2018对口升学全真模拟测试卷(数学4)
湖南省2018年普通高等学校对口招生考试数学试卷与答案

湖南省 2018 年普通高等学校对口招生考试数 学本试题卷包括选择题、填空题和解答题三部分,共 4 页。
时量 120 分钟。
满分120 分一. 选择题(本大题共 10 小题,每小题 4 分,共 40 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合 A={1,2,3,4} , B={3,4,5,6} ,则 ( )A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6} 2. “ x 2 9 是 x 3的( ) 条件A. 充分必要B. 必要不充分C. 充分不必要D.既不充分也不必要3. 函数 y x 22 x 的单调增区间是 ( )A. (,1] B. [1, )C. ( , 2]D.[0, )4. 已知 cos3 ,且 为第三象限角,则 tan =( )A.45334B.C. D.3 4435. 不等式 | 2 x 1| 1的解集是 ()A. { x | x 0}B.{x | x 1}C.{ x | 0 x 1} D. { x | x 0 或 x 1}6. 点 M 在直线 3x+4y-12=0 上, O 为坐标原点,则线段 OM 长度的最小值是 ()A.3B.4C.12D.122557. 已知向量 a 、 b 满足 | a | 7,| b | 12 , a b 42 , 则向量 a 、 b 的夹角为 ()A.30 °B.60 °C.120° D.150°8. 下列命题中,错误 的是 ( )..A. 平行于同一个平面的两个平面平行B. 平行于同一条直线的两个平面平行C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交9.已知 a sin 15 , b sin 100 , c sin 200 , 则 a,b,c 的大小关系为 ( )A. a b cB.a c bC.c b aD.c a b面积的最10. 过点( 1,1 )的直线与圆x 224相交于A,B 两点,O 为坐标原点,则△大值为 ()yOABA.2B.4C.3D. 2 3二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11. 某学校有 900 名学生,其中女生 400 名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为 45 的样本,则应抽取男生的人数为 ______。
2018湖年南省对口升学数学全真模拟试卷

2018湖年南省对口升学数学全真模拟试卷一、单选题(每一小题的备选答案中,只有一个答案是正确的,请把你认为正确答案的题号填入下列相应的表格内。
错选、多选、不选均不给分,10小题,每小题4分,共40分)。
1.已知集合A =}3,2,1,0{, B =}4,3,2{,则=⋃B A ( )A .}32{,B .}3,2,1,0{C .}4,3,2,1,0{D .}3{2. 若直线1l 的斜率为1k ,直线2l 的斜率为2k , 则“21//l l ” 是“21k k =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.下列函数中,既是奇函数又是增函数的是的( ) A. 12+=x y B.x y sin = C. 3x y = D. xy 1=4.直线01243=+-y x 与圆03222=--+x y x 的位置关系是( )A .相交B .相离C .相切D .相交且过圆心 5.已知51sin -=α,⎪⎭⎫⎝⎛∈23,ππα,则=αcos ( ) A .562 B . 54- C .562- D .2524-6.()812-x 展开式中第四项的系数为( )A .56B .1792C .56-D .1792-7.已知向量)8,(m a =→,)1,2(-=m b ,若b a⊥,则m 的值为( )A .41B .21± C .2± D .48.双曲线1422=-y x 的渐近线方程为( ) A .x y 4±= B .x y 41±= C .x y 2±= D .x y 21±= 9.从1,2,3,4,5,6这六个数字中,任取两个数字,恰有一个偶数的概率是( )A .8.0B .6.0C .4.0D .2.010.若过点)1,3(--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( )A. ]6,0(πB. ]3,0(πC. ]6,0[πD. ]3,0[π二、填空题(本大题共5个小题,每小题4分,共20分)11.不等式0652≤--x x 的解集为 .(用区间表示)12.某工厂有若干个车间,现采用分层抽样的方法从全厂某天的2048件产品中抽取一个容量为128的样本进行质量检查,若一车间这天生产256件产品,则从该车间抽取的产品件数为 .13.已知ABC ∆的三个内角A ,B ,C 对应的三边分别为c b a ,,,4π=B ,2=c ,3=a ,则=A sin _________.14.若函数6)12()(2+-+=x a x x f 在),3[+∞上单调递增,则a 的取值范围为 .15.等比数列{}n a 的前n 项和为k S n n +=+12,则=k .三、解答题(本大题共7小题,其中第21、22小题为选做题。
