机械设计外文翻译
机械毕业设计英文外文翻译144发动机工作原理 - 副本

Engine Operating PrinciplesMost automobile engines are internal combustion,reciprocating 4-stroke gasoline engines,but other types have been used,including the diesel,the rotary(wankel),the 2-srtoke,and stratified charge.Reciprocating means up and dowm or banck and forth ,It is the up and down action of a piston in the cylinder blick,or engine block.The bilck is an iron or aluminum casting that contains engine cylinders and passges called water jackets for coolant circulation.The top of the block is convered with the cylinder head.Which forms the combustion chanber.The bottom of the block is covered with an oil pan or oil sump.Power ia produced by the linear motion of a piston in a cylinder.However,this linear motion must be changed into rotary motion to turn the wheels of cars of trucks.The piston is attached to the top of a connecting rod by a pin ,called a piston pin or wrist pin.The bottom of the connecting rod is attached to the crankshaft.The connecting rod transmits the up-and-down motion of the piston to the crankshaft,which changes it into rotary motion.Term: stroke is used to indicate the movement within thecylinder piston, piston stroke is the distance from the engine type according to need two-stroke or four-stroke cycle to finish a job and four stroke engines are also called otto engine, in order to commemorate German engineers otto, he is the first application in 1876, the principle of in four stroke engines, cylinder piston required to complete a four-stroke cycle, each stroke work according to their behavior named respectively: intake stroke, compression stroke, function and exhaust stroke.1. Intake strokeWhen the piston moves down, spray the mixture through open after entering the inlet valve, in order to achieve maximum cylinder amount of inlet in Detroit, arrive before BDC 10 °, open and exhaust has 20 ° to open the inlet valve overlap, has been opened to the pistons to come fully into the mixture after about 50 °.2. Compression strokeThe piston start moving up huge inlet valve closed, and the mixture in the combustion chamber, according to the different factors including compression compression ratio, the throttle valve, pressure revs up to about 1 mpa, close to the top, the spark plug stroke produces the spark gap in the breakdown ignition mixture lighting.3. Doing workBurning gas pressure of inflation rose to 3.5 mpa, promote the piston moves to the cylinder, and exhaust door open.4 gas strokeWith exhaust before more open about 50 °, piston, make up in the air pressure drops in exhaust stroke, reduce backpressure, discharge waste piston stroke, for the next intake, normally, inlet in exhaust before opening.Only the engine keep running, each cylinder within four four-stroke cycle continuously.Two stroke engine also through the four-stroke cycle to complete a job but intake stroke, compression stroke for a stroke, do work schedule another stroke, the four-stroke cycle and two terms two travel itinerary is called the term two-cycle but actually not so accurate. However,the intake and the compression actions are combined in one seroke,and the power and exhaust actions are combined in the other stroke.The term 2-stroke cyde or 2-stroke is preferred to the term 2-cyde,which is really not accurate.In automobile engines,all pistons are attached to a single crankshaft.the more cylinders an engine has,the more power strokes produced for cach revolution.This means that an 8-cylinder engine runs more smoothly bacause the poweratrokes are closer togther in time and in degrees of engine rotation.The cylinders of multi-cylinder automotive engines arranged in one of three ways.1.Inline engines use a single block of cylinder.Most 4-cylinder and any 6-cylinder engines are of this design.The cylinders do not have to be vertical.They can be inclined either side.2.V-type engines use two equal bands of cylinders,usually inclined 60 degrees or 90 degrees from the cach other.Most V-type engines have 6 or 8 cylinders,although v-4 and v-12 engines have been built.3.Horizontally opposed,or pancake engines have two equal banks of cylinders 180 degrees apart.These space saving engine designs are often air-cooled,and are found in the Chevrolet Carvair,Porsches,Subaus,and Volkswagens.Subaus design is liquid cooled.are often air-cooled,and are found in the Chevrolet Carvair,Porsches,Subaus,and Volkswagens.Subaus design is liquid te-model Volkswagen vans use a liquid-cooled version of the air cooled VWhorizontally opposed engine.发动机工作原理大多数汽车的发动机是内燃机,往复四冲程汽油机,但是也有使用其它类型的发动机,包括柴油机,转子发动机,二冲程发动机和分成燃烧发动机。
机械设计外文翻译--车床和铣床

中文4285字附录1LATHES & MILLINGA shop that is equipped with a milling machine and an engine lathe can machine almost any type of product of suitable size.The basic machines that are designed primarily to do turning,facing and boring are called lathes. Very little turning is done on other types of machine tools,and none can do it with equal facility. Because lathe can do boring,facing,drilling,and reaming in addition to turning,their versatility permits several operations to be performed with a single setup of the workpiece. This accounts for the fact that lathes of various types are more widely used in manufacturing than any other machine tool.Lathes in various forms have existed for more than two thousand years. Modern lathes date from about 1797,when Henry Maudsley developed one with a leads crew. It provided controlled,mechanical feed of the tool. This ingenious Englishman also developed a change gear system that could connect the motions of the spindle and leadscrew and thus enable threads to be cut.Lathe Construction.The essential components of a lathe are depicted in the block diagram of picture. These are the bed,headstock assembly,tailstock assembly,carriage assembly,quick-change gearbox,and the leadscrew and feed rod.The bed is the back bone of a lathe. It usually is made of well-normalized or aged gray or nodular cast iron and provides a heavy,rigid frame on which all the other basic components are mounted. Two sets of parallel,longitudinal ways,inner and outer,are contained on the bed,usually on the upper side. Some makers use an inverted V-shape for all four ways,whereas others utilize one inverted V and one flat way in one or both sets. Because several other components are mounted and/or move on the ways they must be made with precision to assure accuracy of alignment. Similarly,proper precaution should betaken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed. The ways on most modern lathes are surface hardened tooffer greater resistance to wear and abrasion.The headstock is mounted in a fixed position on the inner ways at one end of the lathe bed. It provides a powered means of rotating the work at various speeds. It consists,essentially,of a hollow spindle,mounted in accurate bearings,and a set of transmission gears——similar to a truck transmission——through which the spindle can be rotated at a number of speeds. Most lathes provide from eight to eighteen speeds,usually in a geometric ratio,and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives.Because the accuracy of a lathe is greatly dependent on the spindle,it is of heavy construction and mounted in heavy bearings,usually preloaded tapered roller or ball types. Along- itudinal hole extends through the spindle so that long bar stock can be fed through it. The size of this hole is an important size dimension of a lathe because it determines the maximum size of bar stock that can be machined when the material must be fed through the spindle.The inner end of the spindle protrudes from the gear box and contains a means for mounting various types of chucks,face plates,and dog plates on it. Whereas small lathes often employ a threaded section to which the chucks are screwed,most large lathes utilize either cam-lock or key-drive taper noses. These provide a large-diameter taper that assures the accurate alignment of the chuck,and a mechanism that permits the chuck or face plate to be locked or unlocked in position without the necessity of having to rotate these heavy attachments.Power is supplied to the spindle by means of an electric motor through a V-belt or silent-chain drive. Most modern lathes have motors of from 5 to15 horsepower to provide adequate power for carbide and ceramic tools at their high cutting speeds.The tailstock assembly consists,essentially,of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon,with a means for clamping the entire assembly in any desired location. An upper casting fits on the lower one and can be moved transversely upon it on some type of keyed ways. Thistransverse motion permits aligning the tailstock and headstock spindles and provides a method of turning tapers. The third major component of the assembly is the tailstock quill. This is a hollow steel cylinder,usually about2 to3 inches in diameter,that can be moved several inches longitudinally in and out of the upper casting by means of a hand wheel and screw. The open end of the quill hole terminates in a Morse taper in which a lathe center,or various tools such as drills,can be held. A graduated scale,several inches in length,usually is engraved on the outside of the quill to aid in controlling its motion in and out of the upper casting. A locking device permits clamping the quill in any desired position.The carriage assembly provides the means for mounting and moving cutting tools. The carriage is a relatively flat H-shaped casting that rests and moves on the outer set of ways on the bed. The transverse bar of the carriage contains ways on which the cross slide is mounted and can be moved by means of a feed screw that is controlled by a small hand wheel and a graduated dial. Through the cross slide a means is provided for moving the lathe tool in the direction normal to the axis of rotation of the work.On most lathes the tool post actually is mounted on a compound rest. This consists of abase,which is mounted on the cross slide so that it can be pivoted about a vertical axis,and an upper casting. The upper casting is mounted on ways on this base so that it can be moved back and forth and controlled by means of a short lead screw operated by a hand wheel and a calibrated dial.Manual and powered motion for the carriage,and powered motion for the cross slide,is provided by mechanisms within the apron,attached to the front of the carriage. Manual movement of the carriage along the bed is effected by turning a hand wheel on the front of the apron,which is geared to a pinion on the back side. This pinion engages a rack that is attached beneath the upper front edge of the bed in an inverted position.To impart powered movement to the carriage and cross slide,a rotating feed rod is provided. The feed rod,which contains a keyway through out most of its length,passes through the two reversing bevel pinions and is keyed to them . Either pinioncam be brought into mesh with amating bevel gear by means of the reversing lever on the front of the apron and thus provide “forward” or “reverse” power to the carriage. Suitable clutches connect either the rack pinion orthe cross-slide screw to provide longitudinal motion of the carriage or transverse motion of cross slide.For cutting threads,a second means of longitudinal drive is provided by a lead screw. Whereas motion of the carriage when driven by the feed-rod mechanism takes place through a friction clutch in which slippage is possible,motion through the lead screw is by a direct,mechanical connection between the apron and the lead screw. This is achieved by a split nut. By means of a clamping lever on the front of the apron,the split nut can be closed around the lead screw. With the split nut closed,the carriage is moved along the lead screw by direct drive without possibility of slippage.Modern lathes have a quick-change gear box. The input end of this gearbox is driven from the lathe spindle by means of suitable gearing. The out put end of the gear box is connected to the feed rod and lead screw. Thus,through this gear train,leading from the spindle to the quick-change gearbox,thence to the lead screw and feed rod,and then to the carriage,the cutting tool can be made to move a specific distance,either longitudinally or transversely,for each revolution of the spindle. A typical lathe provides,through the feed rod,forty-eight feeds ranging from 0.002 inch to0.118 inch per revolution of the spindle,and,through the lead screw,leads for cutting forty-eight different threads from 1.5 to 92perinch.On some older and some cheaper lathes,one or two gears in the gear train between the spindle and the change gear box must be changed in order to obtain a full range of threads and feeds.Milling is a basic machining process in which the surface is generated by the progressive formation and removal of chips of material from the workpiece as it is fed to a rotating cutter in a direction perpendicular to the axis of the cutter. .In some cases the workpiece is stationary and the cutter is fed to the work. In most instances a multiple-tooth cutter is used so that the metal removal rate is high,and frequently the desired surface is obtained in a single pass of the work.The tool used in milling is known as a milling cutter. It usually consists of a cylindrical body which rotates on its axis and contains equally spaced peripheral teeth that intermittently engage and cut the workpiece. In some cases the teeth extend part way across one or both ends of the cylinder.Because the milling principle provides rapid metal removal and can produce good surface finish,it is particularly well-suited for mass-production work,and excellent milling machines have been developed for this purpose. However,very accurate and versatile milling machines of a general-purpose nature also