(一)几何证明选讲
几何证明选讲(教师版)

BCDO AP1.如图,点P 在圆O 直径AB 的延长线上,且PB=OB=2,PC 切圆O 于C 点,CD ⊥AB 于D 点,则PC= , CD=.2.如图,AB 是⊙O 的直径,P 是AB 延长线上的一点,过P 作⊙O 的切线,切点为C ,,32=PC 若∠CAP =30°,则⊙O 的直径AB =___________答案43.已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为22,3AB =,则切线AD 的长为 _____。
解:依题意,BC =,∴AC =5,2AD =.AB AC =15,∴AD =154.如图,PA 切O 于点A ,割线PBC 经过圆心O ,OB=PB=1, OA 绕点O 逆时针旋转60°到OD ,则PD 的长为 .解:∵PA 切O 于点A ,B 为PO 中点,∴AB=OB=OA, ∴60AOB ∠=,∴120POD ∠=, 在△POD中由余弦定理,得2222cos PD PO DO PO DO POD =+-⋅∠=1414()72+-⨯-=∴PD 5.如图,在⊙O 中,AB 为直径,AD 为弦,过B 点的切线与ADAD=DC ,则sin ∠ACO=_________解:由条件不难得ABC ∆为等腰直角三角形,设圆的半径为1,则1OB =,2BC =,OC =sin BCO ∠==,s co BCO ∠= ∴ sin ∠ACO=0sin(45BCO -∠)=10106.如图,PT 是O 的切线,切点为T ,直线PA 与O 交于A 、B 两点,TPA ∠的平分线分别交直线TA 、TB 于D 、E 两点,已知2PT =,PB =,则PA = ,TEAD= .;7.已知AB 是圆O 的直径,EF 切圆O 于C ,AD ⊥EF 于D ,AD =2,AB =6,则AC 长为_______. 、23;8.已知AB 是半圆O 的直径,点C 在半圆上,CD AB ⊥于点D ,且4AD DB =,设COD θ∠=,则cos 2θ= .解:()44,AD DB OC OD OC OD =∴+=- 即35OC OD =,22237cos 22cos 12121525OD OC θθ⎛⎫⎛⎫=-=⨯-=⨯-=- ⎪ ⎪⎝⎭⎝⎭9.如图,圆O 是ABC ∆的外接圆,过点C 的切线交AB 的延长线于点D ,CD =3AB BC ==。
高考数学专题几何证明选讲

编写说明:考虑到复习实际,本书将选修4-5不等式选讲与前面第六章不等式、推理与证明整合编写。
选修4-1几何证明选讲第一节相似三角形的判定及有关性质1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边.推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰.2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.相似三角形的判定与性质(1)判定定理:(2)1.在使用平行线截割定理时易出现对应线段、对应边对应顺序混乱,导致错误. 2.在解决相似三角形的判定或应用时易出现对应边和对应角对应失误. [试一试]1.如图,F 为▱ABCD 的边AD 延长线上的一点,DF =AD ,BF 分别交DC ,AC 于G ,E 两点,EF =16,GF =12,则BE 的长为________.解析:由DF =AD ,AB ∥CD 知BG =GF =12,又EF =16知EG =4,故BE =8.答案:82.在△ABC 中,点D 在线段BC 上,∠BAC =∠ADC ,AC =8,BC =16,则CD =________. 解析:∵∠BAC =∠ADC ,∠C =∠C ,∴△ABC ∽△DAC ,∴BC AC =AC CD ,∴CD =AC 2BC =8216=4.答案:41.判定两个三角形相似的常规思路 (1)先找两对对应角相等;(2)若只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例;(3)若找不到角相等,就判断三边是否对应成比例,否则考虑平行线分线段成比例定理及相似三角形的“传递性”.2.借助图形判断三角形相似的方法 (1)有平行线的可围绕平行线找相似;(2)有公共角或相等角的可围绕角做文章,再找其他相等的角或对应边成比例; (3)有公共边的可将图形旋转,观察其特征,找出相等的角或成比例的对应边. [练一练]1.