1.3.1有理数的加法(第一课时)教学设计
“有理数的加法”教案

1.3.1《有理数的加法》教案(第一课时)大赵峪初级中学吉红波一、学习目标:1、通过实际问题中“结余”的求法,引入有负数参与的加法运算;2、通过物体左右运动问题,结合学生已有知识探究有理数加法法则;3、通过观察,比较,归纳等得出有理数加法法则;4、熟练运用有理数加法法则进行运算;5、能运用有理数加法法则解决实际问题;6、在有理数加法法则的教学过程中,注意培养学生的运算能力;7、认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二、重难点:1、重点:用有理数加法法则进行运算;2、难点:掌握并熟练运用两数相加的法则。
三、教材分析:“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计在学生已有的数轴、正负数知识以及小学正数加法基础上,通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
四、学校与学生情况分析:大赵峪初级中学位于郊区,学生大都来自农村及郊区,学生的基础及学习习惯是比较差,家长督促力度不够,学生和老师对新的课堂教学方法不是很适应。
在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。
在学生已有知识基础上让学生主动参与到学习中去,达到本节课的学习目标。
五、教学过程:(一)问题与情境我们已经熟悉正数及0的加法运算,然而实际问题中做加法运算的数有可能超出正数范围。
例如,本章引言中,把收入记作正数,支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等。
(注意:这里负数符号与运算符号的区别,负数放在运算符号后面要加括号)这里用到正数与负数的加法,那么怎么运算呢?(二)、师生共同探究有理数加法法则(思考p16)引入负数后,除了已有正数和正数相加、正数和0相加,还有负数负数相加、负数和正数相加、负数与0相加。
人教版七年级数学上册:1.3.1《有理数的加法》说课稿

人教版七年级数学上册:1.3.1《有理数的加法》说课稿一. 教材分析《有理数的加法》是人民教育出版社出版的七年级数学上册第一章第三节第一课时内容。
这一节主要介绍有理数的加法运算方法,是学生学习有理数运算的基础知识。
在本节课中,学生将学习如何利用数轴理解有理数的加法,掌握加法的运算律,并能够熟练地进行有理数的加法运算。
二. 学情分析七年级的学生已经具备了一定的数理基础,对数的运算有一定的了解。
但是,对于有理数的加法运算,学生可能还存在着一些困难,如对有理数的概念理解不深,对数轴的使用不熟练等。
因此,在教学过程中,需要注重对学生基础知识的巩固,以及对数轴使用的指导。
三. 说教学目标1.知识与技能目标:学生能够理解有理数的加法概念,掌握有理数的加法运算方法,能够熟练地进行有理数的加法运算。
2.过程与方法目标:通过数轴的使用,学生能够直观地理解有理数的加法,培养学生的数形结合思想。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生积极思考、合作探究的学习态度。
四. 说教学重难点1.教学重点:有理数的加法运算方法,加法的运算律。
2.教学难点:对有理数加法概念的理解,数轴的使用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过数形结合的方式理解有理数的加法,培养学生的独立思考能力和合作探究能力。
2.教学手段:使用多媒体课件,辅助学生直观地理解有理数的加法,同时利用数轴帮助学生进行运算。
六. 说教学过程1.导入新课:通过简单的实例,引导学生复习已学的数的概念,为新课的学习做好铺垫。
2.探究新知:引导学生通过数轴观察,发现有理数加法的规律,引导学生总结出加法的运算律。
3.巩固新知:通过例题讲解,让学生动手练习,巩固对加法运算的理解。
4.拓展应用:引导学生将加法运算应用于实际问题中,培养学生的应用能力。
5.小结:对本节课的内容进行总结,强调重点知识。
6.布置作业:布置适量的作业,巩固所学知识。
1.3.1有理数的加法(1)

五、当堂检测
• 3.计算: • (1)15+(-22);(2) (-13)+(-8); 1 1 • (3)(-0.9)+1.5; (4) +( )
2 3
• 4.请你用生活实例解释5+(-3)=2,(-5) +(-3)=-8的意义
课后交流
谢
谢
• 结果是物体从起点向 运动了 m.写成算式 就是 .④
( -6( ) +2 - _ )
二、自主探究
• 根据以上两个算式③、④,尝试总结异号两数相 加的法则. • 符号相反的两个数相加,结果的符号与________ 加数的符号相同,并用 减去 . • 运用这一规律,尝试解题. • 例 计算: • (1)(-6+2);(2)8+(-3.6) • 解:(1)原式=_(I I-I I)= ; • (2)
第一章 有理数的加法(1)
(第1课时)
制作人:彭谡
一、情境导入
在小学,我们学过正数及0的 加法运算,引入负数后,怎 样进行加法运算呢?下面, 我们来研究这个问题.