have been developed that are widely used in job-shop and tool and die work. A shop that is equipped with a milling machine and an engine lathe can machine almost any type of product of suitable size.Types of Milling Operations. Milling operations can be classified into two broad categories,each of which has several variations:1.In peripheral milling a surface is generated by teeth located in the periphery of the cutter body;the surface is parallel with the axis of rotation of the cutter. Both flat and formed surfaces can be produced by this method. The cross section of the resulting surface corresponds to the axial contour of the cutter. This procedure often is called slab milling.1.In face milling the generated flat surface is at right angles to the cutteraxis and is thecombined result of the actions of the portions of the teeth located on both the periphery and thewith the face portions providing a finishing action.The basic concepts of peripheral and face milling are illustrated in Fig. Peripheral milling operations usually are performed on machines having horizontal spindles,whereas face milling is done on both horizontal-and vertical-spindle machines.Surface Generation in Milling. Surfaces can be generated in milling by two distinctly different methods depicted in Fig. Note that in up milling the cutter rotatesagainst the direction of feed the workpiece,whereas in down milling the rotation is in the same direction as the feed .As shown in Fig., the method of chip formation is quite different in the two cases. In up milling the c hip is very thin at the beginning, where the tooth first contacts the work,and increases in thickness, be-coming a maximum where the tooth leaves the work. The cutter tends to push the work along and lift it upward from the table. This action tends to eliminate any effect of looseness in the feed screw and nut of the milling machine table and results in a smooth cut. However, the action also tends to loosen the work from the clamping device so that greater clamping forcers must be employed. In addition, the smoothness of the generated surface depends greatly on the sharpness of the cutting edges.In down milling,maximum chip thickness occurs close to the point at which the tooth contacts the work. Because the relative motion tends to pull the workpiece into the cutter,all possibility of looseness in the table feed screw must be eliminated if down milling is to be used. It should never be attempted on machines that are not designed for this type of milling. In as mush as the material yields in approximately a tangential direction at the end of the tooth engagement,there is much less tendency for the machined surface to show tooth marks than when up milling is used. Another consider able advantage of down milling is that the cutting force tends to hold the work against the machine table,permitting lower clamping force to be employed. This is particularly advantageous when milling thin workpiece or when taking heavy cuts.Sometimes a disadvantage of down milling is that the cutter teeth strike against the surface of the work at the beginning of each chip. When the workpiece has a hard surface,such as castings do,this may cause the teeth to dull rapidly.Milling Cutters. Milling cutters can be classified several ways. One method is to group them into two broad classes,based on tooth relief,as follows:1. Profile-cutters have relief provided on each tooth by grinding a small land back of the cutting edge. The cutting edge may be straight or curved.2.In form or cam-relieved cutters the cross section of each tooth is an eccentric curve behind the cutting edge,thus providing relief. All sections of the eccentric relief,parallel with the cutting edge,must have the same contour as the cutting edge. Cutters of this type are sharpened by grinding only the face of the teeth,with the contour of the cutting edge thus remaining unchanged.Another useful method of classification is according to the method of mounting the cutter. Arbor cutters are those that have a center hole so they can be mounted on an arbor. Shank cutters have either tapered or straight integral shank. Those with tapered shanks can be mounted directly in the milling machine spindle,whereas straight-shank cutters are held in a chuck. Facing cuttersusually are bolted to the end of a stub arbor.Types of Milling Cutters. Plain milling cutters are cylindrical or disk-shaped,having straight or helical teeth on the periphery. They are used for milling flat surfaces. This type of operation is called plain or slab milling. Each tooth in a helical cutter engages the work gradually,and usually more than one tooth cuts at a given time. This reduces shock and chattering tendencies and promotes a smoother surface. Consequently,this type of cutter usually is preferred over one with straight teeth. Side milling cutters are similar to plain milling cutters except that the teeth extend radially part way across one or both ends of the cylinder toward the center. The teeth may be either straight or helical. Frequently these cutters are relatively narrow,being disklike in shape. Two or more side milling cutters often are spaced on an arbor to make simultaneous,parallel cuts,in an operation called straddle milling.Interlocking slotting cutters consist of two cutters similar to side mills,but made to operate as a unit for milling slots. The two cutters are adjusted to the desired width by inserting shims between them.Staggered-tooth milling cutters are narrow cylindrical cutters having staggered teeth,and with alternate teeth having opposite helix angles. They are ground to cut only on the periphery,but each tooth also has chip clearance ground on the protruding side. These cutters have a free cutting action that makes them particularly effective in milling deep slots. Metal-slitting saws are thin,plain milling cutters,usually from 1/32 to 3/16 inch thick,which have their sides slightly“dished”to provide clearance and prevent binding. They usually have more teeth per inch of diameter than ordinaryplain milling cutters and are used for milling deep,narrow slots and for cutting-off operations.附录2车床和铣床车间里拥有一台车床和一台普通铣床就能加工出具有适合尺寸的各种产品。
机械专业毕业设计外文翻译12

Development of a high-performance laser-guided deep-holeboring tool: optimal determination of reference origin for precise guidingAbstractA laser-guided deep-hole boring tool using piezoelectric actuators was developed to prevent hole deviation. To extend the depth o controll able boring further, the following were improved. The tool’s guiding error, caused by misalignment of the corner cube prism and the mirror in the optical head from the spindle axis, was eliminated using an adjustment jig that determined the reference origins of the two position-sensitive detectors (PSDs) precisely. A single-edge counter-boring head is used instead of the double-edge head used up to now The former was thought to be better in attitude control than the latter. A new boring bar, which was lower in rigidity and better in Controllability of tool attitude, was used. Experiments were conducted to examine the performance of the new tool in detail and to determin its practical application, using duralumin (A2017-T4) workpieces with a prebored 108-mm diameter hole. The experiments were performed with a rotating tool–stationary workpiece system. Rotational speed was 270 rpm and feed was 0.125 mm/rev. Tool diameter was 110 mm Asaresult,controlled boring becomes possible up to a depth of 700 mm under the stated experimental conditions.700 mm is the maximum machinable length of the machine tool. The tool can be put to practical use.Keywords: Deep hole-boring; Adaptive control; Laser application1.IntroductionTo bore a precise straight hole, a deep-hole boring tool should be guided toward a target. From this point of view, the laser-guided deep-hole boring tool was developed [1–6]. The latest tool using piezoelectric actuators could be guided to go straight toward the target,despitedisturbances up to a depth of 388 mm [6].In the present paper, before the performance of the tool is examined, the following points are improved to extend the depth. The tool’s guiding error, caused by misalignment of the corner cube prism and the mirror in the optical head from the spindle axis, is eliminated using a jig that deter- mines the reference origins of the two position-sensitive detectors (PSDs) precisely. A single-edge counter-boring head is used instead of the double-edge head used up to now. The former is thought to be better in attitude control than the latter. A new boring bar, which is 15% lower in both bending and torsional rigidity and which is better in controllability of tool attitude, is used.2. Experimental apparatusFigs. 1 and 2 show the tool head and the experimental apparatus, respectively [6]. The head is the same as that used in experiments up to now. One cutting edge of the double-edge counter-boring head is replaced by a guide pad,And six guide pads are removed[4].By removal of the guide pads, cutting oil is supplied better between the other guide pads and hole wall. The tool head consists of an optical head, a counter-boring head, piezoelectric actuators, and an actuator holder (Fig. 1). The optical head is attached to the front surface of the counter-boring head through an adjust- ment jig. The actuator holder is connected to a rotation stopper 14 behind the tool head by two parallel plates of phosphor bronze 6 (Fig. 2). A laser source 11, and PSDs 9, 10 are set in front of the tool. The rectangular coordinates XAnd Y are set on a plane perpendicular to the spindle rotation axis(Z-axis).The optical distancebetween a dichroic mirror in the optical head and PSD 10 for measuring tool inclina- tion is 2,040 mm [2].3. Method for detection of tool position and its inclinationFig. 3 shows the method used for measuring the tool position and its inclination. The laser beam, radiated from an argon laser, reaches the dichroic mirror 6 through the beam expander 5 and the half mirror 1. The dichroic mirror separates the two beams of wavelengths 514 nm (green) and 488 nm (blue). The green beam for measuring tool position passes through the dichroic mirror 6 and reachesthe corner cube prism 8. The reflected beam passes again through 6 and is deflected by the half mirror 1 toward dichroic mirror 2. By passing through the dichroic mirror 2, it reaches the PSD 9 used for measuring tool position. The blue beam for measuring tool inclination reaches the dichroic mirror 7 with an angle of incidence equal to 0°. The dichroic mirror 7 reflects the blue beam and trans- mits parts of the green beam, which are not completelyseparated by the dichroic mirror 6. The returning beam from the dichroic mirror 7 is deflected by the mirrors 6, 1, and 2, then passing through the dichroic mirror 4, and reaches the PSD 10 for measuring tool inclination. Re- flective characteristics of dichroic mirror 4 differs from that of dichroic mirror 7.4. Acquisition of data for controlling the toolData for tool attitude control are acquired from the two PSDs for tool position and its inclination every rotation of the counter-boring head. Until now, outputs of the two PSDs (measuring tool position and its inclination) some- times did not correspond well to the measured hole devia- tion. To determine what causes this, the following is exam- ined. The tool head with the optical head is supported by two V-blocks and is aligned on the Z-axis at the same longitudinal position as in the experiment. Then, the laser beam is radiated, and the optical head is rotated manually.Fig. 4 shows variations of outputs of two PSDs with encoder pulse during one rotation of the optical head fixed on the counter-boring head. Theoretically, outputs of two PSDs are constant during one rotation of the optical head corresponding to a 1,400 pulse of output of an encoder. Changes of X- and Y-outputs of tool position are caused by change of darkness of the laser spot because of interference and polarization of the laser beam. Changes of X- and Y- outputs of tool inclination are caused by inclination of the reflecting mirror in the optical head from the Z-axis. From the last experiment [6] on, tool position and its inclination are measured at rotational pulse position 700, where the brightness of the two PSDs are preferable at the same time.5. Misalignment of the optical parts in the optical headEven if the laser source and the PSDs for tool position and its inclination are aligned on Z-axis, hole deviation appeared. To discover its cause, the misalignment of the corner cube prism and inclination of reflecting mirror in the optical head from the Z-axis are examined.Fig. 5 shows all cases of alignment errors. Fig. 5(a) shows that the corner cube prism and the reflecting mirror are precisely aligned on the Z-axis. Figs. 5(b) and 5(c) are, the cases in which the corner cube prism is displaced by and the reflecting mirror is inclined byfrom the Z-axis, respectively.IncaseofFig.5(d),errorsofFigs.5(b)and(c) occur together. Fig. 5(e) shows the case when the optical head is inclined byduring the setup of the counter-boring head. Fig. 5(f) is the worst case, when all errors occur together. These errors cannot be eliminated by conventional adjustment. Therefore a new guiding strategy is developed to ensure that the tool can be guided straight, even if errors should occur.6. Optimal setup of reference origin for precise guidingFig. 6 shows the optimal setup method of reference origins. The laser source is aligned on the Z-axis [Fig. 6(a)] [6]. The optical head is fixed to the front surface of a cylindrical alignment jig through an adjustment jig. The alignment jig is inserted into the guide bush, which is fixed on a machine table, and the centers of both alignment jig and the optical head are aligned on Z-axis. Then the laser beam is radiated. Reflected beams reach the PSDs for tool position and its inclination. When the cylinder is rotated by hand, the rotational position, at which the output is most reliable, can be found. Next, the PSDs are moved until the spots lie at their centers. This position corresponds to the pulse position 700 of the encoder. The centers are reference origins for tool position and its inclination.At this rotational position,the optical head is fixed to the counter-boring head using the adjustment jig [Fig.6(b)].When the control starts, the tool head follows the alignment jig’s axis.7. Mechanism of tool displacementFig. 7 shows the mechanism of tool displacement. Fig. 7(a) shows the normal cutting condition [7]. The cutting force P is acting on the cutting edge and is counterbalanced by the guide pads. Fig. 7(b) shows the case where the tool is to correct for a deviation. A chain double-dashed line shows the hole wall before correction of hole deviation. A Directed line shows the direction of the correction.When the tool is controlled to incline toward the direction of the directed line, a cutting edge set ahead of the guide pads overcuts the hole wall. When the guide pad on the opposite side comes to the position of the overcutting zone, the cutting edge leaves a noncutting zone on the hole wall Opposite the overcutting zone.As a result,tool shifts toward the direction of the directed line.In the case of double-edge counter-boring head, the cut- ting force acting on one cutting edge is balanced by the force that acts on the other cutting edge [7]. As a result, the head is easy to vibrate, and the mechanism of tool displace- ment does not function well.Form: Precision Engineering 24 (2000) 9–14 开发高性能的激光制导deep-holeboring工具:最佳测定参考来源精确指导摘要激光制导深孔钻具使用压电致动器是防止孔偏差。