2018江苏省对口单招数学模拟试卷

盐城市2018年普通高校单独招生第二次调研考试试卷数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(填充题.解答题).两卷满分150分,考试时间120分钟.第Ⅰ卷(共40分)注意事项:将第Ⅰ卷每小题的答案序号写在答题纸上一、选择题:(本大题共10小题,每小题4分,共40分,每小题列出的四个选项中,只有一项是符合要求的) 1. 设集合}0,1,2{--=A ,}1,{lgx B =,}0{=⋂B A ,则x =( )A .-1B .-2C .1D .22.化简逻辑式ABC ABC AB A +++=( )A .1B .0 C. A D .A 3.下表为某项工程的工作明细表,则完成此工程的关键路径是( ) A .A B G H →→→ B .AC E G H →→→→ C G H →→n 的值可为( ) A .10 B .8 C .6 D .45.已知),0(,43)tan(πθθπ∈=-,则=+)2sin(θπ( ) A .54 B .54- C .53 D .53-6.已知点)cos ,(sin θθP 在直线01=-+y x 的上方,则θ的取值范围是( ) A .),2(ππB .Z ∈+k k k )2,(πππ C .),0(π D .Z ∈+k k k ),(πππ7.若一个轴截面是面积为2的正方形的圆柱,它的侧面积与一个正方体的表面积相等,则该正方体的棱长为( )A .66π B .33π C .22π D .36π8.将3台电视机和2台收录机排成一排,要求收录机互不相邻且不排在首、尾,则不同的排列方法种法共有( ) A .12种 B .36种 C .72种 D .120种9.抛物线x y 82-=的准线与双曲线12422=-y x 的两渐近线围成的三角形的面积为( )A .4B .24C .22D .210.已知b >0,直线b 2x +y +1=0与a x -(b 2+4)y +2=0互相垂直,则ab 的最小值为( ) A .1B .2C .22 D .4第Ⅰ卷的答题纸第Ⅱ卷(共110分)二、填空题:(本大题共5小题,每小题4分,共20分,把答案填在题中的横线上) 11.已知数组(2,4,3),(1,,),2a b m n a b ===,则log (1)___________m n -=. 12.已知复数z 满足方程0922=+-x x ,则z = .13.已知奇函数f (x )(x ∈R ,且x ≠0)在区间(0,+∞)上是增函数,且f (-3)=0,则f (x )>0的解集是 . 14.函数⎩⎨⎧≥<<-=-0,01),sin()(12x e x x x f x π,若2)()1(=+a f f ,则a 的所有可能值为 . 15.若过点P ()3,1作圆122=+y x 的两条切线,切点分别为A 、B 两点,则=AB .三、解答题:(本大题共8题,共90分) 16.(本题满分8分)已知指数函数)(x g y =满足:g(2)=4.定义域为R 的函数mx g nx g x f ++-=)(2)()(是奇函数. (1)求)(x g y=的解析式;(2)求m ,n 的值.17.(本题满分10分)已知函数]1)1[(log )(2+--=a x a x f 的定义域为),1(+∞.(1)求a 的取值范围;(2)解不等式:x xxa a382-->.18.(本题满分12分)在ABC ∆中,角C B A 、、所对的边分别是c b a 、、,C A C A sin sin 21cos cos ⋅=+.(1)求B ∠;(2)当ABC ∆的面积为34,周长为12,求CA ca sin sin ++的值.19.(本题满分12分)为了解盐城某中等专业学校的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列.(1)为了详细了解高三学生的视力情况,从样本中视力在[4.9,5.1)中任选2名高三学生进行分析,求至少有1人视力在 [5.0,5.1)的概率; (2)设b a ,表示参加抽查的某两位高三学生的视力,且已知)0.5,9.4[)6.4,5.4[, ∈b a ,求事件“1.0||>-b a”的概率.20. (本题满分14分)已知n S 为各项均为正数的数列{}n a 的前n 项和,且12、n a 、n S 成等差数列. (1)求数列{}n a 的通项公式;(2)若212nb n a ⎛⎫= ⎪⎝⎭,求证{}n b 为等差数列;(3)n n nb ac -=,求数列}{n c 的前n 项和n T .21. (本题满分10分)我市有一种可食用的食品,上市时,外商王经理按市场价格20元/千克收购了这种食品1000千克放入冷库中,据预测,该食品市场价格将以每天每千克1元上涨;但冷冻存放这些食品时每天需支出各种费用合计310元,而且这类食品在冷库中最多保存160天,同时每天有3千克的食品损坏不能出售. (1)设x 天后每千克该食品的市场价格为y 元,试写出y 与x 的函数关系式;(2)若存放x 天后将这批食品一次性出售,设这批食品的销售总额为P 元,试写出P 与x 的函数关系式; (3)王经理将这批食品存放多少天后出售可获得最大利润W 元?