M法与T法在编码器测速方面的区别和频率问题

合集下载

《电力拖动自动控制系统》题库

《电力拖动自动控制系统》题库

一、判断题1、自动控制的直流调速系统,往往以调节电枢供电电压为主。

(√)2、在V-M系统中,设置平波电抗器可以抑制电流脉动。

(√)3、在电流断续时,V-M系统机械特性很软,理想空载转速翘得很高。

(√)4、与晶闸管-电动机调速系统相比,直流脉宽调速系统开关频率高,电流容易连续,谐波少,电机损耗及发热都小。

(√)5、转速、电流双闭环直流调速系统中,当电动机过载甚至堵转时,转速调节器可以限制电枢电流最大值,起快速自动保护作用。

(X)6、按照典型II型系统设计转速调节器时,中频宽h可以任意选择。

(X)7、按照典型II型系统设计转速调节器时,由典型II型系统的开环传递函数可知,K、T、τ都就是待定符号。

(X)8、转速、电流双闭环直流调速系统中,对负载变化起抗扰作用的就是转速调节器。

(√)9、积分控制可以使直流调速系统在无静差的情况下保持恒速运行,实现无静差调速。

(√)10、闭环调速系统的静特性表示闭环系统电动机转速与负载电流或转矩间的稳定关系。

(√) 1、弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖动恒转矩负载。

(Ⅹ)2、采用光电式旋转编码器的数字测速方法中,M法适用于测高速,T法适用于测低速。

(√)3、只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实现制动。

(√)4、直流电动机变压调速与降磁调速都可做到无级调速。

(√)5、静差率与机械特性硬度就是一回事。

( Ⅹ )6、带电流截止负反馈的转速闭环系统不就是单闭环系统。

( Ⅹ )7、电流—转速双闭环无静差可逆调速系统稳态时控制电压U k的大小并非仅取决于速度定 U g*的大小。

(√)8、双闭环调速系统在起动过程中,速度调节器总就是处于饱与状态。

( Ⅹ )9、逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。

(Ⅹ)10、可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。

(√)11、双闭环可逆系统中,电流调节器的作用之一就是对负载扰动起抗扰作用。

测速原理

测速原理

通常的测速方法包括M 法,T 法以及M/T 三种方法。

M 法的原则是记下固定时间T 内的脉冲数,所以这种方法比较适宜于高速区;T 法的原则是记下每个编码器脉冲之间的周期T ,所以这种方法比较适宜于低速区;而M/T 法结合了这两种方法的优点,因此测速范围和精度都得到了很好的保证。

Fig.1 M/T 测速上图阐述了M/T 测速的基本方法。

T0由一个定时器决定,而速度采样周期T 由T0之后的第一个脉冲决定,也就是说,T=T0+ΔT 。

m1代表时间T 内记下的编码器脉冲数,m2代表与时间T 对应的计数器脉冲数。

可以得到以下关系:60n f mech = (1) 这里,n: rpm, f mech : Hz.如果时间T (单位:秒)内电机转了x 圈,则T f x mech ⋅= (2)如果时间T 内记下的编码器脉冲数为m1,则Np m x 41= (3)如果与时间T 对应的计数器脉冲数为m2,则C L K f m T 2= (4)这里Np 为编码器线数, f CLK 为检测时间T 的计数器时钟频率,因此214m m Np f T x f CLK mech ⋅== (5) 如果定义Np f K CLK MT 4= (6) 则21m m K f MT mech ⋅= (7)Fig.2 编码器信号和计数操作Fig.3 测速的硬件结构图通过MTU 实现M/T 测速的过程中需要用到通道0和1,其硬件结构图如图3 所示。

通道1中的TCNT_1是一个上/下计数器,它的时钟源是从编码器过来的PGA 和PGB 信号,其相位相差90度,通过脉冲沿检测电路TCNT_1可以记下PGA 和PGB 信号的脉冲沿数,图2给出了TCNT_1和编码器信号之间的关系,因为同时检测PGA 和PGB 信号的上升沿和下降沿,所以TCNT_1频率是PGA 和PGB 信号频率的4倍。

通道0中的TCNT_0是一个向上计数器,TGRB_0是TCNT_0的捕获计数器,它被用来记录速度采样周期T 。

运动控制-M法T法测速单片机程序设计.