二、自主探究
在小学,我们学过正数与正数相加、 正数与0相加.引入负数后,除了上述 情况外,还有哪几种情况呢?它们是: .下面借助具 体情境和数轴来研究有理数的加法.
二、自主探究
• 该问题还可以借助数轴来思考:将物体的 运动起点放在原点,向右运动与数轴的正 方向一致,分段运动的结果标在数轴的上 方,两次运动后总的结果标在数轴的下方 ,如图:
• 这样就在数轴上表示了运算5+3=8.
二、自主探究
• 2.如果物体先向左运动5 m,再向左运动3 m ,那么两次运动后总的结果是什么?用怎 样的算式表示?我们可以仿照(1)来回答 :
• 1.有理数的加法法则是什么? 2.在探索加法法则时我们使用了哪些常 见的数学研究方法? 3.进行有理数的加法运算时需要注意 几个步骤?
1.3.1有理数的加法 课时1 教案

教学准备:
PPT课件和微课等。
教学过程
一、温故知新、引入新课
1、比较下列各数的大小:
7______4 7____-4 -7_____4 -7_____-4
2、如果向东走5米记作+5米,那么向西走3米记作_________.
3、已知a=-5,b=+3,︱a︳+︱b︱=_______
三、巩固训练、深化提高
1、计算下列各式(1)(-11)+(-9)(2)(-3.5)+(+7)
(3)(-1.08)+0(4)(+)+(说明理由
(如果认为结论不成立,请举例说明)
(1)若两个数的和是0,则这两个数都是0.
(2)任意的两个数相加,和不小于任何一个加数.
(3)(—5 )+0;(4)(+2 )+(—2.2);
【拓展应用】
3.(1)a+|a|=0,a是什么数?(2)若|a+1|=2,那么a=?
教学反思:
本节课基本上能采用以建构主义为依据,以学生为学习主体教师为主导的方式进行合作探究的教学方法。通过创设问题情境,提供开展自主、合作、交流的学习的背景;整个探究新知的教学过程基本上由5个问题统领,在教师引导下,学生能对有理数的加法法则进行探究。学生积极思考问题大部分主动参与讨论,敢于发表自己的见解.学生能多样化理解有理数的加法法则,并运用类比、数形结合、游戏等手段形象具体地理解有理数的加法法则。以问题为主线,能减少教师占用课堂时间,把主要时间交还给学生去探索新知识,避免教师“讲得太多”。
【让学生经历观察、猜测、验证思考的过程,放手让学生去探索有理数加法法则。给学生充分的动手操作,合作交流的时间和空间,让学获得丰富的活动经验,进行数形结合思想的渗透。】
1-3-1 有理数的加法(第一课时)(教学设计)-(人教版)

1.3.1 有理数的加法(第一课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.3.1 有理数的加法(第一课时),内容包括:有理数加法法则、运用法则进行有理数的加法运算.2.内容解析有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一.熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础.有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践.就本章而言,有理数的加法是本章的重点之一.学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
基于以上分析,确定本节课的教学重点为:(1)了解有理数加法的意义,理解有理数加法法则的合理性.(2)能运用该法则准确进行有理数的加法运算.二、目标和目标解析1.目标(1)了解有理数加法的意义,理解有理数加法法则的合理性.(几何直观)(2)能运用该法则准确进行有理数的加法运算.(运算能力)(3)经历探索有理数加法法则的过程,理解并掌握有理数加法的法则.(几何直观)2.目标解析通过情景了解有理数加法的意义;经历探索有理数加法法则的过程,理解并掌握有理数加法的法则;运用有理数加法法则正确进行运算(主要是整数的运算)。