(利润=销售总额-收购成本-各种费用) 22.(本题满分10分)盐城某工厂生产甲、乙两种新型产品,按计划每天生产甲、乙两种新型产品均不得少于3件,已知生产甲种新型产品一件需用煤3吨、电2度、工人4个;生产乙种新型产品一件需用煤5吨、电6度、工人4个.如果甲种新型产品每件价值7万元,乙种新型产品每件价值10万元,且每天用煤不超过44吨,用电不超过48度,工人最多只有48个.每天应安排生产甲、乙两种新型产品各多少件,才能既保证完成生产计划,又能为企业创造最大的效益?23.(本题满分14分)已知椭圆C 中心在原点,长轴在x 轴上,F 1、F 2为其左、右两焦点,点P 为椭圆C 上一点,212,PF F F ⊥且122PF PF == (1) 求椭圆C 的方程;(2) 若圆E 经过椭圆C 的三个顶点,且圆心在x 轴的正半轴上,求圆E 的方程;(3)若倾斜角为450的一动直线l 与椭圆C 相交于A 、B 两点,求当△AOB (O 为坐标原点)面积最大时直线l 的方程.盐城市2018年普通高校单独招生第二次调研考试试卷数学答案一、选择题:二、填空题:11. -1 12. 3 13. (-3,0)∪(3,+∞) 14. 1或-2215.3 三、解答题:16.解:⑴设)10(,)(≠>==a a a x g y x且 由4)2(=g 得:xx g a a 2)(,2,42=∴=∴=; ⑵由题意得:0)0(=f ,0)0(2)0(=++-∴mg ng ,则1)0(==g n ,1221)(++-=∴x x m x f ,则121221)1(111+=+-=-+--m m f ,41221)1(11+-=+-=+m m f 由)1()1(f f -=-得:41121+=+m m ,解得:.2=m17.解:⑴由题意得:01)1(>+--a x a ,则1)1(->-a x a定义域为),1(+∞,1,01>∴>-∴a a ;⑵由⑴得:1>a ,∴不等式化为:x x x 382->-,即:0822>-+x x 解得:{}.42-<>x x x 或18. 解①∵21sin sin cos cos -=⋅-C A C A ∴21)cos(-=+C A ∵),0(21cos π∈=B B 又∴ 60=B ②∵B ac S ABC sin 21⋅=∆ ∴232134⋅⋅=ac ∴16=ac 又12=++c b a ∴b c a -=+12 ∵B ac c a b cos 2222⋅-+=∴ac c a b -+=222 ∴163)12(22⨯--=b b ∴4=b ∴338234sin sin sin ===++B b C A c a19. 解:(1)由题可知:[)4.4,3.4的频数为11.01.0100=⨯⨯,[)5.4,4.4的频数为31.03.0100=⨯⨯.由前4项的频数成等比数列,则可知公比为3, 所以[)6.4,5.4的频数为9,[)7.4,6.4的频数为27. 又后6组的频数成等差数列,则可设数列公差为d , 所以13100256276-=⨯+⨯d 5-=⇒d . 所以[)0.5,9.4的频数12,[)1.5,0.5的频数为7. 设“至少有1人视力在[)1.5,0.5”为事件A .所以5735)(2191121727=+=C C C C A P . (2)设“1.0>-b a ”为事件B . 如图所示:()b a ,可以看成平面中的点坐标,则全部结果所构成的区域为而事件B 构成的区域{}Ω∈>-=),(,1.0),(b a b a b a B .所以21)(=B P . 20. 解:(1)∵12,n a ,n S 成等差数列∴122n n a S =+,即122n n S a =- ……………………………………1分当1n =时,111122a S a ==-,∴ 112a = ……………………………………2分当2n ≥时,1n n n a S S -=- ∴12nn a a -=∴数列{}n a 是以12为首项,2为公比的等比数列, ……………………………3分 ∴121222n n n a --== ……………………………………………………4分 (2)由21()2n b n a =可得2241122log log 224n n n b a n -===-+ ……………………………………6分∴1[2(1)4](24)2n n b b n n +-=-++---=-为常数∴{}n b 为等差数列 ……………………………………………………………8分(3)由(1)、(2)可得21(24)2(2)2n n n c n n --=--+=- ………………………10分 则01221120212(3)2(2)2n n n T n n --=-⨯+⨯+⨯++-⨯+-⨯ ①2n T = 122120212-⨯+⨯+⨯+1(3)2(2)2n n n n -+-⨯+-⨯ ②①-② 得12311(2)2(2222)nn Tn n --=---⨯+++++∴(3)23nn T n =-⨯+ …………………………………………………………14分21.