运动控制-M法T法测速单片机程序设计.

M法、T法测速单片机程序设计摘要本设计为M法、T法测速的单片机程序设计。

使用STC89C52单片机作为控制器,使用该单片机的外部中断和定时器对编码器的输出的脉冲进行采样来计算出电机的转速。

可以使用按键输入来调整M法、T法测速法中Z、Tc和Tt等参数以及测速方法的选择,以此来增强本设计的适应性。

参数选择结果和电机转速计算结果均显示在LCD1602上。

关键字:STC89C52,M法、T法测速,LCD1602,电机转速0 / 30ⅠAbstractThis design as m, t-law velocity measurement of single-chip computer programming. Using STC89C52 single-chip computer as the controller, using the microcontroller's external interrupts and timers for encoder output pulse is sampled to calculate the speed of the motor. Can be adjusted using touchtone m, t law Velocimetry parameters such as z, Tt and Tc, as well as in speed measurement method of choice, as a way to enhance the adaptability of this design. Parameter selection and calculation of motor speed results are available on LCD1602.Keywords:STC89C52,M、T method, the LCD1602, Motor speedⅡ目录第1章绪论 01.1 旋转编码器 01.2 数字测速的精度指标 (1)1.2.1 分辨率 (1)1.2.2 测速误差率 (2)1.3 M法测速 (2)1.4 T法测速 (3)第2章硬件系统设计 (4)2.1 STC89C52介绍 (5)2.2硬件电路 (6)2.3.1时钟电路 (7)2.3.2 显示电路 (7)2.3.3 速度检测电路 (8)2.3.4 按键输入电路 (9)第3章系统软件设计 (9)3.1 主程序设计 (9)3.1 M法测速程序设计 (10)3.2 T法测速程序设计 (11)总结 (13)参考文献 (14)Ⅲ附录A 系统原理图 (15)附录B 主要C语言源程序 (16)Ⅲ第1章绪论1.1旋转编码器旋转编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。

MT法速度测量方法误差评估

MT法速度测量方法误差评估
注:1,计数绝对误差+/-1,可以通过分段讨论,严格得出这个结论。
2,理论计数,特指绝对误差最大时的值。 3,未经过验证,有错误,谢谢指出。
ü T 法:
Ø 设定时器单位为 T,采用到编码器 X 脉冲时,定时器计数个数为:
B=X*(1/((N/60) *P))/T=60*X/(N*P*T) Ø 误差评估:E = 1/(B-1) = (N*P*T)/(60*X-(N*P*T)) <= Ec,推出:
N <= (60*X/(P*T))*(Ec/(Ec+1)) < (60*X/(P*T))
M/T 法速度测量方法误差评估
21674460@ 2011-12-22
1、 目前常用的速度测量方法有如下:
ü M 法:
v(k) = (x(k) – x(k-1))/T = △X/T ----- 固定 T △X 存在计数绝对误差±1。 设固定测量时间内脉冲数为 A,则理论计数(实际计数)有可能为 A±1: 测量速度:
Ø 误差评估:E = ±1/A = 60/(N*P*T) <= Ec, 推出:
N >= 60/(P*T*Ec)
Ø QEI 寄存器溢出评估:令 QEI 计数位数 S,余量为 M 个数。 A = N*P*T/60 <= 2^(S-1)-M,推出: N <= (2^(S-1)-M)*60/(P*T)
综上:转速 N(rpm) ∈ [60/(P*T*Ec), (2^(S-1)-M)*60/(P*T)]
设定时器单位为 T,采用到编码器 X 脉冲时,定时器计数个数为 B。则理论计数 个数有可能为 B±1。 测量速度:
Vt = X/(B*T)
实际速度:
Vo = X/((B±1)*T),