机械专业毕业设计外文翻译10

翻译部分英文部分ADV ANCED MACHINING PROCESSESAs the hardware of an advanced technology becomes more complex, new and visionary approaches to the processing of materials into useful products come into common use. This has been the trend in machining processes in recent years.. Advanced methods of machine control as well as completely different methods of shaping materials have permitted the mechanical designer to proceed in directions that would have been totally impossible only a few years ago.Parallel development in other technologies such as electronics and computers have made available to the machine tool designer methods and processes that can permit a machine tool to far exceed the capabilities of the most experienced machinist.In this section we will look at CNC machining using chip-making cutting tools. CNC controllers are used to drive and control a great variety of machines and mechanisms, Some examples would be routers in wood working; lasers, plasma-arc, flame cutting, and waterjets for cutting of steel plate; and controlling of robots in manufacturing and assembly. This section is only an overview and cannot take the place of a programming manual for a specific machine tool. Because of the tremendous growth in numbers and capability of comp uters ,changes in machine controls are rapidly and constantly taking place. The exciting part of this evolution in machine controls is that programming becomeseasier with each new advanced in this technology.Advantages of Numerical ControlA manually operated machine tool may have the same physical characteristics as a CNC machine, such as size and horsepower. The principles of metal removal are the same. The big gain comes from the computer controlling the machining axes movements. CNC-controlled machine tools can be as simple as a 2-axis drilling machining center (Figure O-1). With a dual spindle machining center, the low RPM, high horsepower spindle gives high metal removal rates. The high RPM spindle allows the efficient use of high cutting speed tools such as diamonds and small diameter cutters (Figure O-2). The cutting tools that remove materials are standard tools such as milling cutters, drills, boring tools, or lathe tools depending on the type of machine used. Cutting speeds and feeds need to be correct as in any other machining operation. The greatest advantage in CNC machining comes from the unerring and rapid positioning movements possible. A CNC machine does dot stop at the end of a cut to plan its next move; it does not get fatigued; it is capable of uninterrupted machining error free, hour after hour. A machine tool is productive only while it is making chips.Since the chip-making process is controlled by the proper feeds and speeds, time savings can be achieved by faster rapid feed rates. Rapid feeds have increased from 60 to 200 to 400 and are now often approaching 1000 inches per minute (IPM). These high feed rates can pose a safety hazard to anyone within the working envelope of the machine tool.Complex contoured shapes were extremely difficult to product prior to CNC machining .CNC has made the machining of these shapes economically feasible. Design changes on a part are relatively easy to make by changing the program that directs the machine tool.A CNC machine produces parts with high dimensional accuracy and close tolerances without taking extra time or special precautions, CNC machines generally need less complex work-holding fixtures, which saves time by getting the parts machined sooner. Once a program is ready and production parts, each part will take exactly the same amount of time as the previous one. This repeatability allows for a very precise control of production costs. Another advantage of CNC machining is the elimination of large inventories; parts can be machined as needs .In conventional production often a great number of parts must be made at the same time to be cost effective. With CNC even one piece can be machined economically .In many instances, a CNC machine can perform in one setup the same operations that would require several conventional machines.With modern CNC machine tools a trained machinist can program and product even a single part economically .CNC machine tools are used in small and large machining facilities and range in size from tabletop models to huge machining centers. In a facility with many CNC tools, programming is usually done by CNC programmers away from the CNC tools. The machine control unit (MCU) on the machine is then used mostly for small program changes or corrections. Manufacturing with CNC tools usually requires three categories of persons. The first is the programmer, who is responsible for developing machine-ready code. The next person involved is the setup person, who loads the raw stork into the MCU, checks that the co rrect tools are loaded, and makes the first part. The third person is the machine and unloads the finished parts. In a small company, one person is expected to perform all three of these tasks.CNC controls are generally divided into two basic categories. One uses a ward address format with coded inputs such as G and M codes. The other users a conversational input; conversational input is also called user-friendly or prompted input. Later in this section examples of each of these programming formats in machining applications will be describes.CAM and CNCCAM systems have changed the job of the CNC programmer from one manually producing CNC code to one maximizing the output of CNC machines. Since CNC machine tools are made by a great number of manufacturers, many different CNC control units are in use. Control units from different manufacturers use a variety of program formats and codes. Many CNC code words are identical for different controllers, but a great number vary from one to another.To produce an identical part on CNC machine tools with different controllers such as one by FANCU, OKUMA or DYNAPATH, would require completely different CNC codes. Each manufacturer is constantly improving and updating its CNC controllers. These improvements often include additional code words plus changes in how the existing code works.A CAM systems allows the CNC programmer to concentrate on the creation of an efficient machining process, rather then relearning changed code formats. A CNC programmer looks atthe print of a part and then plans the sequence of machining operations necessary to make it (Figure O-3). This plan includes everything, from the selection of possible CNC machine tools, to which tooling to use, to how the part is held while machining takes place. The CNC programmer has to have a thorough understanding of all the capacities and limitations of the CNC machine tools that a program is to be made for. Machine specifications such as horsepower, maximum spindle speeds, workpiece weight and size limitations, and tool changer capacity are just some of the considerations that affect programming.Another area of major importance to the programmer is the knowledge of machining processes. An example would be the selection of the surface finish requirement specified in the part print. The sequence of machining processes is critical to obtain acceptable results. Cutting tool limitations have to be considered and this requires knowledge of cutting tool materials, tool types, and application recommendations.A good programmer will spend a considerable amount of time in researching the rapidly growing volume of new and improved tools and tool materials. Often the tool that was on the cutting edge of technology just two years ago is now obsolete. Information on new tools can come from catalogs or tool manufacturers' tooling engineers. Help in tool selection or optimum tool working conditions can also be obtained from tool manufacturer software. Examples would be Kennametal's "TOOLPRO", software designed to help select the best tool grade, speed, and feed rates for different work materials in turning application. Another very important feature of "TOOLPRO" is the display of the horsepower requirement for each machining selection. This allow the programmer to select a combination of cutting speed, feed rate, and depth of cut that equals the machine's maximum horsepower for roughing cuts. For a finishing cut, the smallest diameter of the part being machined is selected and then the cutting speed varied until the RPM is equal to the maximum RPM of the machine. This helps in maximizing machining efficiency. Knowing the horsepower requirement for a cut is critical if more than one tool is cutting at the same time.Software for a machining center application would be Ingersoll Tool Company's "Actual Chip Thickness", a program used to calculate the chip thickness in relation to feed-per-tooth for a milling cutter, especially during a shallow finishing cut. Ingersoll's "Rigidity Analysis" software ealculates tool deflection for end mills as a function of tool stiffness and tool force.To this point we looked at some general qualifications that a programmer should possess. Now we examine how a CAM system works. Point Control Company's SmartCam system uses the following approach. First, the programmer makes a mental model of the part to be machined. This includes the kind of machining to be performed-turning or milling. Then the part print is studied to develop a machining sequence, roughing and finishing cuts, drilling, tapping, and boring operations. What work-holding device is to be used, a vise or fixture or clamps? After these considerations, computer input can be started. First comes the creation of a JOBPLAN. This JOBPLAN consists of entries such as inch or metric units, machine type, part ID, type of workpiece material, setup notes, and a description of the required tools.This line of information describes the tool by number, type, and size and includes theappropriate cutting speed and feed rate. After all the selected tools are entered, the file is saved.The second programming step is the making of the part. This represents a graphic modeling of the projected machining operation. After selecting a tool from the prepared JOBPLAN, parameters for the cutting operation are entered. For a drill, once the coordinate location of the hole and the depth are given, a circle appears on that spot. If the location is incorrect, the UNDO command erases this entry and allows you to give new values for this operation. When an end mill is being used, cutting movements (toolpath) are usually defined as lines and arcs. As a line is programmed, the toolpath is graphically displayed and errors can be corrected instantly.At any time during programming, the command SHOWPATH will show the actual toolpath for each of the programmed tools. The tools will be displayed in the sequence in which they will be used during actual machining. If the sequence of a tool movement needs to be changed, a few keystrokes will to that.Sometimes in CAM the programming sequence is different from the actual machining order. An example would be the machining of a pocket in a part. With CAM, the finished pocket outline is programmed first, then this outline is used to define the ro ughing cuts to machine the pocket. The roughing cuts are computer generated from inputs such as depth and width of cut and how much material to leave for the finish cut. Different roughing patterns can be tried out to allow the programmer to select the most efllcient one for the actual machining cuts. Since each tool is represented by a different color, it is easy to observe the toolpath made by each one.A CAM system lets the programmer view the graphics model from varying angles, such as a top, front, side, or isometric view. A toolpath that looks correct from a top view, may show from a front view that the depth of the cutting tool is incorrect. Changes can easily be made and seen immediately.When the toolpath and the sequence of operations are satisfactory, machine ready code has to be made. This is as easy as specifying