解:⑴由题意得:),1601(,20Z x x x y ∈≤≤+=; ………………3分 ⑵由题意得:),1601(,200009403)31000)(20(2Z x x x x x x P ∈≤≤++-=-+=;………………6分⑶由题意得:33075)105(3310100020)200009403(22+--=-⨯-++-=x x x x W∴当33075105max ==W x 时,,∴存放105天出售可获得最大利润,为33075元. ………………10分22. 解:设每天安排生产甲、乙两种新型产品各y x 、件,利润为z 万元.作出可行区域(如图所示)目标函数可化为10107zx y +-=,作出直线x y l 107:0-=,经过平移在A 点出取得最大值.⎩⎨⎧=+=+124453y x y x ⎩⎨⎧==⇒48y x 即)4,8(A 所以每天应安排生产甲、乙种新型产品各8、4件时,既保证完成生产计划,又能为企业创造最大的效益.()222210x y a b a b+=>>,则23. 解:(1)依题意设椭圆方程为:22222a c a b c ⎧=⎪⎪⎪⎪=⎨⎪⎪=+⎪⎪⎩∴1a b ⎧=⎪⎨=⎪⎩2212x y +=………………………………………4分 (3)设动直线l 方程为y=x+m ,由2212y x m x y =+⎧⎪⎨+=⎪⎩消y 得:3x 2+4mx+2m 2-2=0,……………………………10分∵直线与椭圆有两个交点,∴△>0即m 2<3,设A (x 1,y 1)、B (x 2,y 2)∴,322,3422121-=-=+m x x m x x 代入弦长公式 得2334m AB -=,又原点O 到直线y=x+m 的距离2m d =4923323322334212122422+⎪⎭⎫⎝⎛--=-=⋅-⋅==∴∆m m m m m d AB S AOB……………………………12分 ∵332<,∴m 2=32,即m =时, AOB S最大,此时直线l方程为y x =±14分 解法二:设动直线l 方程为y=x+m ,由2212y x m x y =+⎧⎪⎨+=⎪⎩消x 得:3y 2-2my+m 2-2=0, (10)分∵直线与椭圆有两个交点,∴△>0即m 2<3,设A (x 1,y 1)、B (x 2,y 2)∴2121222,33m y y m y y -+==,∴12y y -==l 与x 轴交于点(-m ,0),∴12AOBS=-=……………………………12分=332<,∴m 2=32,即2m =±时,AOB S最大,此时直线l 方程为2y x =±…………………………14分 .。
四川省2018年对口招生统一考试数学-正文

四川省2018年普通高校职教师资班和高职班对口招生统一考试数 学本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)㊂第Ⅰ卷1 3页,第Ⅱ卷3 4页,共4页㊂考生作答时,须将答案答在答题卡上,在本试题卷㊁草稿纸上答题无效㊂满分150分㊂考试时间120分钟㊂考试结束后,将本试题卷和答题卡一并交回㊂第Ⅰ卷(共60分)注意事项:1.必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑㊂2.第Ⅰ卷共1大题,15小题,每小题4分,共60分㊂一㊁选择题(本大题共15小题,每小题4分,共60分㊂在每小题列出的四个选项中,只有一个是符合题目要求的)1.设集合A ={a ,b },B ={b ,c },则A ɘB =A.⌀B .{b }C .{a ,c } D.{a ,b ,c }2.s i n 2π+π6æèçöø÷=A.32B .-32C .12D.-123.函数f (x )=1x -1的定义域是A.(1,+ɕ)B .(-ɕ,1)C .(-ɕ,1)ɣ(1,+ɕ) D.(-ɕ,+ɕ)4.已知平面向量a =(2,0),b =(1,-1),则a ㊃b =A.2B .1C .0 D.-15.函数y =s i n x c o s 2x2-s i n x 2æèçöø÷的最小正周期是A.2πB .πC .π2D.π46.一元二次不等式x 2-1<0的解集为A.(-ɕ,-1)ɣ(1,+ɕ)B .(-ɕ,-1]ɣ[1,+ɕ)C .(-1,1) D.[-1,1]7.过点(2,0)且与直线2x +y -2=0平行的直线方程是A.2x +y -4=0B .2x -y +4=0C .x +2y -4=0D.x -2y +4=08.双曲线x 24-y 29=1的渐近线方程是A.y =ʃ49xB .y =ʃ94xC .y =ʃ23x D.y =ʃ32x9.设a ,b 均为大于0且不等于1的常数,对数函数f (x )=l o g a x 与g (x )=l o g bx 在同一直角坐标系中的大致图象如图所示,则下列结论正确的是A.0<b <1<a B .0<a <1<b C .0<b <a <1 D.1<b <a 10.某商场对使用移动支付的客户发放问卷,调查用户偏好等内容,共有2000名使用移动支付的客户参与了本次调查.