在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力. 在探索过程中感受数形结合和分类讨论的数学思想.渗透由特殊到一般的数学思想.通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质.让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识.培养学生合作意识,体验成功,树立学习自信心.三、教学问题诊断分析七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索的问题充满好奇,又刚从小学升上初中,人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以"问题串"引领整个课堂,请同学们通过动脑、计算分析得出结论,并利用小组合作帮助学生理解法则,运用法则.基于以上学情分析,确定本节课的教学难点为:经历探索有理数加法法则的过程,理解并掌握有理数加法的法则.四、教学过程设计(一)情境引入在小学,我们学过正数及0的加法运算. 引入负数后,怎样进行加法运算呢?实际问题中,有时也会遇到与负数有关的加法运算. 例如,在本章引言中,把收入记作正数,支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等.(二)自学导航思考1:小学学过的加法是正数与正数相加、正数与0相加. 引入负数后,加法有哪几种情况?思考2:结合上表思考,有理数的加法可以统一划分成几类?【结论】共三种类型.(1)同号两个数相加;(2)异号两个数相加;(3)一个数与0相加.(三)合作探究某校举行数学知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,没有作答得0分.问题1:先锋队第一题答对了,第二题答错了,则该队两题过后得多少分?我们可以把赢一个球记为+1,输一个球记为-1,此时该队的净胜球数为:(+1)+(-1)=0如果我们用1个表示+1,用1个表示-1,那么就表示0.问题2:先锋队第一题答错了,第二题答对了,则该队两题过后得多少分?我们可以把答对一题记为+1,答错一题记为-1,此时该队的得分为:(-1)+(+1)=0如果我们用1个表示+1,用1个表示-1,那么也表示0.探究1:计算 5+3 即(+5)+(+3)因此 5+3=8我们也可以利用数轴来表示加法运算过程. 以原点为起点,规定向东的方向为正方向,向西的方向为负方向.因此 5+3=8探究2:计算 (-5)+(-3)因此 (-5)+(-3)=-8【归纳】从算式5+3=8、(-5)+(-3)=-8可以看出:符号相同的两个数相加,结果的符号不变,绝对值相加.(+5)+(+13)=____ 8+5=____ (+7)+4=____(-4)+(-1)=____ (-12)+(-5)=____ (-3)+(-13)=____探究3:计算 (-3)+5因此 (-3)+5=2探究4:计算 3+(-5)因此 3+(-5)=-2【归纳】从算式(-3)+5=2、3+(-5)=-2可以看出:符号相反的两个数相加,结果的符号与绝对值较大的加数的符号相同,并用较大的绝对值减去较小的绝对值.(-9)+(+13)=____ 5+(-8)=____ (-7)+2=____(+4)+(-1)=____ 12+(-5)=____ 3+(-13)=____探究5:计算 5+(-5)因此 5+(-5)=0互为相反数的两个数相加,结果为0.思考:一个数同0相加,结果如何?仍得这个数5+0=____,(-5)+0=____.【归纳】有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.(四)考点解析例1.计算:(1)(+15)+(+7); (2)(-10.3)+(-3.8); (3)(-15)+(+7);(4)(+23)+(-13); (5)(-6.6)+(+6.6); (6)(-12)+0.(2)原式=-(10.3+3.8)=-14.1;(4)原式=+(23-13)= 10;(5)原式=0;(6)原式=-12.【总结提升】【迁移应用】1.计算:5+( -7)=( )A.2B.-2C.12D.-122.比-3大5的数是( )A.-2B.-8C.2D.83.有理数a,b在数轴上的对应点的位置如图所示,则a+b的值为( )A.