如图,D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC 且ADDB =2,那么△ADE 与四边形DBCE 的面积比是________.解析:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE S △ABC =AD 2AB 2. ∵AD DB =2,∴AD AB =23,∴S △ADE S △ABC =49, ∴S △ADES 四边形DBCE =45.答案:452.如图,已知在△ABC 中,CD ⊥AB 于D 点,BC 2=BD ·AB ,则∠ACB =______.解析:在△ABC 与△CBD 中, 由BC 2=BD ·AB , 得BC BD =ABBC,且∠B =∠B , 所以△ABC ∽△CBD .则∠ACB =∠CDB =90°. 答案:90°平行线分线段成比例定理的应用,AE 交BD 于F ,则BF ∶FD =________.解析:∵AD =BC ,BE ∶EC =2∶3, ∴BE ∶AD =2∶5. ∵AD ∥BC ,∴BF ∶FD =BE ∶AD =2∶5.即BF ∶FD =25.答案:2∶52.(2013·惠州调研)如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5,DE =6,则BF =________.解析:由DE ∥BC 得DE BC =AE AC =35,∵DE =6,∴BC =10. 又因为DF ∥AC ,所以BF BC =BD AB =CE AC =25,即BF =4.答案:43.如图,在四边形ABCD 中,EF ∥BC ,FG ∥AD ,则EF BC +FGAD =________.解析:由平行线分线段成比例定理得 EF BC =AF AC ,FG AD =FC AC , 故EF BC +FG AD =AF AC +FC AC =AC AC=1. 答案:1 [类题通法]比例线段常用平行线产生,利用平行线转移比例是常用的证题技巧,当题中没有平行线条件而有必要转移比例时,也常添加辅助平行线,从而达到转移比例的目的.相似三角形的判定及性质[典例] O 内一点E ,过E 作BC 的平行线与AD 的延长线交于点P .已知PD =2DA =2,则PE =________.[解析] 由PE ∥BC 知,∠A =∠C =∠PED .在△PDE 和△PEA 中,∠APE =∠EPD ,∠A =∠PED ,故△PDE ∽△PEA ,则PD PE =PEP A,于是PE 2=P A ·PD =3×2=6,所以PE = 6.[答案]6[类题通法]1.判定两个三角形相似要注意结合图形特征灵活选择判定定理,特别要注意对应角和对应边.2.相似三角形的性质可用来证明线段成比例、角相等;也可间接证明线段相等. [针对训练](2013·佛山质检)如图,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,则BE =________.解析:由于∠B =∠D ,∠AEB =∠ACD ,所以△ABE ∽△ADC ,从而得AB AD =AEAC,解得AE =2,故BE =AB 2-AE 2=4 2.答案:4 2射影定理的应用[典例] AD ⊥BC 于D∠ABC 的平分线,交AD 于F ,求证:DF AF =AE EC.[证明] 由三角形的内角平分线定理得,在△ABD 中,DF AF =BDAB ,① 在△ABC 中,AE EC =ABBC,②在Rt △ABC 中,由射影定理知,AB 2=BD ·BC , 即BD AB =ABBC. ③ 由①③得:DF AF =ABBC ,④由②④得:DF AF =AEEC .[类题通法]1.在使用直角三角形射影定理时,要学会将“乘积式”转化为相似三角形中的“比例式”.2.证题时,要注意作垂线构造直角三角形是解直角三角形时常用的方法. [针对训练]在Rt △ACB 中,∠C =90°,CD ⊥AB 于D ,若BD ∶AD =1∶9,则tan ∠BCD =________. 解析:由射影定理得CD 2=AD ·BD ,又BD ∶AD =1∶9, 令BD =x ,则AD =9x (x >0).