用x (单位:岁)表示客户的年龄,参与了本次调查的客户中,x ɤ30的有1600人,30<x ɤ40的有300人,40<x ɤ50的有60人,x >50的有40人.采用分层抽样的方法,从参与了本次调查的客户中抽取容量为500的样本,则x ɤ30的客户应抽取的人数为A.100B .200C .300 D.40011.某公司销售一种商品的利润L (单位:百元)是销售量x (件)的函数,且L (x )=-x 2+200x -100(0<x <190),则该公司销售这种商品的最大利润是A.900百元B .990百元C .9900百元D.9990百元2.设a ,b ,c ɪR ,则a >b 是a c 2>b c 2的A.充分且不必要条件B .必要且不充分条件C .充要条件 D.既不充分又不必要条件13.l o g 33+l o g 71+2l g 2+l g 25=A.1B .2C .3 D.514.设α,β是两个不同的平面,l ,m 是两条不同的直线.给出下列三个命题:①若l ʅα,m ʅα,则l ʊm ;②若αʊβ,l ʊα,m ʊβ,则l ʊm ;③若l ʊm ,l ʊα,m ʊβ,则αʊβ.其中正确命题的个数是A.0B .1C .2 D.315.若将函数y =s i n 2x -π3æèçöø÷的图象变为函数y =s i n 2x +π2æèçöø÷的图象,则需将第一个函数的图象A.向左平移5π12个单位B .向左平移π12个单位C .向右平移5π12个单位 D.向右平移π12个单位第Ⅱ卷(共90分)注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答㊂作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚㊂答在试题卷㊁草稿纸上无效㊂2.第Ⅱ卷共2大题,11小题,共90分㊂二㊁填空题(本大题共5小题,每小题4分,共20分)16.已知平面向量a=(-1,2),b=(4,2),则|a+b|=.17.二项式(x+2)6展开式中含有x5项的系数为.18.抛物线y2=-4x的准线方程为.19.某变速箱的第1个到第9个齿轮的齿数成等差数列,其中第1个齿轮的齿数是25,第9个齿轮的齿数是57,则第5个齿轮的齿数是.20.已知函数f(x)是定义在R上的奇函数,且对任意xɪR都有(x+2)=f(x).当0<x<1时,f(x)=x+1,则f(-1)+f(0)+f92æèçöø÷=.(用数字作答)三㊁解答题(本大题共6小题,共70分,解答应写出文字说明㊁证明过程或演算步骤) 21.(本小题满分10分)某工厂生产一批商品,其中一等品占45,每件一等品获利20元;二等品占320,每件二等品获利10元:次品占120,每件次品亏损10元.设ξ为任一件商品的获利金额(单位:元) (Ⅰ)求随机变量ξ的概率分布;(Ⅱ)求随机变量ξ的均值.12.(本小题满分12分)在等比数列{a n}中,a6-a4=a5+a4=24,求数列{a n}的通项公式及前n项和S n.23.(本小题满分12分)如图,已知四棱锥P A B C D的底面为正方形,P Dʅ底面A B C D,P D=A D=1,E为线段P B的中点.(Ⅰ)求四棱锥P A B C D的体积;(Ⅱ)证明:B DʅC E.24.(本小题分12分)已知直线l1:x+2y-2=0与直线l2垂直,且直线l2与y轴的交点为A(0,4) (Ⅰ)求直线l2的方程;(Ⅱ)设直线l1与x轴的交点为B,求以A B的中点为圆心并与x轴相切的圆的标准方程.25.(本小题满分12分)已知b,c为实数,函数f(x)=14x2+b x+c,对一切实数x都有f(x-2)=f(x)成立. (Ⅰ)求b的值;(Ⅱ)设F(x)=f(x)-x,不等式f(x)ȡ0与2F(x)ɤ(x-1)2对一切实数x都成立,求c的值.26.(本小题满分12分)在әA B C中,内角A,B,C所又对的边分别为a,b,C.(Ⅰ)设әA B C的面积为S,证明:S=12a b s i n C;(Ⅱ)已知әA B C的面积是1.记u=a2+b2-a b c o s C,证明:uȡ23.。
2018中职生对口升学数学试题,真题

2018中职生对口升学数学试题本试卷分选择题和非选择题两部分,满分100分,考试时间为90分钟。
选择题注意事项:1.选择题答案必须填涂在答题卡上,写在试卷上的一律不计分。
2.答题前,考生必须将自己的姓名、准考证号、座位号、考试科目涂写在答题卡上。
3.考生须按规定正确涂卡,否则后果自负。