the CNC machine that is to be used to machine the part. The code generator for that specific CNC machin e during processing accesses four different files. The JOBPLAN file for the tool information and the GRAPHICE file for the toolpath and cutting sequence. It also uses the MACHINE DEFINE file which defines the CNC code words for that specific machine. This file also supplies data for maximum feed rates, RPM, toolchange times, and so on. The fourth file taking part in the code generating process is the TEMPLATE file. This file acts like a ruler that produces the CNC code with all of its parts in the right place and sequence. When the code generation is complete, a projected machining time is displayed. This time is calculated from values such as feed rates and distances traveled, noncutting movements at maximum feed rates between points, tool change times, and so on. The projected machining time can be revised by changing tooling to allow for higher metal removal rates or creating a more efficient toolpath. This display of total time required can also be used to estimate production costs. If more then one CNC machine tool is available to machine this part, making code and comparing the machining time may show that one machine is more efficient than the others.CAD/CAMAnother method of creating toolpath is with the use of a Computer-aided Drafting (CAD) file. Most machine drawings are created using computers with the description and part geometry stored in the computer database. SmartCAM, though its CAM CONNECTION, will read a CAD file and transfer its geometry represents the part profile, holes, and so on. The programmer still needs to prepare a JOBPLAN with all the necessary tools, but instead of programming a profile line by line, now only a tool has to be assigned to an existing profile. Again, using the SHOWPA TH function will display the toolpath for each tool and their sequence. Constant research and developments in CAD/CAM interaction will change how they work with each other. Some CAD and CAM programs, if loaded on the same computer, make it possible to switch between the two with a few keystrokes, designing and programming at the same time.The work area around the machine needs to be kept clean and clear of obstructions to prevent slipping or tripping. Machine surfaces should not be used as worktables. Use proper lifting methods to handle heavy workpieces, fixtures, or heavy cutting tools. Make measurements only when the spindle has come to a complete standstill. Chips should never be handled with bare hands.Before starting the machine make sure that the work-holding device and the workpiece are securely fastened. When changing cutting tools, protect the workpiece being machined from damage, and protect your hands from sharp cutting edges. Use only sharp cutting tools. Check that cutting tools are installed correctly and securely.Do not operate any machine controls unless you understand their function and what the y will do.The Early Development Of Numerically Controlled Machine ToolsThe highly sophisticated CNC machine tools of today, in the vast and diverse range found throughout the field of manufacturing processing, started from very humble beginnings in a number of the major industrialized countries. Some of the earliest research and development work in this field was completed in USA and a mention will be made of the UK's contribution to this numerical control development.A major problem occurred just after the Second World War, in that progress in all areas of military and commercial development had been so rapid that the levels of automation and accuracy required by the modern industrialized world could not be attained from the lab our intensive machines in use at that time. The question was how to overcome the disadvantages of conventional plant and current manning levels. It is generally ackonwledged that the earliest work into numerical control was the study commissioned in 1947 by the US governme nt. The study's conclusion was that the metal cutting industry throughout the entire country could not copy with the demands of the American Air Force, let alone the rest of industry! As a direct result of the survey, the US Air Force contracted the Persons Corporation to see if they could develop a flexible, dynamic, manufacturing system which would maximize productivity. TheMassachusetts Institute of Technology (MIT) was sub-contracted into this research and development by the Parsons Corporation, during the period 1949-1951,and jointly they developed the first control system which could be adapted to a wide range of machine tools. The Cincinnati Machine Tool Company converted one of their standard 28 inch "Hydro-Tel" milling machines or a three-axis automatic milling made use of a servo-mechanism for the drive system on the axes. This machine made use of a servomechanism for the drive system on the axes, which controlled the table positioning, cross-slide and spindle head. The machine cab be classified as the first truly three axis continuous path machine tool and it was able to generate a required shape, or curve, by simultaneous slide way motions, if necessary.At about the same times as these American advances in machine tool control were taking Place, Alfred Herbert Limited in the United Kingdom had their first Mutinous path control system which became available in 1956.Over the next few years in both the USA and Europe, further development work occurred. These early numerical control developments were principally for the aerospace industry, where it was necessary to cut complex geometric shapes such as airframe components and turbine blades. In parallel with this development of sophisticated control systems for aerospace requirements, a point-to-point controller was developed for more general machining applications. These less sophisticated point-to-point machines were considerably cheaper than their more complex continuous path cousins and were used when only positional accuracy was necessary. As an example of point-to-point motion on a machine tool for drilling operations, the typical movement might be fast traverse of the work piece under the drill's position-after drilling the hole, anther rapid move takes place to the next hole's position-after retraction of the drill. Of course, the rapid motion of the slideways could be achieved by each axis in a sequential and independent manner, or simultaneously. If a separate control was utilisec for each axis, the former method of table travel was less esse ntial to avoid any backlash in the system to obtain the required degree of positional accuracy and so it was necessary that the approach direction to the next point was always the same.The earliest examples of these cheaper point-to-point machines usually did not use recalculating ball screws; this meant that the motions would be sluggish, and sliderways would inevitably suffer from backlash, but more will be said about this topic later in the chapter.The early NC machines were, in the main, based upon a modified milling machine with this concept of control being utilized on turning, punching, grinding and a whole host of other machine tools later. Towards the end of the 1950s,hydrostatic slideways were often incorporated for machine tools of highly precision, which to sonic extent overcame the section problem associated with conventional slideway response, whiles averaging-out slideway inaccuracy brought about a much increased preasion in the machine tool and improved their control characteristics allows "concept of the machining center" was the product of this early work, as it allowed the machine to manufacture a range of components using a wide variety of machining processes at a single set-up, without transfer of workpieces to other variety machine tools. A machining center differed conceptually in its design from that of a milling machine, In that thecutting tools could be changed automatically by the transfer machanism, or selector, from the magazine to spindle, or vice versa.In this ductively and the automatic tool changing feature enabled the machining center to productively and efficiently machine a range of components, by replacing old tools for new, or reselecting the next cutter whilst the current machining process is in cycle.In the mid 1960s,a UK company, Molins, introduced their unique "System 24" which was meant represent the ability of a system to machine for 24 hours per day. It could be thought of as a "machining complex" which allowed a series of NC single purpose machine tools to be linked by a computerized conveyor system. This conveyor allowed the work pieces to be palletized and then directed to as machine tool as necessary. This was an early, but admirable, attempt at a form of Flexible manufacturing System concept, but was unfortunately doomed to failure. Its principal weakness was that only a small proportion of component varieties could be machine at any instant and that even fewer work pieces required the same operations to be performed on them. These factors meant that the utilization level was low, coupled to the fact that the machine tools were expensive and allowed frequent production bottlenecks of work-in-progress to arise, which further slowed down the whole operation.The early to mid-1970s was a time of revolutionary in the area of machine tool controller development, when the term computerized numerical control (CNC) became a reality. This new breed of controllers gave a company the ability to change work piece geometries, together with programs, easily with the minimum of development and lead time, allowing it to be economically viable to machine small batches, or even one-off successfully. The dream of allowing a computerized numerical controller the flexibility and ease of program editing in a production environment became a reality when two ralated factors occurred.These were:the development of integrated circuits, which reduces electronics circuit size, giving better maintenance and allowing more standardization of desing; that general purpose computers were reduced in size coupled to the fact that their cost of production had fallen considerably.The multipie benefits of cheaper electorics with greater reliability have result in the CNC fitted to the machine tools today, with the power and sophistication progtessing considerably in the last few years, allowing an almost artificial intelligence(AI) to the latest systems. Over the years, the machine tools builders have produced a large diversity in the range of applications of CNC and just some of those development will be reviewed in V olume Ⅲ。
机械毕业设计英文外文翻译407驱动桥微分

附录(1)外文文献Drive axle/differentialAll vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.PowerflowSee Figure 1The drive axle must transmit power through a 90°angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels.This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.Figure 1 Component parts of a typical driven axleassemblyDifferential operationSee Figure 2The differential is an arrangement of gears with two functions: to permit the rear wheels to turn at different speeds when cornering and to divide the power flow between both rear wheels.The accompanying illustration has been provided to help understand how this occurs. The drive pinion, which is turned by the driveshaft, turns the ring gear (1).The ring gear, which is attached to the differential case, turns the case (2).The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case (3).The differential pinion (drive) gears are mounted on the pinion shaft and rotate with the shaft (4).Differential side gears (driven gears) are meshed with the pinion gears and turn with the differential housing and ring gear as a unit (5).The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns (6).When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft, since the input force of the pinion gears is divided equally between the two side gears (7).When it is necessary to turn a corner, the differential gearing becomes effective and allows the axle shafts to rotate at different speeds (8).As the inner wheel slows down, the side gear splined to the inner wheel axle shaft also slows. The pinion gears act as balancing levers by maintaining equal tooth loads to both gears, while allowing unequal speeds of rotation at the axle shafts. If the vehicle speed remains constant, and the inner wheel slows down to 90 percent of vehicle speed, the outer wheel will speed up to 110 percent. However, because this system isknown as an open differential, if one wheel should become stuck (as in mud or snow), all of the engine power can be transferred to only one wheel.Figure 2 Overview of differential gear operatingprinciples.Limited-slip and locking differential operationSee Figure 3Limited-slip and locking differentials provide the driving force to the wheel with the best traction before the other wheel begins to spin. This is accomplished through clutch plates, cones or locking pawls.The clutch plates or cones are located between the side gears and the inner walls of the differential case. When they are squeezed togetherthrough spring tension and outward force from the side gears, three reactions occur. Resistance on the side gears causes more torque to be exerted on the clutch packs or clutch cones. Rapid one wheel spin cannot occur, because the side gear is forced to turn at the same speed as the case. So most importantly, with the side gear and the differential case turning at the same speed, the other wheel is forced to rotate in the same direction and at the same speed as the differential case. Thus, driving force is applied to the wheel with the better traction.Locking differentials work nearly the same as the clutch and cone type of limited slip, except that when tire