∴CD 2=9x 2,∴CD =3x . Rt △CDB 中,tan ∠BCD =BD CD =x 3x =13.答案:13第二节直线与圆的位置关系1.圆周角定理 (1)圆周角定理圆上一条弧所对的圆周角等于它所对的圆心角的一半. (2)圆心角定理圆心角的度数等于它所对弧的度数.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.2.圆内接四边形的性质与判定定理(1)性质定理1:圆内接四边形的对角互补.定理2:圆内接四边形的外角等于它的内角的对角.(2)判定判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.3.圆的切线性质及判定定理(1)性质:性质定理:圆的切线垂直于经过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.(2)判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.(3)弦切角定理:弦切角等于它所夹的弧所对的圆周角.4.与圆有关的比例线段(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(4)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.1.易混圆心角与圆周角,在使用时注意结合图形作出判断.2.在使用相交弦定理、割线定理、切割线定理时易出现比例线段对应不成比例而失误.[试一试]1.如图,P是圆O外一点,过P引圆O的两条割线PB、PD,P A=AB=5,CD=3,则PC=________.解析:设PC=x,由割线定理知P A·PB=PC·PD.即5×25=x(x+3),解得x=2或x=-5(舍去).故PC=2.答案:22.如图,EB ,EC 是⊙O 的两条切线,B ,C 是切点,A ,D 是⊙O 上两点,如果∠E =46°,∠DCF =32°,则∠BAD =________.解析:由已知,显然△EBC 为等腰三角形, 因此有∠ECB =180°-∠E 2=67°,因此∠BCD =180°-∠ECB -∠DCF =81°. 而由A ,B ,C ,D 四点共圆, 得∠BAD =180°-∠BCD =99°. 答案:99°1.与圆有关的辅助线的五种作法 (1)有弦,作弦心距.(2)有直径,作直径所对的圆周角. (3)有切点,作过切点的半径. (4)两圆相交,作公共弦. (5)两圆相切,作公切线. 2.证明四点共圆的常用方法(1)利用圆内接四边形的判定定理,证明四点组成的四边形的对角互补; (2)证明它的一个外角等于它的内对角; (3)证明四点到同一点的距离相等.当证明四点共圆以后,圆的各种性质都可以得到应用. 3.圆幂定理与圆周角、弦切角联合应用时,要注意找相等的角,找相似三角形,从而得出线段的比,由于圆幂定理涉及圆中线段的数量计算,所以应注意代数法在解题中的应用.[练一练]1.(2013·荆州模拟)如图,P A 是⊙O 的切线,切点为A ,过P A的中点M 作割线交⊙O 于点B 和C ,若∠BMP =110°,∠BPC =30°,则∠MPB =________.解析:由切割线定理得,MA 2=MB ·MC ,又MA =MP ,故MP 2=MB ·MC ,即MB MP =MP MC ,又∠BMP =∠PMC .故△BMP ∽△PMC ,所以∠MPB =∠MCP ,所以30°+∠MPB +∠MCP =∠AMB =180°-110°=70°,所以∠MPB =20°.答案:20°2.(2013·长沙一模)如图,过圆O 外一点P 分别作圆的切线和割线交圆于点A ,点B ,且PB =7,C 是圆上一点,使得BC =5,∠BAC =∠APB ,则AB =________.解析:由P A 为圆O 的切线可得,∠P AB =∠ACB ,又∠BAC =∠APB ,于是△APB ∽△CAB ,所以PB AB =ABBC,而PB =7,BC =5,故AB 2=PB ·BC =7×5=35,即AB =35. 答案:35圆周角、弦切角和圆的切线问题1.(2013·天津高考)如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD ∥AC . 过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .若AB =AC ,AE =6,BD = 5,则线段CF 的长为________.解析:因为AE 是圆的切线,且AE =6,BD =5,由切割线定理可得EA 2=EB ·ED ,即36=EB ·(EB +5),解得EB =4.又∠BAE =∠ADB =∠ACB =∠ABC ,所以AE ∥BC .又AC ∥BD ,所以四边形AEBC 是平行四边形,所以AE =BC =6,AC =EB =4.又由题意可得△CAF ∽△CBA ,所以CA CB =CFCA ,CF=CA 2CB =166=83. 答案:832.(2013·广东高考)如图,AB 是圆O 的直径,点C 在圆O 上.延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E .若AB =6,ED =2,则BC =________.解析:连接OC ,则OC ⊥CE ,∠OCA +∠ACE =90°,∵∠OAC =∠OCA ,∴∠OAC +∠ACE =90°.易知Rt △ACB ≌Rt △ACD ,则∠OAC =∠EAC .∴∠EAC +∠ACE =90°,∴∠AEC =90°,在Rt △ACD 中,由射影定理得:CD 2=ED ·AD ①,又CD =BC ,AD =AB ,将AB =6,ED =2代入①式,得CD = 12=2 3,∴BC =2 3.答案:2 33.(2014·岳阳模拟)如图所示,⊙O 的两条切线P A 和PB 相交于点P ,与⊙O 相切于A ,B 两点,C 是⊙O 上的一点,若∠P =70°,则∠ACB =________.解析:如图所示,连接OA ,OB , 则OA ⊥P A ,OB ⊥PB .故∠AOB =110°, ∴∠ACB =12∠AOB =55°.答案:55° [类题通法]1.圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.2.涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直径(或半径)或向弦(弧)两端作圆周角或弦切角.圆内接四边形的性质及判定[典例]是AB 延长线上的一点,GCD 是⊙O 的割线,过点G 作AG 的垂线,交直线AC 于点E ,交直线AD 于点F ,过点G 作⊙O 的切线,切点为H .(1)求证:C ,D ,E ,F 四点共圆; (2)若GH =6,GE =4,求EF 的长.[解] (1)证明:连接DB , ∵AB 是⊙O 的直径, ∴∠ADB =90°,在Rt △ABD 与Rt △AFG 中,∠ABD =∠AFE , 又∠ABD =∠ACD , ∴∠ACD =∠AFE , ∴C ,D ,E ,F 四点共圆.(2)⎭⎪⎬⎪⎫C ,D ,E ,F 四点共圆⇒GE ·GF =GC ·GD GH 切⊙O 于点H ⇒GH 2=GC ·GD ⇒GH 2=GE ·GF , 又GH =6,GE =4,∴GF =9,EF =GF -GE =5. [类题通法]证明多点共圆,当它们在一条线段同侧时,可证它们对此线段张角相等,也可以证明它们与某一定点距离相等;如两点在一条线段异侧,则证明它们与线段两端点连成的凸四边形对角互补.[针对训练]如图所示,在四边形ABCP 中,线段AP 与BC 的延长线交于点D ,已知AB =AC 且A ,B ,C ,P 四点共圆.(1)求证:PC AC =PDBD;(2)若AC =4,求AP ·AD 的值.解:(1)证明:因为点A ,B ,C ,P 四点共圆,所以∠ABC +∠APC =180°,又因为∠DPC +∠APC =180°,所以∠DPC =∠ABC ,又因为∠D =∠D ,所以△DPC ∽△DBA ,所以PC AB =PD BD ,又因为AB =AC ,所以PC AC =PD BD. (2)因为AB =AC ,所以∠ACB =∠ABC ,又∠ACD +∠ACB =180°,所以∠ACD +∠ABC =180°.由于∠ABC +∠APC =180°,所以∠ACD =∠APC ,又∠CAP =∠DAC ,所以△APC ∽△ACD ,所以AP AC =ACAD ,所以AP ·AD =AC 2=16. 与圆有关的比例线段[典例] 是∠ACB 的平分线,△ACD 的外接圆交BC 于点E ,AB =2AC .(1)求证:BE =2AD ;(2)当AC =1,EC =2时,求AD 的长.