正数B.负数C.0D.非负数4.计算:(1)(-51)+(-37); (2)(-3)+0; (3)12+(-12); (4)(-1.2)+0.7; (5)34+(-23). 解: (1)原式=-(51+37)=-88; (2)原式=-3; (3)原式=0; (4)原式=-(1.2-0.7)=-0.5; (5)原式=+(34-23)=112.例2.计算:(1)(-123)+(+56); (2)(+18)+(-0.125); (3)(-215)+(+0.8).解: (1)原式=-(53-56)=-56; (2)原式=(+18)+(-18)=0; (3)原式=+(45-215)=1015=23. 【迁移应用】1.下列计算错误的是( )A.(-214)+0.25=-2 B.(-3)+(-3)=6 C.(-11)+0=-11 D.(-1.75)+(-214)=-42.计算:(1)(+314)+(-2.25); (2)(-323)+(-213);解: (1)原式=+(3.25-2.25)=1; (2)原式=-(323+213)=-6.例3.下列说法正确的是( )A.两个有理数的和一定大于任何一个加数B.若两个有理数的和为0,则这两个有理数一定互为相反数C.若两个有理数的和为负数,则这两个有理数一定都是负数D.若a ≠0,b ≠0,则a+b ≠0【迁移应用】1.若两个有理数的和为正数,则下列说法正确的是( )A.两个数一定都是正数B.两个数都不为0C.两个数中至少有一个为正数D.两个数中至少有一个为负数2.如果a+b<0且b>0,那么以下判断不正确的是( )A.|a|+b>0B.a+|b|<0C.(-a)+|b|<0D.(-a)+(-b)>03.已知有理数a,b,c在数轴上的对应点的位置如图所示,根据有理数的加法法则判断下列各式的符号:(1)a+b; (2)a+c; (3)b+c; (4)a+(-b).解:根据数轴上点的位置得c<b<0<a,且|a|<|b|<|c|,所以,(1)a+b<0;(2)a+c<0;(3)b+c<0;(4)a+(-b)>0.例4.若|x|=2,|y|=5,且x>y,求x+y的值.解:因为|x|=2,所以x=2或-2.因为|y|=5,所以y=5或-5.因为x>y,y=5时, x不可能大于y.所以x=2,y=-5或x=-2,y=-5.①当x=2,y=-5时,x+y=2+(-5)=-3;②当x=-2,y=-5时,x+y=(-2)+(-5)=-7.综上所述,x+y的值为-3或-7.【迁移应用】1.已知|x|=11,|y|=9,且x<y,则x+y的值为___________.【解析】因为|x|=11,|y|=9,且x<y,所以x=-11,y=9或x=-ll,y=-9,所以x+y=-11+9=-2或x+y=-11+(-9)=-20.所以x+y的值为-2或-20.2.已知|x|=8,|y|=3, |x+y|=x+y,则x+y=__________.【解析】因为|x|=8,|y|=3,所以x=8或-8,y=3或-3.因为|x+y|=x+y,所以x+y大于或等于0,所以x=8,y=3或x=8,y=-3.当x=8,y=3时,x+y= 11;当x=8,y=-3时,x+y=5.所以x+y的值为11或5.例5.去年6月小黄到银行开户,存入了3000元钱,以后的每月都根据家里的收支情况存入一笔钱,如表为小黄去年从7月到12月的存款情况:(1)从7月到12月中,哪个月存入的钱最多?哪个月最少?(2)截止到12月,存折上共有多少元存款?分析:(1)依次求出7月到12月每个月存入的钱,并进行比较;(2)存款总数=6月到12月存入钱的总和.解:(1)7月存入3000+(-400)=2600(元);8月存入2600+(-100)=2500(元),9月存入2500+(+500)=3000(元),10月存入3000+(+300)=3300(元) ,11月存入3300+(+100)=3400(元),12月存入3400+(-500)=2900(元).因为2500<2600<2900<3000<3300<3400,所以11月存入的钱最多,8月存入的钱最少.(2)截止到12月,存折.上共有:3000+2600+2500+3000+3300+3400+2900=20700(元).