等精度法测频测量原理M法

等精度法测频测量原理M法

等精度法测频一、 测量原理M 法、T 法的测量精度不仅取决于基准时间和计数器的计数误差,还取决于频率的高低,频率不同则精度不一样,M 法在高频段的准确度相对较高,T 法在低频段的准确度较高.M/T 法(等精度测量法)则在整个测试频段的精度一样,闸门信号是被测信号周期的整数倍,即与被测信号同步,因此大大减少了误差,但由于只与被测信号同步,而不与标准时钟同步,因此还是存在着±1计数误差.其测频原理图如图1所示,误差计算为'00000||||11100%x x x f f M f M M t f σ-∆=⨯=≤= 式中:x f 是被测信号频率真实值,'x f 是被测信号频率测量值,0t 为闸门时间,0f 为标准时钟频率。

由上式可知,误差与闸门时间和标准时钟频率有关,闸门时间越长,标准时钟频率越高,误差越小。

由于用等精度测频法时所采取的标准时钟频率比较高(10MHz 以上),因此±1计数误差相对很小。

二、 基于FPGA 的实现采用FPGA 设计,主要产生如下时序: StartClrTclkLockFclk其中,Start 作为闸门信号,Clr 是清零信号,Tclk 是被测信号,Lock 是锁存信号,Fclk 是标准频率信号。

当检测到Start 为高时,测量开始。

开始后Tclk 的第一个周期将Clr 和Lock 置高,将两个计数器全部清零。

当下一个Tclk 上升沿来临时将Clr 置低,同时开启两个计数器,开始计数。

待检测到Start 为低时,在Tclk 的下一个上升沿停止计数,将结果锁存,得到N t 和N 0,则可换算出被测信号的频率为:00t t N f f N = 测量电路如下:仿真时,clk1周期为20ns,频率为50M;clk2周期为203ns,频率为4.92611M。

当gate取值为50us时仿真结果波形如下,计算得测量的频率为4.92620M,误差为0.00009MHz.当gate取值为100us时仿真结果波形如下,计算得测量频率为4.92606M,误差为0.00005MHz。

MT法测速解读

MT法测速解读

摘要在控制领域中,经常需要进行各种角度、位移量的测量。

当前,世界上正面临着一场新的技术革命,这场革命的重要基础之一就是测量技术。

测量技术的发展给人类社会和国民经济的各个部门及各个领域带来了巨大的、广泛的、深刻的变化,带动着传统工业和其他新兴产业的更新和变革,是当今人类社会发展的强大动力。

本设计为码盘转速测量系统,用来测量来自外部的不同的转速值。

实现转速的实时测量,显示。

具体应用AT89C51单片机为核心,旋转编码器实时轴转速测量,同时用LCD显示模块显示。

本文从转速测量原理入手,详细阐述了转速测量系统的工作过程,以及硬件电路的设计、显示效果。

本文吸收了硬件软件化的思想,实现了题目要求的功能。

关键词:转速测量,旋转编码器,单片机,LCD显示模块AbstractIn the control field, a variety of angles and displacement measurements often need to be carried out. At present, the world is facing a new technological revolution; one of the most important bases of the revolution is measurement. The development of measurement technology brings extensive,tremendous and profound changes to human society and all sectors of the national economy, changes the traditional industries and other emerging industries, becomes today's strongest driving force for development of human society .The encoder speed measurement system is designed to measure a different speed from the outside values,to achieve real-time speed measurement and display. Specific application use AT80C51 microcontroller as its core, rotary encoder measures real-time shaft speed, in both 8 serial Segment type LCD display module display. In this paper, detailed working process of speed measurement system is started with principle of speed measurement, and hardware circuit design and display. This paper has absorbed the idea of hardware and software to achieve with the subject required functionality.Key words:rotational speed measurement, rotary encoder, microcontroller, LCD display module目录前言 (1)第1章总体设计 (2)1.1转速测量系统的方法 (2)1.1.1 测频法“M法” (2)1.1.2 测周期法“T法” (3)1.1.3 测频测周法“M/T法” (4)1.1.4 转速测量系统中应用的方法 (5)1.2转速测量系统的总体框图 (5)第2章硬件设计 (6)2.1 旋转编码器 (6)2.1.1 增量式编码器 (6)2.1.2 绝对值编码器 (6)2.2 最小系统的设计 (7)2.2.1复位电路 (7)2.2.2 晶振电路 (7)2.3 1602简介 (8)2.3.1 1602的控制原理 (8)2.3.2 1602的基本的读写时序图 (9)第3章软件设计 (11)3.1 主程序初始化 (11)3.2序流程 (11)3.3中断程序流程图 (13)第4章结果仿真 (14)结论 (15)辞谢 (16)主要参考文献 (17)附录 (18)前言在工程实践中,经常会遇到各种需要测量转速的场合, 例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。