[解] (1)证明:连接DE ,因为四边形ACED 是圆的内接四边形,所以∠BDE =∠BCA , 又∠DBE =∠CBA ,所以△BDE ∽△BCA , 所以BE BA =DE CA ,而AB =2AC , 所以BE =2DE .又CD 是∠ACB 的平分线,所以AD =DE ,从而BE =2AD . (2)由已知得AB =2AC =2,设AD =t (0<t <2),根据割线定理得, BD ·BA =BE ·BC ,即(AB -AD )·BA =2AD ·(2AD +CE ),11 所以(2-t )×2=2t (2t +2),即2t 2+3t -2=0,解得t =12,即AD =12. [类题通法]1.应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.2.相交弦定理、切割线定理主要用于与圆有关的比例线段的计算与证明.解决问题时要注意相似三角形知识与圆周角、弦切角、圆的切线等相关知识的综合应用.[针对训练](2014·郑州模拟)如图,已知⊙O 和⊙M 相交于A ,B 两点,AD 为⊙M 的直径,直线BD 交⊙O 于点C ,点G 为弧BD 的中点,连接AG 分别交⊙O ,BD 于点E ,F ,连接CE.求证:(1)AG ·EF =CE ·GD ;(2)GF AG =EF 2CE 2. 证明:(1)连接AB ,AC ,∵AD 为⊙M 的直径,∴∠ABD =90°,∴AC 为⊙O 的直径,∴∠CEF =∠AGD =90°.∵G 为弧BD 的中点,∴∠DAG =∠GAB =∠ECF .∴△CEF ∽△AGD ,∴CE AG =EF GD,∴AG ·EF =CE ·GD . (2)由(1)知∠DAG =∠GAB =∠FDG ,又∠G =∠G ,∴△DFG ∽△ADG ,∴DG 2=AG ·GF .由(1)知EF 2CE 2=GD 2AG 2,∴GF AG =EF 2CE 2.。
高中数学几何证明选讲详解

【命题立意】本题考查几何证明选做题的解法,属送分题
【思路点拨】条件
【规范解答】因为以AC为直径的圆与AB交于点D,所以
A. B. C. D.
【解析】设半径为 ,则 ,由 得 ,从而 ,故 ,选A.
7.在 中, 分别为 上的点,且 , 的面积是 ,梯形 的面积为 ,则 的值为( )
A. B. C. D.
【解析】 ,利用面积比等于相似比的平方可得答案B.
8.半径分别为1和2的两圆外切,作半径为3的圆与这两圆均相切,一共可作( )个.
5. (2010·天津高考理科·T14)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若 ,则 的值为
【命题立意】考查三角形的相似性质的应用。
【思路点拨】利用相似三角形的性质进行转化。
【规范解答】由题意可知 ∽ 相似,
所以 ,由 及已知条件
可得 ,又 , 。
【答案】
6.(2010·广东高考文科·T14)如图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD= ,点E,F分别为线段AB,CD的中点,则EF=.
【答案】
7.(2010·广东高考理科·T14)如图3,AB,CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PD= ,∠OAP=30°,则CP=______.
【命题立意】本题考察垂径定理及相交弦定理.
【思路点拨】由垂径定理得 ,算出 ,再由相交弦定理求出
【规范解答】因为 为 的中点,由垂径定理得 ,在 中, ,由相交弦定理得: ,即 ,
13、圆幂定理

3、理解逆变换的概念,根据变换与矩阵的关系 理解逆矩阵的意义;了解逆矩阵可能不存在; 会证明逆矩阵的唯一性等简单性质;了解二阶 行列式的定义,会用二阶行列式求逆矩阵.
4、能用变换与映射的观点认识解线性方程组的 意义,会用系数矩阵的逆矩阵解方程组;会通 过具体的系数矩阵,从几何上说明线性方程组 解的存在性,唯一性.
5、关注以下问题:与初中平面几何的衔接;如 何培养学生综合地运用综合法推理与计算推 理的能力;启发学生学习几何的兴趣。
二、地位和作用
1、是衔接初中几何与高中几何的桥梁.由于初中几何对 推理的要求不高,平面几何知识相对又不够完整,所 以在高中要对平面几何加以复习提高,并加强对学生 推理能力的训练.