一、选择题(本大题共12小题,每小题3分,共36分)1.设全集U =R .集合A ={}{}()=≤=≤-B C A x x B x x U 则,0|,21|( ) A. [0, 3] B.(O, 3] C. [-1, 0) D. [-1, 0] 2.在等比数列{}n a 中, 已知===421,6,3a a a 则( ) A.12 B.18 C.24 D.48 3. lg 3 + lg 5 =( )A. lg 8B. lg 3·lg 5C. 15D. lg 15 4.下列函数为偶函数的是( )A.x y sin =B.)sin(x y +=πC.)sin(x y -=πD.)2sin(x y -=π5.下列函数在定义域内为增函数数的是( ) A.21x y = B.x y 21log =C.xy -=2D.xy 1=6.已知向量=⊥-=-=m b a m m b m a 则而且,),6,(),1,(( )A.-3B.2C.-3或2D.-2或3 7.已知x 3log =2则A.32=x B.32=x C.x =23D.23=x8.如果角α的终边过点P(-3.4).则=αcos ( ) A.53-B.53C.54-D.54 9.设直线m 平行于平面α,直线n 垂直于平面β,而且αβα⊄⊥n ,,则必有 A. m //n B.m ⊥n C. β⊥m D. n //α10.已知1916,2221=+y x F F 是椭圆的两焦点,过点1F 的直线交椭圆于A, B 两点,若=+=11,5BF AF AB 则A.16B.10C.10D.9非选择题注意事项:用蓝黑色钢笔或圆珠笔将答案直接写在试卷上。
河南省2018年对口升学高考数学试题

河南省2018年普通高等学校对口招收中等职业学校毕业生考试数 学考生注意:所有答案都要写在答题卡上,写在试题卷上无效一、选择题(每小题3分,共30分)1、下列关系式中,正确得就是 ( )A 、 A A =φIB 、 φ=AC A U IC 、 A B A ⊇ID 、 B B A ⊇I2、若10<<x ,则下列式子中,正确得就是 ( )A 、 x x x >>23B 、 32x x x >>C 、 x x x >>32D 、 23x x x >>3、已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+= ,则)1(-f 得值为 ( )A 、 1B 、 0C 、 2D 、 -24、函数3121)(++-=x x f x 得定义域就是 ( )A 、 ](0,3-B 、 ](1,3-C 、()0,3-D 、 ()1,3-5、已知α就是第二象限角,135sin =α,则αcos 得值为 ( ) A 、1312- B 、 135- C 、 1312 D 、 135 6、设首项为1,公比为32得等比数列{}n a 得前n 项与为n S ,则 ( ) A 、 12-=n n a S B 、 23-=n n a SC 、 n n a S 34-=D 、 n n a S 23-=7、下列命题中,错误得就是 ( )A 、 平面内一个三角形各边所在得直线都与另一个平面平行,则这两个平面平行B 、 平行于同一平面得两个平面平行C 、 若两个平面平行,则位于这两个平面内得直线也互相平行D 、 若两个平面平行,则其中一个平面内得直线平行于另一个平面8、下列命题中,正确得就是 ( )A 、 若→→=b a ,则→→=b aB 、 若→→=b a ,则→a 与→b 就是平行向量C 、 若→→>b a ,则→→>b aD 、 若→→≠b a ,则向量→a 与→b 不共线9、下列事件就是必然事件得就是 ( )A 、 掷一枚硬币,出现正面向上B 、 若R x ∈,则02≥xC 、 买一张奖劵,中奖D 、 检验一只灯泡合格10、5)1)(1(++x ax 得展开式中含2x 项得系数为5,则a 得值为 ( )A 、 -4B 、 -3C 、 -2D 、 -1二、填空题(每小题3分,共24分)11、已知集合{}4,3,2,1,0=M ,{}20<<∈=x R x N ,则N M I = 、12、已知22121=+-a a ,则22-+a a = 、13、若A 就是ABC ∆得一个内角,且21cos =A ,则A 2sin = 、 14、设等差数列{}n a 得前n 项与为n S ,若21-=-m S ,0=m S ,31=+m S ,则公差=d 、15、抛物线241x y =得焦点坐标就是 、 16、椭圆0123222=-+y x 得离心率为 、17、若向量)1,2(-=→a ,)3,1(=→b ,→→→+=b a c 2,则=→c 、18、掷两颗质地均匀得骰子,则点数之与为5得概率就是 、三、计算题(每小题8分,共24分)19、若一元二次不等式0122<+++a x ax 无解,求实数a 得取值范围、20、设锐角三角形得三个内角A ,B ,C 得对边分别为a ,b ,c ,且A b a sin 23=、(1)求角B 得大小;(2)若3=a ,4=c ,求b 、21、求半径为1,圆心在第一象限,且分别与x 轴与直线01234=--y x 相切得圆得方程、四、证明题(每小题6分,共12分)22、已知函数)21121()(+-=x x x f ,证明:对任意实数x 均有0)(≥x f 、 23、已知)1,2(A ,)2,5(B ,)4,1(C ,证明:ABC ∆就是等腰直角三角形、五、综合题(10分)24、如图,在四棱锥ABCD P -中,ABCD 就是边长为2得菱形,o ABC 60=∠,⊥PC 底面ABCD ,2=PC ,E ,F 分别就是PA ,AB 得中点、(1)证明:EF ∥平面PBC ;(2)求三棱锥PBC E -得体积、。
(完整版)2018对口高考数学试卷及答案(可编辑修改word版)