电力拖动自动控制系统(名词解释)

电力拖动自动控制系统(名词解释)

电力拖动自动控制系统(名词解释)一、名词解释:1.G-M系统(旋转变流机组):由交流电动机拖动直流发电机G实现变流,由G给需要调速的直流电动机M供电,调节G的励磁If即改变其输出电压U,从而调节电动机的转速n,这样的调速系统简称G-M系统,国际上统称Ward-Leonard系统。

2.V-M 系统(晶闸管-电动机调速系统):通过调解器触发装置GT的控制电压Uc来移动触发脉冲的相位,即可改变平均整流电压Ud,从而实现评平滑调速,这样的系统叫V-M系统。

3. (SPWM):按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波雨期望波的争先等效,这种调制方法称作正弦波脉宽调制(SPWM)。

4.(旋转编码器的测速方法)M法测速——在一定时间Tc内测取旋转编码器输出的脉冲个数M1,用以计算这段时间内的平均转速,称作M法测速。

T法测速——在编码器两个相邻输出脉冲间隔时间内,,用一个计数器对已知频率为f0的高频时钟脉冲进行计数,并由此来计算转速,称作T法测速。

M/T法测速——既检测Tc时间内旋转编码器输出的脉冲个数M1,又检测用一时间间隔的高频时钟脉冲个数M2,用来计算转速,称作M/T法测速。

5.无刷电动机:磁极仍为永磁材料,但输出方波电流,气隙磁场呈梯形波分布,这样就更接近于直流电动机,但没有电刷,故称无刷电动机(梯形波永磁同步电动机)。

6.DTC(直接转矩控制系统):它是利用转矩反馈直接控制电机的电磁转矩,是既矢量控制系统之后发展起来的另一种高动态性能的交流电动机变压变频调速系统。

7.恒Eg/f1=C控制:对于三相异步电动机,要保持气隙磁通不变,当频率从额定值向下调节时,必须同时降低气隙磁通在在定子每相中感应电动势的有效值Eg,使Eg/f1=恒定值,像这样的控制方法叫恒Eg/f1=C控制。

(譬如,对于异步电动机,如果在电压-频率协调控制中,恰当地提高电压Us的数值,使它在克服钉子阻抗压降以后,能维持Eg/f1为恒值,这种控制方法叫Eg/f1=C控制。

光电编码器测量电机转速的方法

光电编码器测量电机转速的方法

光电编码器测量电机转速的方法光电编码器测量电机转速的方法可以利用定时器/计数器配合光电编码器的输出脉冲信号来测量电机的转速。

具体的测速方法有M法、T法和M/T法3种。

一、M法又称之为测频法,其测速原理是在规定的检测时间Tc内,对光电编码器输出的脉冲信号计数的测速方法,例如光电编码器是N线的,则每旋转一周可以有4N个脉冲,因为两路脉冲的上升沿与下降沿正好使编码器信号4倍频。