2、几何证明是培养学生逻辑推理能力的最好载体,迄今 为止还没有其他课程能够替代几何的这种地位.
难点:线性变换的基本性质、矩阵乘法的 运算律(这可能是学生第一次遇到不满 足交换律、消去律的运算)、矩阵的特 征值与特征向量的概念等.
五、本专题中数学思想方法
类比;从特殊到一般;从具体到抽 象;转化;运动变换;算法的思想 ;“数形结合”等多种数学思想方 法.
六、内容简介
第一章 二阶矩阵与平面图形的变换(分 为三大节)
C
D
AG
.
F
O
MB
E
C
D
AG
.
F
O
MB
E
第二章 圆柱、圆锥与圆锥曲线(本章分 两大节编写)
2.1平行投影与圆柱面的平面截线(分2小节) 2.1.1平行投影的性质. 2.1.2圆柱面的平面截线. 2.2用内切球探索圆锥曲线的性质(分4小节) 2.2.1球的切线与切平面. 2.2.2圆柱面的内切球与圆柱面的平面截线. 2.2.3圆锥面及其内切球. 2.2.4圆锥曲线的统一定义.
专题:几何证明选讲

专题:几何证明选讲【知识梳理】1.相似三角形的判定定理:判定定理1.两角对应相等的三角形相似。
判定定理2.三边对应成比例的两个三角形相似。
判定定理3.两边对应成比例,并且夹角相等的两个三角形相似。
2.相似三角形的性质性质定理1.相似三角形对应边上的高、中线和它们的周长的比都等于相似比。
性质定理2.相似三角形的面积比等于相似比的平方。
3.平行截割定理三条平行线截任意两条直线,所截出的对应线成比例。
4.射影定理直角三角形中,每一条直角边是这条直线边在斜边上的射影和斜边的比例中项;斜边上的高是两条直角边在斜边上的射影的比例中项。
5.圆周角与弦切角圆的切线判定定理:经过圆的半径的外端切垂直于这条半径的直线,是圆的切线。
圆的切线的性质定理:圆的切线垂直过圆的半径。
推论1.从圆外的一个已知点所引的两条切线长相等。
推论2.经过圆外的一个已知点和圆心的直线,平分从这个点向圆所做的两条切线所夹的角。
6.圆周角定理圆周角的度数等于它所对弧的度数的一半。
推论1.直径所对的圆周角都是直角推论2.同弧或等弧所对的圆周角相等。
推论3.等于直角的圆周角所对的弦是圆的直径。
7.弦切角定理弦切角的度数等于它所夹的弧的度数的一半。
推论:弦切角等于它所夹弧所对的圆周角。
8.圆幂定理相交弦定理:圆内的两条相交弦,被交点分成的两条线短长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
圆幂定理:(不用掌握)9.圆内接四边形的性质定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
10.圆内接四边形的判定定理:如果一个四边形的一组对角互补,那么这个四边形内接于圆。
【知识梳理】平行线等分线段定理平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。
推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。
10-1几何证明选讲 39张 公开课一等奖课件

[证明]
EP AE (1)∵EP∥BC,∴ = . BC AB
PF DF 又∵PF∥BC,∴ = . BC DC AE DF EP PF ∵AD∥EF∥BC,∴AB=DC,∴BC=BC, ∴EP=PF.
(1)△DFE∽△EFA;
(2)△EFG∽△EFC.
[解析] 证明:(1)∵EF∥CB,
∴∠DEF=∠DCB. ∵∠DCB和∠DAB都是弧DB上的圆周角, ∴∠DAB=∠DCB=∠DEF. ∵∠DFE=∠EFA,
∴△DFE∽△EFA.
(2)由(1)知:△DFE∽△EFA, EF FD ∴ = , FA EF 即 EF2=FA· FD. 由割线定理得 FA· FD=FG· FC. EF FC ∴EF =FG· FC,即 = . FG EF
线 AD 的延长线交它的外接圆于点 E. (1)证明:△ABE∽△ADC; 1 (2)若△ABC 的面积 S=2AD· AE, 求∠BAC 的大小.