江苏省2018年普通高校对口单招文化统考数学试卷—、单项选择题(本大题共10小题,每小题4分,共40分。
在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、狳黑)1.设集合M={1, 3}, N={a+2, 5},若MPlN={3},则a 的值为A. -1B. 1C. 3D. 52.若实系数一元二次方程x2+mx + n = 0的一个根为1-z ,则另一个根的三角形式为. n . . 7T rr, 3苁..3苁、A. cos——I sin —B. V 2 (cos——+ zsin——)4 4 4 4C. y[2 (cos— + z sin —)D. x/2[cos(-—) + i sin(-—)]4 4 4 43.在等差数列{aj中,若a3, a2016是方程x2-2x-2018 = 0的两根,则3* *3a⑽的值为1A. -B. 1C. 3D. 934.已知命题P:(1101)2=(13) 10和命题q:A • 1=1(A为逻辑变量),则下列命题中为真命题的是A. ~tiB. p AqC. pVqD.-*pAq5.用1, 2, 3, 4, 5这五个数字,可以组成没有重复数字的三位偶数的个数是A. 18B. 24C. 36D. 486.在长方体ABCD-^CiDi中,AB=BC=2,AA I=2A/6,则对角线BD:与底面ABCD所成的角是— B. — C.—6 4 38.若过点P (-1,3)和点Q(1, 7)的直线&与直线mx + (3m - 7)y + 5 = 0平行,则m的值为人2 C. 69.设向量a=(cos2^, -), b= (4,6)、若sin(^--0 =-:则|25a-Z?| 的值为3 、A. -B. 3C. 4D. 5510.若函数/(x) = x2-bx+c满足/(I + x) = /(I - x),且 / ⑼=5,则f(b x)与/(O 的大小关系是A- /(dO</(C x) B. /(y)>/(c x) c. /«/)</(c x) D. /(//)>/(c x)二、填空题(本大题共5小题,每小题4分,共20分)11.设数组a=(-l, 2, 4),b=(3, rn, -2),若a • b=l,则实数m= 。
完整版)河南省2018年对口升学高考数学试题

完整版)河南省2018年对口升学高考数学试题河南省2018年普通高等学校对口招收中等职业学校毕业生考试-数学考生注意:所有答案都要写在答题卡上,写在试题卷上无效一、选择题(每小题3分,共30分)1.下列关系式中,正确的是()A.A∩φ=AB.A∩CUA=φC.A∩B∪AD.A∩B∪B正确答案:A2.若<x<1,则下列式子中,正确的是()A.x3>x2>xB.x>x2>x3C.x2>x3>xD.x>x3>x2正确答案:B3.已知函数f(x)为奇函数,且当x≥0时,f(x)=x2+1,则f(-1)的值为正确答案:24.函数f(x)=1-2x+1/(x+3)的定义域是()A.(-3.)B.(-3,1]C.(-3.)D.(-3,1)正确答案:A5.已知α是第二象限角,sinα=5/13,则cosα的值为()A.-12/13B.-5/13C.12/13D.5/13正确答案:-12/136.设首项为1,公比为3的等比数列{an}的前n项和为Sn,则()正确答案:Sn=2an-17.下列命题中,错误的是()A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B.平行于同一平面的两个平面平行C.若两个平面平行,则位于这两个平面内的直线也互相平行D.若两个平面平行,则其中一个平面内的直线平行于另一个平面正确答案:A8.下列命题中,正确的是()A.若a=b,则a=bB.若a=b,则a与b是平行向量C.若a>b,则a>bD.若a≠b,则向量a与b不共线正确答案:B9.下列事件是必然事件的是()A.掷一枚硬币,出现正面向上B.若x∈R,则x2≥1C.买一张奖劵,中奖D.检验一只灯泡合格正确答案:C10.(1+ax)(x+1)5的展开式中含x2项的系数为5,则a的值为()A.-4B.-3C.-2D.-1正确答案:D二、填空题(每小题3分,共24分)11.已知集合M={,1,2,3,4},N={x∈R<x<2},则M∩N=φ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全真综合模拟测试卷(四)
选择题(共30小题;每小题4分,满分120分)
在每小题给出的四个选项中,选出一个符合题目要求的选项。
1. 已知集合A={0,1},B={-1,0,a+3},且A⊆B,则实数a等于 ( )
A.1 B.0 C.-2 D.-3
2. 某职校高一年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生
中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是 ( ) A.简单随机抽样法B.抽签法
C.随机数法D.分层抽样法
3. 在等比数列{a n}中,已知a2=2,a5=1
4
,则q= ( )
A.-1
2
B.-2 C.2 D.