【迁移应用】下表记录的是长江流域某站点某一周6天内的水位变化情况(正号表示水位比前一天上升,负号表示水位比前一天下降),上周日的水位已达到警戒水位33m.这6天哪一天的水位最高?位于警戒水位之上还是之下?解:星期一水位:33+(+0.2)=33.2(m),星期二水位:33.2+(+0.8)=34(m),星期三水位:34+(-0.4)=33.6(m),星期四水位:33.6+(+0.2)=33.8(m),星期五水位:33.8+(+0.3)=34.1(m),星期六水位:34.1+(-0.2)=33.9(m).因为33.2<33.6<33.8<33.9<34<34.1,所以星期五水位最高,位于警戒水位之上.五、教学反思。
【人教版 七年级数学 上册 第一章】1.3.1 第1课时《 有理数的加法法则》教学设计1

【人教版七年级数学上册第一章】1.3.1 第1课时《有理数的加法法则》教学设计1一. 教材分析人教版七年级数学上册第一章1.3.1节主要介绍了有理数的加法法则。
这部分内容是有理数运算的基础,对于学生理解和掌握有理数的概念、性质以及运算规律具有重要意义。
本节课的内容将为后续的乘法、除法、减法运算打下基础。
二. 学情分析七年级的学生已经初步掌握了有理数的概念和性质,对加法运算有一定的了解。
但学生在运算过程中,可能对符号的判断和运算顺序的掌握还不够熟练。
因此,在教学过程中,需要帮助学生巩固有理数的概念,提高运算速度和准确性。
三. 教学目标1.理解有理数的加法法则,能够熟练地进行有理数的加法运算。
2.培养学生的运算能力,提高学生解决实际问题的能力。
3.培养学生的合作交流意识,提高学生的逻辑思维能力。
四. 教学重难点1.教学重点:掌握有理数的加法法则,能熟练进行有理数的加法运算。
2.教学难点:符号的判断和运算顺序的掌握。
五. 教学方法采用情境教学法、合作学习法和激励评价法进行教学。
通过设置生活情境,激发学生的学习兴趣;学生进行小组讨论,培养学生的合作交流意识;运用激励评价,提高学生的自信心和积极性。
六. 教学准备1.准备教学课件,包括例题、练习题等。
2.准备黑板、粉笔等教学工具。
3.准备相关的生活情境案例。
七. 教学过程1.导入(5分钟)利用生活情境案例,引入本节课的主题。
例如,小红购买了3个苹果,小蓝购买了2个苹果,他们一共购买了多少个苹果?让学生思考并回答,引出有理数的加法运算。
2.呈现(10分钟)通过课件呈现有理数的加法法则,引导学生观察和思考。
讲解加法法则的内涵,让学生理解并掌握加法运算的规律。
3.操练(10分钟)让学生进行有理数的加法运算练习,教师及时给予指导和反馈。
可设置一些具有挑战性的题目,激发学生的学习兴趣。
4.巩固(10分钟)学生进行小组讨论,分享各自的解题心得。
教师引导学生总结加法运算的注意事项,巩固所学知识。
有理数的加法第一课时教学案例

(-4.7)+3.9=-(4.7-3.9)=-0.8
↓ ↓↓
↓
异号两 数相加
取绝对 值较大 的加数 符号
通过绝 对值化 归为算 术数的 减法
通过计算你能归纳出有理数加法 运算的一般步骤吗? 有理数加法运算的一般步骤: (1)分类型; (2)确定和的符号; (3)确定和的绝对值。
活动三 变式训练,巩固新知
1、学生根据法则尝试完成,师指 名汇报结果,并要求说出运算步 骤和方法。 2、学生思考讨论,师引导总结出 有理数加法运算的一般步骤: (1)分类型; (2)确定和的符号; (3)确定和的绝对值。
让学生通过尝 试应用法则进 行有理数加法 的运算,进一步 明确有理数加 法的计算方法 和步骤,从而加 强学生应用知 识能力的培养。
某足球队主场比赛输一球,客场 步引导学生把这五类情况分为: 分类,渗透分类
比赛赢一球,那么该队比赛的净 胜球数是多少?若把赢一球表示 为+1,输一球表示为-1,则净 胜球为(-1)+(+1)=0。下
正数加正数 数
负数加负数
符号相同 两数相加
讨论思想。同时 也为后面探究 有理数加法的 法则提供知识
面请同学们帮助此队统计下本赛
一只蜗牛沿数轴爬行,它现
在的位置恰好在原点。规定向右
为正。
(1)如果蜗牛向右爬 2 米,再向
右爬 3 米,两次一共向右爬了多
少米?