speed differential occurs, the unit will physically lock both axles together and spin them as if they were a solid shaft.Figure 3 Limited-slip differentials transmit powerthrough the clutches or cones to drive the wheelhaving the best traction.Identifying a limited-slip drive axleMetal tags are normally attached to the axle assembly at the filler plug or to a bolt on the cover. During the life of the vehicle, these tags can become lost and other means must be used to identify the drive axle.To determine whether a vehicle has a limited-slip or a conventional drive axle by tire movement, raise the rear wheels off the ground. Place the transmission in PARK (automatic) or LOW (manual), and attempt to turn a drive wheel by hand. If the drive axle is a limited-slip type, it will be very difficult (or impossible) to turn the wheel. If the drive axle is the conventional (open) type, the wheel will turn easily, and the opposing wheel will rotate in the reverse direction.Place the transmission in neutral and again rotate a rear wheel. If the axle is a limited-slip type, the opposite wheel will rotate in the same direction. If the axle is a conventional type, the opposite wheel will rotate in the opposite direction, if it rotates at all.Gear ratioSee Figure 4The drive axle of a vehicle is said to have a certain axle ratio. This number (usually a whole number and a decimal fraction) is actually a comparison of the number of gear teeth on the ring gear and the pinion gear. For example, a 4.11 rear means that theoretically, there are 4.11 teeth on the ring gear for each tooth on the pinion gear or, put another way, the driveshaft must turn 4.11 times to turn the wheels once. Actually, with a 4.11 ratio, there might be 37 teeth on the ring gear and 9 teeth on the pinion gear. By dividing the number of teeth on the pinion gear into the number of teeth on the ring gear, the numerical axle ratio (4.11) is obtained. This also provides a good method of ascertaining exactly which axle ratio one is dealing with.Another method of determining gear ratio is to jack up and support the vehicle so that both drive wheels are off the ground. Make a chalk mark on the drive wheel and the driveshaft. Put the transmission in neutral. Turn the wheel one complete turn and count the number of turns that the driveshaft/halfshaft makes. The number of turns that the driveshaft makes in one complete revolution of the drive wheel approximates the axle ratio.Figure 4 The numerical ratio of the drive axle is the number of the teeth on the ring gear divided by the number of the teeth on the pinion gear.(2)文献翻译驱动桥/微分所有车辆有某种类型的驱动桥/微分装配纳入动力传动系统。
机械设计外文翻译--机器人

Robotthe industrial robot is a tool that is used in the manufacturing environment to increase productivity.It can perform jobs that mights be hazardous to the human worker.One of the first industrial robots was used to replace the nuclear power plants.The industrial robot can also operate on the assembly line such as placing electronic components on a printed circuit board .Thus ,the human worker can be relieved of the routine operation of this tedious task .Robots can also be programmed to defuse bombs,to serve the handicapped ,and to perform functions in numerous applications in our society.A robot is a reprogrammable,multifunctional manipulator designed to more parts,materials tools or special devices through variable pregrammed locations for the performance of a variety of different tasks.Preprogrammed locations are paths that the robot must follow to accomplish work.At some of these locations ,the robot will stop and perform some operation,such as assembly of parts,spray painting,or welding.These ppreprogrammed locations are stored in the robot’s memory and are recalled later for continous operation.Furthermore,these preprogrammed locations,as well as other program data,can be changed later as the work requirements change .Thus ,with regard to this programming feature,an industrial robot is very much like a computer.The robotic system can also control the work cell of the operating robot.The work cell of the robot is the total enviroment in which the robot must perform its task.Included within this cell may be the robot manipulator,controller,a work table ,safety features,or a conveyor.In addition, signals from outside device can communicate with the robot.The manipulator,which does the physical work of the robotic system,consists of two sections:the mechanical section and the attached appendage.The manipulator also has a base to which the appendages are attached.The base of the manipulator is usually fixed to the floor of the work area.Sometimes,through,the base may be movable.In this case,the base is attached to either a rail or a track,allowing the manipulator to be moved from one location to another.the manipulator is mainly composed of the hand and the motion. The hand is uses for to grasp holds the work piece (or tool) the part, according to is grasped holds the thing shape, the size, the weight, the material and the work request has many kinds of structural styles, like the clamp, therequest hold and the adsorption and so on. The motion, causes the hand to complete each kind of rotation (swinging), the migration or the compound motion realizes the stipulation movement, changes is grasped holds the thing position and the posture. Motion's fluctuation, the expansion, revolving and so on independence movement way, is called manipulator's degree-of-freedom. In order to capture in the space the optional position and the position object, must have 6 degrees-of-freedom. The degree-of-freedom is the key parameter which the manipulator designs. The degree-of-freedom are more, manipulator's flexibility is bigger, the versatility is broader, its structure is also more complex. Generally the special-purpose manipulator has 2~3 degrees-of-freedom.The appendage is the arm of the robot.It can be either a straight,movable arm or a jointed arm and gives the manipulator its various axes of motion.The jointed arm is also known as an articulated arm.At the end of the arm,a wrist is connected.The wrist is made up of additional axes and a wrist flange.The wrist flange allows therobot user to connectdifferent tooling to the wrist for different jobs.The manipulator’saxes allow it to perform work within acertain area.This area is called the work cell of the robot,and its size corresponds to the size of the manipulator.As the robot’physical size increases,the size of the work cell must also increase.The movement of the manipulator is controlled by actuators, or drive system can use electric,hydraulic,or pneumatic power.The energy developed by the drive system is convered to mechanical power by various mechanical drive systems.The drive systems are coupled through mechanical linkages.These linkages,in turn,drive the different axes of the robot. The mechanical linkages may be composed of chains,geas,and ball screws.The controller is used to control the robot manipulator’movements as well as to control peripheral components within the work cell.The user can program themovements of the manipulator into the controller through the use of a hand-held teach pendant.This information is stored in the memory of the controller for later recall.The controller is also required to communicate with peripheral equipment within the work cell.For example,a controller has an input line.When the machine cycle is completed,the input line turns on ,telling the controller to position the manipulator so that it can pick up the finished part.Then ,a new part is picked up by the manipulator and placed into the machine.Next,the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events.This type of controller operates with simple robotic system.The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art electronics.That is,they are microprocessor-operated.This power allows the controller to be very flexible in its operation.The controller can send electric signals over communication lines.This two- way communication between the robot manipulator and the controller maintains a constant update of the location and the operation of the system.The controller also has the job of communicating with the different plant computer.The communication link establishes the robot as part of a computer-assisted manufacturing(CAM)system.The microprocessor-based systems operate in conjunction with solid-state memory devices.These memory devices may be magnetic bubbles,random-access memory,floppy disk,or magnetic tape.The power supply is the unit that supplies power to the controller and the manipulator.Two types of power are delived to the robotic system.One type of power is the Acpower for operation of the controller.The other type of power is used for driving the various axes of the manipulator.For example,if the robot manipulator is controlled by hydraulic or pneumatic drives,control signals are sent to these devices,causing motion of the robot.Industrial robots vary widely in size ,shape,number of axes,degrees of freedom,and design configuration .Each factor influences the dimensions of the robot’s working envelop or the volume of space within which it can move and perform its designated task.A broader classification of robots can been described as below.Fixed-and Variable-Sequence Robots .The fixed-sequence robot(also called a pick-and place robot)is programmed for a specific sequence of operqtions.Its movements are from point to point ,and the cycle is repeated continuously.The variable-sequence robot can be programmed for a specific sequence of operations but can be reprogrammed to perform another sequence of operation.Playback Robot.An operator leads or walks the playback robot and its end effector through the deired path .The robot memorizes and records the path and sequence of motions and can repeat them continually without any further action or guidance by the operator.Numerically Controlled Robot.The numerically cantrolled robot is programmed and operatedmuch like a numerically controlled machine .The robot is servocontrolled by digital data ,and its sequence of movements can be changed with relative ease.Intelligent Robot.[3]The intelligent robot is capable of performing some of the functions and tasks carried out by human beings .It is equipped with a variety of sensors with visual and tactile capabilities.机器人工业机器人是一种提高制造业生产力的工具,它可以承担那些对人类可能有危险的工作。
机械专业毕业设计外文翻译1

本科毕业设计(本科毕业论文)外文文献及译文文献、资料题目:High-rise Tower Crane designed文献、资料来源:期刊(著作、网络等)文献、资料发表(出版)日期:2000.3.25院(部):机电工程学院专业:机电工程及自动化High-rise Tower Crane designed under Turbulent Winds At present, construction of tower cranes is an important transport operations lifting equipment, tower crane accident the people's livelihood, major hazards, and is currently a large number of tower crane drivers although there are job permits, due to the lack of means to monitor and review the actual work of a serious violation . Strengthen the inspection and assessment is very important. Tower crane tipping the cause of the accident can be divided into two aspects: on the one hand, as a result of the management of tower cranes in place, illegal operation, illegal overloading inclined cable-stayed suspended widespread phenomenon; Second, because of the tower crane safety can not be found in time For example,Took place in the tower crane foundation tilt, micro-cracks appear critical weld, bolts loosening the case of failure to make timely inspection, maintenance, resulting in the continued use of tower cranes in the process of further deterioration of the potential defect, eventually leading to the tower crane tipping. The current limit of tower crane and the black box and can not be found to connect slewing tower and high-strength bolts loosening tightened after the phenomenon is not timely, not tower verticality of the axis line of the lateral-line real-time measurement, do not have to fight the anti-rotation vehicles, lifting bodies plummeted Meng Fang, hook hoists inclined cable is a timely reminder and record of the function, the wind can not be contained in the state of suspended operation to prevent tipping on the necessary tips on site there is a general phenomenon of the overloaded overturning of the whole security risks can not be accurately given a reminder and so on, all of which the lease on the tower crane, use, management problems,Through the use of tower crane anti-tipping monitor to be resolved. Tower crane anti-tipping Monitor is a new high-tech security monitoring equipment, and its principle for the use of machine vision technology and image processing technology to achieve the measurement of the tilt tower, tower crane on the work of state or non-working state of a variety of reasons angle of the tower caused by the critical state to achieve the alarm, prompt drivers to stop illegal operation, a computer chip at the same time on the work of the state of tower crane be recorded. Tower crane at least 1 day overload condition occurs, a maximum number of days to reach 23 overloading, the driver to operate the process of playing the anti-car, stop hanging urgency, such as cable-stayed suspended oblique phenomenon often, after verification and education, to avoid the possible occurrence of fatal accidents. Wind conditions in the anti-tipping is particularly important, tower cranes sometimes connected with the pin hole and pin do not meet design requirements, to connect high-strength bolts are not loose in time after the tightening of the phenomenon, through timely maintenance in time after the tightening of the phenomenon, through timely maintenance and remedial measures to ensure that the safe and reliable construction progress. Reduced lateral line tower vertical axis measuring the number of degrees,Observation tower angle driver to go to work and organize the data once