.314+-825+-235+534 D.以上都不对
17.出租车司机小李某天下午的营运全是在他这天下午行车里程如下(单位:km):
+15,-3,+14,-11,+10,-12,+4,-15,+ 16,-18.

初一数学上册有理数的加法(第2课时)

初一数学上册有理数的加法(第2课时)

(+5) + (-3) = +(5-3) =2 (+3) + (- 5) = -(5-3)=-2
绝对值不相等的 异号两数相加,取绝对值 较大的加数的符号,并用较大的绝对值减去较 小的绝对值。
探究(6):如果物体第1秒向左(或右)运 动5米,第2秒原地不动,两秒后物体从起点 向左(或右)运动了多少米?
计算4+(-2) 和1+(-1)的值
提示:足球比赛中,把进球记为正数,失球记为 负数,它们的和叫做净胜球.
你来当裁判
问题1:在一次足球循环赛中,红队进了4 个球,失了2个球;蓝队进了1个球,失了1个 球,则红队和蓝队净胜球各是多少?
计算4+(-2) 和1+(-1)的值
思考:怎样计算4+(-2)和1+(-1)呢? 是按照什么规则进行计算呢?
=33+(-13) =20
=40+(-60) =-20
(3)(-2.48)+4.33+(-7.52)+(-4.33)
解:原式=[(-2.48)+(-7.52)]+[(+4.33)+(-4.33)]
=(-10)+0 =-10
(4)5 ( 1) ( 6)
66 7
解:原式 ([ 5)( 1)] ( 6)
(+5)+(- 3)=
探究(4):一条狗先向左运动5米,再向右 运动3米,那么两次运动后总的结果是什么?
+3
-5


-8 -7 -6 -5 -4 -3 -2 -1 0 1 2
(- 5)+(+3)=
(+5) + (-3) = +2 (+3) + (- 5) = -2

《有理数的加法》有理数及其运算PPT课件(第2课时)教学课件

《有理数的加法》有理数及其运算PPT课件(第2课时)教学课件

第2课时 有理数加法的运算律
知识要点基础练
综合能力提升练
拓展探究突破练
-6-
7.下列算式中,运用加法交换律和加法结合律正确的是( D )
A.23+(
-1
)+
+
1 3
=
2 3
+
+
1 3
+1
B.14+(
-2
)+
-
3 4
=
1 4
+
3 4
+(
-2
)
C.( -6 )+2+9=[( -9 )+2]+6
D.( -5 )+7+( -8 )=[( -5 )+( -8 )]+7
8.计算
1 2
+
1 3
+
2 3
+
1 4
+
3 4
+
1 5
+
4 5
+
1 6
的结果为(
C
)
A.223
B.312
C.323
D.412
第二章
第2课时 有理数加法的运算律
知识要点基础练
综合能力提升练
拓展探究突破练
-7-
9.( 改编 )下列运算中正确的是( C )
A.11+[( -13 )+7]=17
B.( -2.5 )+[5+( -2.5 )]=5
解:解法一:这10箱蜜桔的总质量为 9.98+10.02+10.03+9.99+10.04+10.03+9.99+9.97+10.00+10.05=100.1 kg, 平均每箱蜜桔的质量为100.1÷10=10.01 kg. 解法二:把超过标准质量的千克数用正数表示,不足的用负数表示, 则这10箱蜜桔与标准质量的差值的和为( -0.02 )+0.02+0.03+( -0.01 )+0.04+0.03+( 0.01 )+( -0.03 )+0+0.05=0.1 kg. 这10箱蜜桔的总质量为10×10+0.1=100.1 kg. 所以这10箱蜜桔的平均质量为10.01 kg.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档