2+3=5
-5-4-3 -2 -1 0 1 2 3 4 5 6 (2)如果蜗牛向右爬-2 米,再 向右爬-3 米,两次一共向右爬了 多少米? -2+(-3)=-5
-5-4-3 -2 -10 1 2 3 4 5 6 (3)如果蜗牛向右爬 3 米,再向 右爬-2 米,两次一共向右爬了多 少米? 3+(-2)=1
1.3.1 有理数的加法(第1课时 有理数的加法法则)(教案)-2022-2023学年七年级数学上册

1.3.1 有理数的加法(第1课时有理数的加法法则)(教案)一、教学目标1.了解有理数加法的定义和性质。
2.掌握有理数加法法则,能够熟练进行有理数加法运算。
3.能够运用有理数加法解决实际问题。
二、教学内容1.有理数加法的定义和性质。
2.有理数加法法则。
3.实际问题的解决。
三、教学重点1.有理数的加法法则的掌握。
2.运用有理数加法解决实际问题。
四、教学难点1.运用有理数加法解决实际问题的能力提升。
五、教学准备1.教材《数学(上册)》人教版。
2.教学PPT。
3.小黑板和粉笔。
4.学生课本和练习册。
六、教学过程Step 1 引入新知1.简要复习上节课所学的有理数的基本概念和正数、负数的概念。
2.引导学生思考,如果有两个有理数相加,应该怎样计算呢?Step 2 定义和性质1.讲解有理数加法的定义:有理数的加法是指将两个有理数进行相加,得到一个新的有理数的运算。
2.介绍有理数加法的性质:–交换律:对于任意两个有理数a和b,a + b = b + a。
–结合律:对于任意三个有理数a、b和c,(a + b) + c = a + (b + c)。
–存在零元素:对于任意有理数a,a + 0 = a。
–存在相反元素:对于任意有理数a,存在一个有理数-b,使得a + (-b) = 0。
Step 3 加法法则1.揭示有理数加法法则,并通过例题进行讲解和演示。
2.分组练习:让学生分成小组,进行有理数加法的练习。
教师巡回指导和辅导。
Step 4 实际问题1.引导学生思考,如果有理数加法运算与实际问题相关,我们该如何解决呢?2.通过实际问题的例子,让学生运用有理数加法解决实际问题。
教师指导学生分析问题、列方程、解答问题。
Step 5 拓展练习1.教师出示一些拓展练习题,让学生在课堂上进行解答。
2.学生独立完成练习册上的相关题目,巩固和加深对有理数加法的理解和掌握。
七、课堂总结1.对本节课所学内容进行总结,强调有理数加法法则的重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:1.3.1 有理数的加法(第一课时)
一、教学目标:
1、知识与技能
理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力.
3、情感态度与价值观
培养学生主动探索的良好学习习惯.
二、教材分析:
重点:有理数的加法法则的理解和运用.
难点:异号两数相加.
三、教学过程
教学过程教师活动学生活动设计意图
知识回顾5分钟
新知讲解8分钟
15分钟1、什么叫相反数?
什么叫绝对值?
2、-5的相反数和绝对值分别是
什么?
0的相反数和绝对值分别是什
么?
激趣
请大家帮老师算一算:
小明昨天借了老师十元钱买文
具,今天又借了老师八元钱,请
问他还欠我钱吗?
如果欠钱的话又欠我多少呢?
你能用数学算式表示出来吗?