a month to ensure that the lateral body axis vertical line to meet the requirements, do not have to every time and professionals must be completed by Theodolite tower vertical axismeasuring the lateral line, simplified the management link. Data logging function to ensure that responsibility for the accident that the scientific nature to improve the management of data records for the tower crane tower crane life prediction and diagnosis of steel structures intact state data provides a basis for scientific management and proactive prevention of possible accidents, the most important thing is, if the joint use of the black box can be easily and realistically meet the current provisions of the country's related industries. Tower crane safety management at the scene of great importance occurred in the construction process should be to repair damaged steel, usually have to do a good job in the steel tower crane maintenance work and found that damage to steel structures, we must rule out potential causes of accidents, to ensure safety in production carried out smoothly. Tower crane in the building construction has become essential to the construction of mechanical equipment, tower crane at the construction site in the management of safety in production is extremely important. A long time, people in the maintenance of tower crane, only to drive attention to the conservation and electrical equipment at the expense of inspection and repair of steel structures, to bring all kinds of construction accidents.Conclusion: The tower crane anti-tipping trial monitor to eliminate potential causes of accidents to provide accurate and timely information, the tower crane to ensure the smooth development of the leasing business, the decision is correct, and should further strengthen and standardize the use of the environment (including new staff training and development of data processing system, etc.).The first construction cranes were probably invented by the Ancient Greeks and were powered by men or beasts of burden, such as donkeys. These cranes were used for the construction of tall buildings. Larger cranes were later developed, employing the use of human treadwheels, permitting the lifting of heavier weights. In the High Middle Ages, harbour cranes were introduced to load and unload ships and assist with their construction – some were built into stone towers for extra strength and stability. The earliest cranes were constructed from wood, but cast iron and steel took over with the coming of the Industrial Revolution.For many centuries, power was supplied by the physical exertion of men or animals, although hoists in watermills and windmills could be driven by the harnessed natural power. The first 'mechanical' power was provided by steam engines, the earliest steam crane being introduced in the 18th or 19th century, with many remaining in use well into the late 20th century. Modern cranes usually use internal combustion engines or electric motors and hydraulic systems to provide a much greater lifting capability than was previously possible, although manual cranes are still utilised where the provision of power would be uneconomic.Cranes exist in an enormous variety of forms – each tailored to a specific use. Sizes range from the smallest jib cranes, used inside workshops, to the tallest tower cranes,used for constructing high buildings, and the largest floating cranes, used to build oil rigs and salvage sunken ships.This article also covers lifting machines that do not strictly fit the above definition of a crane, but are generally known as cranes, such as stacker cranes and loader cranes.The crane for lifting heavy loads was invented by the Ancient Greeks in the late 6th century BC. The archaeological record shows that no later than c.515 BC distinctive cuttings for both lifting tongs and lewis irons begin to appear on stone blocks of Greek temples. Since these holes point at the use of a lifting device, and since they are to be found either above the center of gravity of the block, or in pairs equidistant from a point over the center of gravity, they are regarded by archaeologists as the positive evidence required for the existence of the crane.The introduction of the winch and pulley hoist soon lead to a widespread replacement of ramps as the main means of vertical motion. For the next two hundred years, Greek building sites witnessed a sharp drop in the weights handled, as the new lifting technique made the use of several smaller stones more practical than of fewer larger ones. In contrast to the archaic period with its tendency to ever-increasing block sizes, Greek temples of the classical age like the Parthenon invariably featured stone blocks weighing less than 15-20 tons. Also, the practice of erecting large monolithic columns was practically abandoned in favour of using several column drums.Although the exact circumstances of the shift from the ramp to the crane technology remain unclear, it has been argued that the volatile social and political conditions of Greece were more suitable to the employment of small, professional construction teams than of large bodies of unskilled labour, making the crane more preferable to the Greek polis than the more labour-intensive ramp which had been the norm in the autocratic societies of Egypt or Assyria.The first unequivocal literary evidence for the existence of the compound pulley system appears in the Mechanical Problems (Mech. 18, 853a32-853b13) attributed to Aristotle (384-322 BC), but perhaps composed at a slightly later date. Around the same time, block sizes at Greek temples began to match their archaic predecessors again, indicating that the more sophisticated compound pulley must have found its way to Greek construction sites by then.During the High Middle Ages, the treadwheel crane was reintroduced on a large scale after the technology had fallen into disuse in western Europe with the demise of the Western Roman Empire. The earliest reference to a treadwheel (magna rota) reappears in archival literature in France about 1225, followed by an illuminated depiction in a manuscript of probably also French origin dating to 1240. In navigation, the earliest uses of harbor cranes are documented for Utrecht in 1244, Antwerp in 1263, Brugge in 1288 and Hamburg in 1291, while in England the treadwheel is not recorded before 1331.Generally, vertical transport could be done more safely and inexpensively by cranes than by customary methods. Typical areas of application were harbors, mines, and, in particular, building sites where the treadwheel crane played a pivotal role in the construction of the lofty Gothic cathedrals. Nevertheless, both archival and pictorial sources of the time suggest that newly introduced machines like treadwheels or wheelbarrows did not completely replace more labor-intensive methods like ladders, hods and handbarrows. Rather, old and new machinery continued to coexist on medieval construction sites and harbors.Apart from treadwheels, medieval depictions also show cranes to be powered manually by windlasses with radiating spokes, cranks and by the 15th century also by windlasses shaped like a ship's wheel. To smooth out irregularities of impulse and get over 'dead-spots' in the lifting process flywheels are known to be in use as early as 1123.The exact process by which the treadwheel crane was reintroduced is not recorded, although its return to construction sites has undoubtedly to be viewed in close connection with the simultaneous rise of Gothic architecture. The reappearance of the treadwheel crane may have resulted from a technological development of the windlass from which the treadwheel structurally and mechanically evolved. Alternatively, the medieval treadwheel may represent a deliberate reinvention of its Roman counterpart drawn from Vitruvius' De architectura which was available in many monastic libraries. Its reintroduction may have been inspired, as well, by the observation of the labor-saving qualities of the waterwheel with which early treadwheels shared many structural similarities.In contrast to modern cranes, medieval cranes and hoists - much like their counterparts in Greece and Rome - were primarily capable of a vertical lift, and not used to move loads for a considerable distance horizontally as well. Accordingly, lifting work was organized at the workplace in a different way than today. In building construction, for example, it is assumed that the crane lifted the stone blocks either from the bottom directly into place, or from a place opposite the centre of the wall from where it could deliver the blocks for two teams working at each end of the wall. Additionally, the crane master who usually gave orders at the treadwheel workers from outside the crane was able to manipulate the movement laterally by a small rope attached to the load. Slewing cranes which allowed a rotation of the load and were thus particularly suited for dockside work appeared as early as 1340. While ashlar blocks were directly lifted by sling, lewis or devil's clamp (German Teufelskralle), other objects were placed before in containers like pallets, baskets, wooden boxes or barrels.It is noteworthy that medieval cranes rarely featured ratchets or brakes to forestall the load from running backward.[25] This curious absence is explained by the high friction force exercised by medieval treadwheels which normally prevented the wheel from accelerating beyond control.目前,塔式起重机是建筑工程进行起重运输作业的重要设备,塔机事故关系国计民生、危害重大,而目前众多的塔机司机虽然有上岗证,由于缺少监督和复核手段,实际工作中违规严重。
机械设计 外文翻译

Numerical control technology and equipping development trend and countermeasure Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technolo gy is it develop new developing new high-tech industry and most advanced industr y to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and get ting more basic most equipment. Marx has ever said "the differences of different e conomic times, do not lie in what is produced, and lie in how to produce, produce with some means of labor ". Manufacturing technology and equipping the most ba sic means of production that are that the mankind produced the activity, and nume rical control technology is nowadays advanced manufacturing technology and equips the most central technology. Nowadays the manufacturing industry all around the world adopts numerical control technology extensively, in order to improve manufact uring capacity and level, improve the adaptive capacity and competitive power to th e changeable market of the trends. In addition every industrially developed country in the world also classifies the technology and numerical control equipment of num erical control as the strategic materials of the country, not merely take the great m easure to develop one's own numerical control technology and industry, and imple ment blockading and restrictive policy to our country in view of " high-grade, precisi on and advanced key technology of numerical control " and equipping. In a word, develop the advanced manufacturing technology taking numerical control technology as the core and already become every world developed country and accelerate ec onomic development in a more cost-effective manner, important way to improve the overall national strength and national position.Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numeri cal control technology forms to the manufacture industry of the tradition and infiltrati on of the new developing manufacturing industry, namely the so-called digitization i s equipped, its technological range covers a lot of fields: (1)Mechanical manufacturi ng technology; (2)Information processing, processing, transmission technology; (3)Au tomatic control technology; (4)Servo drive technology; (5)Technology of the sensor;(6)Software engineering ,etc..Development trend of a numerical control technologyThe application of numerical control technology has not only brought the revolutiona ry change to manufacturing industry of the tradition, make the manufacturing industr y become the industrialized symbol , and with the constant development of numeric al control technology and enlargement of the application, the development of some important trades (IT , automobile , light industry , medical treatment ,etc. ) to the n ational economy and the people's livelihood of his plays a more and more importan t role, because the digitization that these trades needed to equip has already been the main trend of modern development. Numerical control technology in the worldat present and equipping the development trend to see, there is the following sever al respect [1- ] in its main research focus.1 A high-speed, high finish machining technology and new trend equippedThe efficiency, quality are subjavanufacturing technology. High-speed, high finish ma chining technology can raise the efficiency greatly , improve the quality and grade of the products, shorten production cycle and improve the market competitive powe r. Japan carries the technological research association first to classify it as one of t he 5 great modern manufacturing technologies for this, learn (CIRP) to confirm it a s the centre in the 21st century and study one of the directions in international pro duction engineering.In the field of car industry, produce one second when beat such as production of 300,000 / vehicle per year, and many variety process it is car that equip key probl em that must be solved one of; In the fields of aviation and aerospace industry, sp are parts of its processing are mostly the thin wall and thin muscle, rigidity is very bad, the material is aluminium or aluminium alloy, only in a situation that cut the speed and cut strength very small high, could process these muscles, walls. Adopt large-scale whole aluminium alloy method that blank " pay