[分析] (1)利用两角对应相等,两三角形相似. (2)利用△ABE∽△ADC及面积公式来求解. [证明] (1)由已知条件,可得∠BAE=∠CAD. 因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB= ∠ACD. 故△ABE∽△ADC.
与另一个三角形的两个角对应相等,那么这两个三角形相 似 ( 简叙为:两角对应相等,两三角形相似 ) ;如果一个三 角形的两条边和另一个三角形的两条边对应成比例,并且 夹角相等,那么这两个三角形相似(简叙为:两边对应成比
例且夹角相等,两个三角形相似);如果一个三角形的三条
边与另一个三角形的三条边对应成比例,那么这两个三角 形相似(简叙为:三边对应成比例,两个三角形相似).
(8)直角三角形的射影定理:直角三角形斜边上的高是
几何证明选讲定理大全

6.ΔABC内接于⊙O,AD是⊙O旳直径, CE⊥AD,E为垂足,CE旳延长线交AB
于点F,求证:AC2=AF·AB.
7.已 知BC是 圆O的直 径,AD BC,垂足 为D, BF交AD于E, 且AE BE. (1)求证 :弧AB 弧AF; (2)如 果sinFBC 3,AB 4 5, 求AD的 长.
直线CE和⊙O切于点C,AD⊥CE,垂
足为D,
求证:AC平分∠BAD
E
O
A
C
D
2.如图,⊙O和⊙O′都经过A、B 两点,AC是⊙O ′旳切线,交 ⊙O于C,AD是⊙O旳切线,交 ⊙O ′于D,
求证:AB2=BC·BD.
A
O CB
O' D
3.在△ABC中,∠A旳平分线AD交BC 于D,⊙O过点A,且和BC切于D, 和AB、AC分别交于E、F, 求证:EF//BC.
若∠PAD=∠DCB,则ABCD四点共圆;
D
若∠ADB=∠ACB,则ABCD四点共圆;
C O
PA
B
练习
情况唯一吗?
1.⊙O1和⊙O2都经过A、B两点,经过A点旳直线CD与
⊙O1交于点C,与⊙O2交于点D,经过B点旳直线EF与
⊙O1交于点E,与⊙O2交于点F,求证:CE∥DF.
D
E
A
A
D
C
C O1
O2
F
D
E
B
C
A
D
E
16
16 8
CF DE , BF 8
.
3
33
B
几何证明选讲(广东文数)

选修4-1 《几何证明选讲》复习讲义一、广东高考考试大纲说明的具体要求:(1)了解平行线截割定理,会证直角三角形射影定理. (2)会证圆周角定理、圆的切线的判定定理及性质定理.(3)会证相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理.二、基础知识梳理:1.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于______;相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_________________; 相似三角形面积的比、外接圆的面积比都等于____________________;2. 直角三角形的射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;222A AD BC =___________,__________,__________ABCRtAD AB AC ==如图,中,为直角,为斜边上的高,则3.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半。
圆心角定理:圆心角的度数等于_______________的度数。
推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧______。
推论2:半圆(或直径)所对的圆周角是_______;90o的圆周角所对的弦是________。
弦切角定理:弦切角等于它所夹的弧所对的______________。
圆内接四边形的性质与判定定理_ B_ C_ A4.圆中的比例线段三、常见题型题型一.相似三角形的性质、直角三角形的射影定理等 例1.如图,在四边形ABCD 中,EF//BC ,FG//AD , 则=+ADFGBC EF .变式练习. 在ABC 中,//DE BC ,DE 将ABC 分成面积相等的两部分,那么:DE BC =__________例2. 如图,在ABC 中,AD 是BC 边上中线,AE 是BC 边上的高,D A B D B A ∠=∠,18AB =,12BE =,则CE =__________.题型二.与圆角度相关问题例1.如图,AB 是直径,点D 在AB 的延长线上,BD=OB ,若CD 切⊙O 于C 点,则∠CAB 的度数为 ,∠DCB 的度数为 ,∠ECA 的度数为 _ __ .变式练习.如图,AB 是⊙O 的直径,点D 在AB 的延 长线上, BD=OB ,CD 与⊙O 切于C ,那么 ∠CAB==________.例2.如图:EB 、EC 是⊙O 的两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E =460,∠DCF =320,则∠A 的度数是 ____变式练习. 如图,AB 是半圆O 的直径,C 、D 是半圆上的两点,半圆O 的切线PC 交AB 的延长线于点P ,∠PCB =25°,则∠ADC 为________题型三.切割线定理例1.如图,从圆O 外一点P 作圆O 的割线PAB 、PCD,AB 是圆O的直径,若PA=4, PC=5, CD=3, 则AB= __。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)几何证明选讲
1.如图,O 是△ABC 外接圆的圆心,∠ACB =54°,求∠ABO 的值.