如果小明今天还给老师八元钱又
该怎么计算呢?
如果小明今天还给老师十元钱又
该如何计算?
如果小明说今天没带钱,那他又
欠我多少呢?
自主探究
1、请同学们自己阅读教材P16到
P18,并结合刚才说的看看你自己
理解了多少?还有那些不理解的
1、只有符号不同的两个数叫做
互为相反数;
一般地,数轴上表示数a的点与
原点的距离叫做数a的绝对值
2、-5的相反数是5,绝对值也
是5;
0的相反数和绝对值都是0
欠老师-10+(-8)=-18(元);
-10+8=-2(元);
-10+10=0(元);
-10+0=-10
同号两数相加,取相同的符号,
回顾相反
数与绝对
值的概念
为本节课
能准确理
解有理数
加法法则
打下基础
让学生通
过生活中
熟悉的例
子体会数
学在期中
的应用,为
我们后面
总结有理
数加法法
则打下基
础
我们共同解决;
2、如果自己不清楚的话,请同学们小组之间互助解决以下问题:(1)如果是同号两数相加,符号如何决定,和的绝对值和绝对值的和又有什么关系?
(2)如果是异号两数相加,符号如何决定,其绝对值之间又存在什么关系?
(3)互为相反数两数相加结果又是什么?
(4)一个数同0相加结果又是什么?并把绝对值相加;
例:5+3=8;
(-5)+(-3)=-8
绝对值不相等的异号两数相加,
取绝对值较大的加数的符号,并
用较大的绝对值减去较小的绝
对值;
例:(-3)+5=2;
3+(-5)=-2
互为相反数两数相加得0
例:5+(-5)=0;
-10+10=0
一个数同0相加,仍的这个数
例:-10+0=-10;
5+0=5
通过提问,
边总结边
结合实例
进行讲解,
让学生对
法则有更
深的理解
例题讲解5分钟
巩固练习10分钟例1 计算(-3)+(-9);
(-4.7)+3.9.
1、请在括号内填写适当的有理数
并说出其中的法则:
2、列式计算
(1)-5的相反数与-18的和;
(2)一个数比-6大1,另一个数
比-10大4,求这两个数的和。
3、如两个有理数之和为正,则两
数中()
A 同为正数
B 同为负
数
(-3)+(-9)=-(3+9)=-12;
(-4.7)+3.9=-(4.7-3.9)=0.8
-33
-12
-(-5)+(-18)
[(-6)+1]+[(-10)+4]
D
让学生自
己解决,不
会时再以
小组讨论
方式进行,
目的让学
生规范计
算过程,并
对同号相
加以及异
号相加有
更深一步
了解
这些题目
先让学生
自己练习,
对于不会
的可以以
小组合作
方式共同
解决,期中
1、2题主(1)()+(+21)
= -12
(2)-10+()=-22
知识小结2分钟 C 一正一负 D 至少有
一个为正数
4、下列说法中正确的是()
A 两数的和必须大于每一个加
数
B 两数和为负数,则一个数为
正数,另一个数为负数
C 两个有理数和的绝对值等于
这两个有理数绝对值的和
D 异号两数相加,和的符号取
绝对值较大的数的符号
请同学们回顾一下有理数加法法
则;
互相交流下自己到底学会了多
少,还有那些不会?
D
要练习计
算,3、4
主要练习
学生对加
法法则的
深度理解
能力,能够
帮助学生
对本节课
只是更好
的吸收和
消化
布置作业必做题:课本P24习题1.3第1
题,第2题
选做题:
-98×201+99×202=______
教学反思1、本节课在刚开始引入时以学
生熟悉的金钱方面入手,让大家
不会对本节课的知识有陌生感,
同学自己学习以及前面的引入,
学生在总结有理数加法时不会感
觉那么突兀,而且能够更好的理
解有理数加法法则;
2、结合学生的实际情况,在本节
课没有设置比较难的题目,目的
是增加大家的学习兴趣以及树立
学生的自信心。
3、对个别成绩好的课后要另外
增加难度。