empty " make the wing recently, such large-scale parts as the fuselage ,etc. come to substitute a lot of p arts to assemble through numerous rivet , screw and other connection way, make t he intensity , rigidity and dependability of the component improved. All these, to pr ocessing and equipping the demand which has proposed high-speed, high precise and high flexibility.According to EMO2001 exhibition situation, high-speed machining center is it give s peed can reach 80m/min is even high , air transport competent speed can up to 1 00m/min to be about to enter. A lot of automobile factories in the world at present, including Shanghai General Motors Corporation of our country, have already adopt ed and substituted and made the lathe up with the production line part that the hig h-speed machining center makes up. HyperMach lathe of U.S.A. CINCINNATI Com pany enters to nearly biggest 60m/min of speed, it is 100m/min to be fast, the acc eleration reaches 2g, the rotational speed of the main shaft has already reached 6 0 000r/min. Processing a thin wall of plane parts, spend 30min only, and same par t general at a high speed milling machine process and take 3h, the ordinary milling machine is being processed to need 8h; The speed and acceleration of main shaf t of dual main shaft lathes of Germany DMG Company are up to 120000r/mm and 1g.In machining accuracy, the past 10 years, ordinary progression accuse of machinin g accuracy of lathe bring 5μm up to from 10μm already, accurate grades of machi ning center from 3~5μm, rise to 1~1.5μm, and ultraprecision machining accuracy i s it enter nanometer grade to begin already (0.01μm).In dependability, MTBF value of the foreign numerical control device has already re ached above 6 000h, MTBF value of the servo system reaches above 30000h, de monstrate very high dependability .In order to realize high-speed, high finish machining, if the part of function related t o it is electric main shaft, straight line electrical machinery get fast development, the application is expanded further .1.2 Link and process and compound to process the fast development of the lathe i n 5 axesAdopt 5 axles to link the processing of the three-dimensional curved surface part, c an cut with the best geometry form of the cutter , not only highly polished, but als o efficiency improves by a large margin . It is generally acknowledged, the efficienc y of an 5 axle gear beds can equal 2 3 axle gear beds, is it wait for to use the c ubic nitrogen boron the milling cutter of ultra hard material is milled and pared at a high speed while quenching the hard steel part, 5 axles link and process 3 const ant axles to link and process and give play to higher benefit. Because such reason s as complicated that 5 axles link the numerical control system , host computer str ucture that but go over, it is several times higher that its price links the numerical control lathe than 3 axles , in addition the technological degree of difficulty of progr amming is relatively great, have restricted the development of 5 axle gear beds.At present because of electric appearance of main shaft, is it realize 5 axle compl ex main shaft hair structure processed to link greatly simplify to make, it makes de gree of difficulty and reducing by a large margin of the cost, the price disparity of the numerical control system shrinks. So promoted 5 axle gear beds of head of co mplex main shaft and compound to process the development of the lathe (process the lathe including 5).At EMO2001 exhibition, new Japanese 5 of worker machine process lathe adopt co mplex main shaft hair, can realize the processing of 4 vertical planes and processi ng of the wanton angle, make 5 times process and 5 axles are processed and ca n be realized on the same lathe, can also realize the inclined plane and pour the processing of the hole of awls. Germany DMG Company exhibits the DMUVoution series machining center, but put and insert and put processing and 5 axles 5 time s to link and process in once, can be controlled by CNC system or CAD/CAM is c ontrolled directly or indirectly.1.3 Become the main trend of systematic development of contemporary numerical c ontrol intelligently, openly, networkedly.The numerical control equipment in the 21st century will be sure the intelligent syst em, the intelligent content includes all respects in the numerical control system: It i s intelligent in order to pursue the efficiency of processing and process quality, con trol such as the self-adaptation of the processing course, the craft parameter is pro duced automatically; Join the convenient one in order to improve the performance of urging and use intelligently, if feedforward control , adaptive operation , electrical machinery of parameter , discern load select models , since exactly makes etc. a utomatically; The ones that simplified programming , simplified operating aspect are intelligent, for instance intelligent automatic programming , intelligent man-machine interface ,etc.; There are content of intelligence diagnose , intelligent monitoring , di agnosis convenient to be systematic and maintaining ,etc..Produce the existing problem for the industrialization of solving the traditional nume rical control system sealing and numerical control application software. A lot of cou ntries carry on research to the open numerical control system at present, such asNGC of U.S.A. (The Next Generation Work-Station/Machine Control), OSACA of Eu ropean Community (Open System Architecture for Control within Automation System s), OSEC (Open System Environment for Controller) of Japan, ONC (Open Numeri cal Control System) of China, etc.. The numerical control system melts to become the future way of the numerical control system open. The so-called open numerical control system is the development of the numerical control system can be on unifi ed operation platform, face the lathe producer and end user, through changing, incr easing or cutting out the structure target(numerical control function), form the serrati on, and can use users specially conveniently and the technical know-how is integra ted in the control system, realize the open numerical control system of different var iety , different grade fast, form leading brand products with distinct distinction. Syst em structure norm of the open numerical control system at present, communication norm , disposing norm , operation platform , numerical control systematic function storehouse and numerical control systematic function software development ,etc. are the core of present research.The networked numerical control equipment is a new light spot of the fair of the in ternationally famous lathe in the past two years. Meeting production line , manufact ure system , demand for the information integration of manufacturing company netw orkedly greatly of numerical control equipment, realize new manufacture mode such as quick make , fictitious enterprise , basic Entrance that the whole world make t oo. Some domestic and international famous numerical control lathes and systemati c manufacturing companies of numerical control have all introduced relevant new c oncepts and protons of a machine in the past two years, if in EMO2001 exhibition, " Cyber Production Center " that the company exhibits of mountain rugged campst ool gram in Japan (Mazak) (intellectual central production control unit, abbreviated as CPC); The lathe company of Japanese big Wei (Okuma ) exhibits " IT plaza " (the information technology square , is abbreviated as IT square ); Open Manufactu ring Environment that the company exhibits of German Siemens (Siemens ) (open t he manufacturing environment, abbreviated as OME),etc., have reflected numerical control machine tooling to the development trend of networked direction.1.4 Pay attention to the new technical standard, normal setting-up1.4.1 Design the norm of developing about the numerical control systemAs noted previously, there are better common ability, flexibility, adaptability, expandi ng in the open numerical control system, such countries as U.S.A. ,European Com munity and Japan ,etc. implement the strategic development plan one after another , carry on the research and formulation of the systematic norm (OMAC , OSACA , OSEC ) of numerical control of the open system structure, 3 biggest economies in the world have carried on the formulation that nearly the same science planned a nd standardized in a short time, have indicated a new arrival of period of change of numerical control technology. Our country started the research and formulation of standardizing the frame of ONC numerical control system of China too in 2000. 1.4.2 About the numerical control standardThe numerical control standard is a kind of trend of information-based development of manufacturing industry. Information exchange among 50 years after numerical control technology was born was all because of ISO6983 standard, namely adopt G, M code describes how processes, its essential characteristic faces the processing course, obviously, he can't meet high-speed development of modern numerical cont rol technology's needs more and more already. For this reason, studying and maki ng a kind of new CNC system standard ISO14649 (STEP-NC) in the world, its pur pose is to offer a kind of neutral mechanism not depending on the concrete syste m, can describe the unified data model in cycle of whole life of the products, thus realize the whole manufacture process, standardization of and even each industrial field product information.The appearance of STEP-NC may be a revolution of the technological field of the numerical control, on the development and even the whole manufacturing industry of numerical control technology, will exert a far-reaching influence. First of all, STE P-NC puts forward a kind of brand-new manufacture idea, in the traditional manufa cture idea, NC processes the procedures to all concentrate on individual computer. Under the new standard, NC procedure can be dispersed on Internet, this is exac tly a direction of open , networked development of numerical control technology. Se condly, STEP-NC numerical control system can also reduce and process the drawi ng (about 75%), process the procedure to work out the time (about 35%) and proc ess the time (about 50%) greatly.At present, American-European countries pay much attention to the research of ST EP-NC, Europe initiates IMS plan (1999.1.1-2001.12.3) of STEP-NC. 20 CAD/CAM/ CAPP/CNC users, manufacturers and academic organizations from Europe and Jap an participated in this plan. STEP Tools Company of U.S.A. is a developer of the data interchange software of manufacturing industry in the global range, he has alr eady developed the super model (Super Model ) which accuses of information exc hange of machine tooling by counting, its goal is to describe all processing courses with the unified norm. Such new data interchange form has already been verified i n allocating the SIEMENS, FIDIA and European OSACA-NC numerical control at pr esent.2 pairs of basic estimations of technology and industry development of numerical c ontrol of our countryThe technology of numerical control of our country started in 1958, the developmen t course in the past 50 years can roughly be divided into 3 stages: The first stage is from 1958 to 1979, namely closed developing stage. In this stages, because te chnology of foreign countries blockade and basic restriction of terms of our country, the development of numerical control technology is comparatively slow. During "Six th Five-Year Plan Period" , " the Seventh Five-Year Plan Period " of the country in second stage and earlier stage in " the Eighth Five-Year Plan Period ", namely in troduce technology, digest and assimilate, the stage of establishing the system of p roduction domesticization arisesing tentatively. At this stage , because of reform an d opening-up and national attention , and study the improvement of the developme nt environment and international environment, research , development and all makin g considerable progress in production domesticization of the products of the technol ogy of numerical control of our country. The third stage is and during the "Ninth Five-Year Plan Period" on the later stage in "the Eighth Five-Year Plan Period" of th e country, namely implement the research of industrialization, enter market competit ion stage. At this stage, made substantive progress in industrialization of the dome stic numerical control equipment of our country. In latter stage for "the Ninth Five-Y ear Plan ", the domestic occupation rate of market of the domestic numerical contr ol lathe is up to 50%, it is up to 10% too to mix the domestic numerical control s ystem (popular).Make a general survey of the development course in the past 50 years of technolo gy of numerical control of our country, especially through tackling key problems of4 Five-Year Plans, all in all has made following achievements.a. Have established the foundation of the technical development of numerical contr ol, has mastered modern numerical control technology basically. Our country has al ready, the numerical control host computer, basic technology of special plane and f ittings grasped and driven from the numerical control system and survey basically n ow, among them most technology have already possessed and commercialized the foundation developed, some technology has already, industrialization commercialize d.b. Have formed the industrial base of numerical control tentatively. In tackling key problems the foundation that the achievement and some technology commercialize, set up the systematic factories of numerical control with production capacity in batc hes such as numerical control in Central China, numerical control of the spaceflight etc.. Electrical