解 连结OA ,因为O 是圆心,所以∠AOB =2∠ACB ,
所以∠ABO =12(180°-∠AOB ) =12
(180°-2∠ACB ) =90°-∠ACB =90°-54°=36°.
2.如图,已知A ,B ,C 是圆O 上的三点,BE 切圆O 于点B ,D 是CE 与圆O 的交点,若∠BAC =60°,BE =2,BC =4,求线段CD 的长.
解 因为BE 切圆O 于点B ,所以∠CBE =∠BAC =60°.
因为BE =2,BC =4,由余弦定理得EC =2 3.
又BE 2=EC ·ED ,所以DE =
233, 所以CD =EC -ED =23-233=433
. 3.如图,已知点C 在圆O 的直径AB 的延长线上,CD 是圆O 的一条切线,D 为切点,点D 在AB 上的射影是点E ,CB =3BE .
求证:(1)DB 是∠CDE 的平分线;
(2)AE =2EB .
证明 (1)连结AD ,∵AB 是圆O 的直径,
∴∠DAB +∠DBA =90°,
∵DE ⊥AB ,∴∠BDE +∠DBA =90°,
∴∠DAB =∠BDE ,
∵CD 切圆O 于点D ,
∴∠CDB =∠DAB ,
∴∠BDE =∠CDB ,
∴DB 是∠CDE 的平分线.
(2)由(1)可得DB 是∠CDE 的平分线, ∴CD DE =CB BE
=3,即CD =3DE . 设BE =m (m >0),DE =x (x >0),则CB =3m ,CD =3x ,
在Rt △CDE 中,
由勾股定理可得(3x )2=x 2+(4m )2,则x =2m ,
由切割线定理得CD 2=CB ·CA ,(32m )2=3m ·CA ,
CA =6m ,AB =3m ,AE =2m ,
则AE =2EB . 4.(2018·江苏海安中学质检)如图,在Rt △ABC 中,∠B =90°,它的内切圆分别与边BC ,CA ,AB 相切于点D ,E ,F ,连结AD ,与内切圆相交于另一点P ,连结PC ,PE ,PF ,已知PC ⊥PF ,
求证:(1)PF FD =PD DC
;(2)PE ∥BC . 证明 (1)连结DE ,
则△BDF 是等腰直角三角形,
于是∠FPD =∠FDB =45°,
故∠DPC =45°.
又∠PDC =∠PFD ,则△PFD ∽△PDC ,
所以PF FD =PD DC
.① (2)由∠AFP =∠ADF ,∠AEP =∠ADE ,
知△AFP ∽△ADF ,△AEP ∽△ADE .
于是,EP DE =AP AE =AP AF =FP DF
. 故由①得EP DE =PD DC
,②
由∠EPD=∠EDC,结合②得,△EPD∽△EDC,从而△EPD也是等腰三角形.
于是,∠PED=∠EPD=∠EDC,所以PE∥BC.。