1
2
4. 过点(-1,2),且与直线3x-y+1=0平行的直线方程是 ( )
A.3x-y+5=0 B.3x+y+1=0
C.x+3y-5=0 D.x-3y+7=0
5. 不等式|x+4|>9的解集是 ( )
A.{x|-13<x<5} B.{x|x≤-13或x≥5}
C.{x|-13≤x≤5} D.{x|x<-13或x>5}
6. 已知a=(-1,3),b=(x,1),且a⊥b,则|b|等于 ( )
A.2 B
C.
D.3
7. 已知向量PQ=(2,3),且点P的坐标为(-1,2),则点Q的坐标为 ( )
A.(1,5) B.(-3,-1) C.(3,1) D.(-1,-5) 8. 已知sin(π+α)=
3
5
,则cos2α= ( ) A.
4
5
B.-
4
5
C.
7
25
D.-
7
25
9. 函数y
( ) A.(0,1) B.(0,+∞) C.(1,+∞) D.[1,+∞)
10. 直线l的倾斜角120°,且该直线经过点(1,k),(2,O),则k= ( )
A.-2 B
C.2 D
11. 若cosθ>0,且sin2θ<0,则角θ的终边所在象限为 ( )
A.第一象限B.第二象限C.第三象限D.第四象限
12. 已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为
( ) A.-1 B.0 C.1 D.2
13. 一个口袋内装有大小相同的1个白球和3个红球(已编有不同号码),从中摸出两个红
球的概率是 ( ) A.
1
3
B.
1
4
C.
1
2
D.
2
3
14. 在等差数列{a n}中,若a1+3a8+a15=120,则2a9-a10的值为 ( )
A.24 B.22 C.20 D.-8
15. 不等式组
x x
x m
⎧
⎨
⎩
+95+1
+1
的解集是{x|x>2},则m的取值范围是 ( ) A.m≤2 B.m≥2 C.m≤1 D.m≥1
16. “b=0,c=0”是“函数y=x2+bx+c为偶函数”的 ( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
<
>
第3页 共4页 第4页 共4页
装
订
线
内
不
要
答
题
17. 在△ABC 中,若a =
,A =π
6
,则sin sin b c B C ++的值为
( )
A .
2 B .
4 C .4
D .2 18. 已a =1
-5
2
,b =log 21
5,c =log 1215
,则
( )
A .a >b >c
B .a >c >b
C .c >b >a
D .c >a >b
19. 已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=x 2
-x ,那么f (12
)的值是( )
A .14
B .13
C .34
D .-34
20. 已知cos α=-35,α∈(π
2
,π),则tan α=
( )
A .-
43
B .-
34
C .
43
D .
34
21.
求值:]342
=
( )
A .-5
B .-25
C .5
D .25 22. 下列说法正确的是
( )
A .垂直手同一条直线的两条直线平行
B .垂直于同一个平面的两个平面垂直
C .平行于同一个平面的两条直线平行
D .平行于同一个平面的两个平面平行
23. 直线3x +4y +a 2
=0与圆x 2
+y 2
-4x -6y +4=0的位置关系是
( )
A .相割
B .相切
C .相离
D .无法确定
24. 已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于1
2
,则椭圆C 的方程是
( )
A .x 23+y 2
4=1
B .x 2
4
2 1
C .x 24+y 2
2
=1
D .x 24+y 2
3
=1
25. 求值:cos (-
π
196
)= ( )
A
.
2
B
.-
2
C .-12
D .12
26. 在正方体ABCD -A 1B 1C 1D 1中,直线BC 1与直线AC 所成的角是
( )
A .
π
6
B .
π4
C .
π3
D .
π2 27. 方程x m 22++y m
2
2-=1表示双曲线,则m 的取值范围为
( )
A .-2<m <2
B .m >0
C .m ≥0
D .|m |>2 28. 函数y =2sin (
π
6-2x )(x ∈[0,π])为增函数的区间是
( )
A .[0,
π3
]
B .[
π12,π712
] C .[
π3
,π56] D .[
π
56
,π] 29. 已知圆锥的底面圆周长为4π
,则该圆锥的体积为
( )
A .
π43
B .
π83
C .4π
D .π
163
30. 函数f (x )=1+log 2x 在x ∈[4,+∞)上的值域是
( )
A .[2,+∞)
B .(3,+∞)
C .[3,+∞)
D .(-∞,+∞)。