machinery plant of Lanzhou, such factory and the first machine tool plant of Beijing , the first machine tool plant of Jinan ,etc. several numerical contr ol host computer factories of a batch of servo systems and servo electrical machin eries as the numerical control in Central China, etc.. These factories have formed t he numerical control industrial base of our country basically.c. Have set up a numerical control research, development, managerial talent's basic team.Though has made considerable progress in research and development and industri alization of numerical control technology, but we will realize soberly, the research a nd development of the technology of advanced numerical control of our country, es pecially there is greater disparity in current situation and current demand of our co untry of engineering level in industrialization. Though very fast from watching the d evelopment of our country vertically, have disparity horizontally more than (compare foreign countries with) not merely engineering level, there is disparity too in develo pment speed in some aspects, namely the engineering level disparity between som e high-grade , precision and advanced numerical control equipment has the tenden cy to expand . Watch from world, estimate roughly as follows about the engineerin g level of numerical control of our country and industrialization level.a. On the engineering level, in probably backward 10-1 years with the advanced le vel in foreign countries, it is bigger in high-quality precision and sophisticated techn ology.b. On the industrialization level, the occupation rate of market is low, the variety co verage rate is little, have not formed the large-scale production yet; The specializedlevel of production of function part and ability of forming a complete set are relati vely low; Appearance quality is relatively poor; Dependability is not high, the comm ercialized degree is insufficient; One's own brand effect that the domestic numerical control system has not been set up yet, users have insufficient confidence.c. On the ability of sustainable development, research and development of numeric al control technology, project ability is relatively weak to the competition; It is not st rong that the technological application of numerical control expands dynamics; Rese arch, formulation that relevant standards are normal lag behind.It is analyzed that the main reason for having above-mentioned disparity has the fo llowing several respect.a. Realize the respect. Know to industry's process arduousness , complexity and lo ng-term characteristic of domestic numerical control insufficiently; It is difficult to un derestimate to add strangling, system, etc. to the unstandard, foreign blockade of t he market; It is not enough to analyse to the technological application level and ab ility of numerical control of our country.b. System. Pay close attention to numerical control industrialization many in the iss ue, consider numerical control industrialization little in the issue synthetically in term s of the systematic one, industry chain in terms of technology; Have not set up rel ated system, perfect training , service network of intact high quality ,etc. and suppo rted the system.c. Mechanism. It causes the brain drain, restraining technology and technological ro ute from innovating again, products innovation that the bad machine is made, and has restricted the effective implementation of planning, has often planned the ideal, implement the difficulty.d. Technology. The autonomous innovation in technology of enterprises is indifferen t; the project of key technology is indifferent. The standard of the lathe lags behind, the level is relatively low, it is not enough for new standard of the numerical contr ol system to study.3 pairs of strategic thinking of technology and industrialized development of numeri cal control of our country3.1 Strategic considerationOur country make big country, industry is it is it accept front instead of transformati on of back end to try one's best to want in shifting in world, namely should master and make key technology advanced, otherwise in a new round of international ind ustrial structure adjustment, the manufacturing industry of our country will step forw ard and " leave the core spaces ". We regard resource, environment , market as t he cost, it is only an international " machining center " in the new economic patter n of the world to exchange the possibility got and " assemble the centre ", but not master the position of the manufacturing center of key technology , will so influen ce the development process of the modern manufacturing industry of our country s eriously.We should stand in the height of national security strategy paying attention to num erical control technology and industry's question , at first seen from social safety, b ecause manufacturing industry whether our country obtain employment most populous trade, the development of manufacturing industry not only can improve the peop le's living standard but also can alleviate the pressure of employment of our countr y , ensure the stability of the society; Secondly seen from national defense security, the western developed country has classified all the high-grade , precision and ad vanced numerical control products as the strategic materials of the country, realizin g the embargo and restriction to our country, " Toshiba incident " and " Cox Repor t " is the best illustration.3.2 Development tacticsProceed from the angles of the fundamental realities of the country of our country, regard the strategic demand of the country and market demand of national econo my as the direction, regard improving our country and making the comprehensive c ompetitive power of equipping industry and industrialization level as the goal, use t he systematic method , be able to choose to make key technology upgraded in de velopment of equipping industry and support technology supporting the development of industrialization in our country in initial stage of 21st century in leading factor, t he ability to supply the necessary technology realizes making the jump developmen t of the equipping industry as the content of research and development . Emphasize market demand is a direction, namely take terminal products of numeric al control as the core, with the complete machine (Such as the numerical control l athe having a large capacity and a wide range, milling machine, high speed high p recise high-performance numerical control lathe, digitized machinery of model, key i ndustry key equipment, etc.) drive the development of the numerical control industr y. Solve the numerical control system and relevant functions part especially The de pendability that (digitized servo system and electrical machinery, high speed electric main shaft system and new-enclosure that equip, etc.) and production scale questi on. There are no products that scale will not have high dependability; Will not have cheap and products rich in the competitiveness without scale; Certainly, it is diffic ult to have day holding up one's head finally that there is no scale Chinese numeri cal control equipment.In equiping researching and developing high-grade , precision and advancedly , sho uld emphasize the production, learning and research and close combination of the end user, regard " drawing, using, selling " as the goal, tackle key problems accor ding to the national will, in order to solve the needing badly of the country. Numerical control technology, emphasized innovation, put emphasis on researching and developing the technology and products with independent intellectual property ri ght before the competition, establish the foundation for the industry of numerical co ntrol of our country, sustainable development of equipment manufacture and even t he whole manufacturing industry.数控技术和装备发展趋势及对策装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A knowledge-based system for materials selection in mechanical engineering designS.M. SapuanAbstractThis paper studies various work on the development of computerized material selection system. The importance of Knowledge-based system (KBS) in the context of concurrent engineering is explained. The study of KBS in material selection in an engineering design process is described. The development in materials databases, which sometimes serve as material selection packages, is also discussed. The use of KBS in material selection and the application in the domain of polymeric-based composite are chosen as typical examples. 2001 Published by Elsevier Science Ltd.1. IntroductionMaterials selection is a task normally carried out by design and materials engineers. Gutteridge and Water- man [1] described the aim of materials selection as the identification of materials, which after appropriate manufacturing operations, will have the dimensions, shape and properties necessary for the product or component to demonstrate its required function at the lowest cost. For the purpose of material selection, thousands of data would be needed to characterize all the grades ofmaterials. Many selection systems are available to help design engineers to choose the most suitable materials. At the most basic level, design engineers could use tables of material properties in data books. However, data sheets are incomplete and once published, they are difficult to update. Dodd and Fairfull [2] described how information about engineering materials, can be divided into two main categories, i.e. data and knowledge. Data is defined as the results of measurements, whereas knowledge represents the connections between items of data, the source of this knowledge, which contributes to an understanding of the results. Both the computerized database and the KBS of material selection will be described in the following sections.2. The material database for materials selection2.1. Supporting data and rigorous logic for the hypothesis and obseruationIn recent years, attention is being made to the use of computer systems to store and process data regarding the properties of materials. It enables the designers to achieve large capacity and rapid retrieval from a computer database to provide easy access to the materials data. According to Prasad [3], materials are the common elements enumerating parts in a product realization process. Nowadays, design engineers normally rely on the materials that they are familiar with. However, when design requirementsexceed the constraints of such materials or exceed the constraints on material properties, concurrent engineering teams must consider alternative materials. With direct online access to a materials database, the concurrent engineering teams could select materials that are lighter, stronger and lower in cost. Assuming that the impact of such substitutions can be analyzed or simulated, the teams could easily make an optimum selection of materials for the available processes, conserve materials for each process and thus, reduce material waste.White [4] emphasized the importance of computer aided materials selection as books have several drawbacks as they are often outdated before reaching the bookshelves. It is very difficult to index them to find answers or to sort data in the manner of your choice.A computerized system, which provides access to materials data, is not necessarily a materials selection system, although access to data is essential to facilitate selection.2.2. Critical reviewThis section reviews the development of computerized materials databases that enabled designers to select the materials in mechanical engineering design application. The development of material databases has been reported by Harmer [5] , Breuer et al [6-10], Baur [11-12] , Michaeli [13] , Ashby [14-15] and Cebon and Ashby [16-17] .Harmer [5] reported that various database systems have been developed for plastics, elastomers and rubbers such as the Cambridge Materials Selector (CMS) , CAMPUS, Selector II, Plaspec, CenBASE/Materials, Mat. DB, Plastics Design Library .Engineered Materials Abstracts, FUNDUS, Prospector Plus, Polymat, SPAO, Pro-Concept, Explorer, Platt’s Polymerscan, Standards Infodisk, Pira Abstracts, Packaging Science and Technology Abstracts, Chem-Intell and Weldasearch. Computer-aided material pre-selection by uniform standards (CAMPUS) is a widely used materials database for plastics [6-10]. A product similar to that of CAMPUS is a database concerned with the selection of long fiber reinforced plastics. This system is called FUNDUS and it allows the distribution of material information from the producer to the designer end-user [11-13]. As such, it is of interest to all who work with sheet molding compound (SMC) , bulk molding compound ?.BMC or glass-mat thermoplastic (GMT) materials as reported by Baur [11-12] and Michaeli et al. [13] . CAMPUS and FUNDUS have features, which allow the user to view all properties for any listed product, print the data for any product search the database for products satisfying specific property requirements, select and view properties for comparison, and sort according to specific requirement in ascending or descending order. Ashby [14, 15] and Cebon and Ashby [16-17] developed a computerized materials selection system called Cambridge Materials Selector (CMS).The system uses materials selection charts, which are a way of displaying material property data through the use of optimization procedures. The selection process depends on implementing performance indices, a combination of material properties, which if maximized, optimizes performance. The charts are developed to present the materials, and the performance indices, so that the most suitable selection of materials and shape can be carried out.机械工程设计选材基础知识S.M. Sapuan摘要本文致力于研究对各种材料选择的电脑化系统发展。