现在假设检测时间是Tc,计数器的记录的脉冲数是M1,在实际的测量中,时间Tc内的脉冲个数不一定正好是整数,而且存在最大半个脉冲的误差。

如果要求测量的误差小于规定的范围,比如说是小于百分之一,那么M1就应该大于50。

在一定的转速下要增大检测脉冲数M1以减小误差,可以增大检测时间Tc单考虑到实际的应用检测时间很短,例如伺服系统中的测量速度用于反馈控制,一般应在0.01秒以下。

由此可见,减小测量误差的方法是采用高线数的光电编码器。

M法测速适用于测量高转速,因为对于给定的光电编码器线数N机测量时间Tc条件下,转速越高,计数脉冲M1越大,误差也就越小。

二、T法也称之为测周法,该测速方法是在一个脉冲周期内对时钟信号脉冲进行计数的方法。

为了减小误差,希望尽可能记录较多的脉冲数,因此T法测速适用于低速运行的场合。

但转速太低,一个编码器输出脉冲的时间太长,时钟脉冲数会超过计数器最大计数值而产生溢出;另外,时间太长也会影响控制的快速性。

与M法测速一样,选用线数较多的光电编码器可以提高对电机转速测量的快速性与精度。

三、M/T法M/T法测速是将M法和T法两种方法结合在一起使用,在一定的时间范围内,同时对光电编码器输出的脉冲个数M1和M2进行计数。

实际工作时,在固定的Tc时间内对光电编码器的脉冲计数,在第一个光电编码器上升沿定时器开始定时,同时开始记录光电编码器和时钟脉冲数,定时器定时Tc时间到,对光电编码器的脉冲停止计数,而在下一个光电编码器的上升沿到来时刻,时钟脉冲才停止记录。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编码器的测速原理:
M/T法大家都比较清楚在闭环伺服系统中,编码器的反馈脉冲个数和系统所走位置的多少成正比,但对于怎样通过编码器所反馈的脉冲个数来求得电机的旋转速度了解的人就不是很多了。

根据脉冲计数来测量转速的方法有以下三种:
(1)在规定时间内测量所产生的脉冲个数来获得被测速度,称为M法测速;(2)测量相邻两个脉冲的时间来测量速度,称为T法测速;(3)同时测量检测时间和在此时间内脉冲发生器发出的脉冲个数来测量速度,称为M/T法测速。

以上三中测速方法中,M法适合于测量较高的速度,能获得较高分辨率;T 法适合于测量较低的速度,这时能获得较高的分辨率;而M/T法则无论高速低速都适合测量。

以下只对T法测速进行详细介绍。

T法测速的原理是用一已知频率fc(此频率一般都比较高)的时钟脉冲向一计数器发送脉冲,计数器的起停由码盘反馈的相邻两个脉冲来控制,原理图见图
1。

若计数器读数为m1,则电机每分钟转速为nM=60fc/Pm1(r/min)图1 T法测速原理其中P为码盘一圈发出的脉冲个数即码盘线数,m1为相邻两个脉冲间高频脉冲个数。

测速分辨率:
当对应转速由n1变为n2时则分辨率Q的定义为Q=n2-n1,Q值越小说明测量装置对转速变化越敏感即分辨率越高。

因此可以得到T法测速的分辨率为Q=60fc/Pm1-60fc/P(m1+1)= n2M P/(60fc+ nMP)由上式可见随着转速nM的降低,Q值越小,即T法测速在低速时有较高的分辨率。

MT法测速之定量分析速度测量是工控系统中最基本的需求之一,最常用的是用数字脉冲测量某根轴的转速,再根据机械比、直径换算成线速度。

脉冲测速最典型的方法有测频率(M法)和测周期(T法)。

定性分析:
M法是测量单位时间内的脉数换算成频率,因存在测量时间内首尾的半个脉冲问题,可能会有2个脉的误差。

速度较低时,因测量时间内的脉冲数变少,误差所占的比例会变大,所以M法宜测量高速。

如要降低测量的速度下限,可以提高编码器线数或加大测量的单位时间,使用一次采集的脉冲数尽可能多。

T法是测量两个脉冲之间的时间换算成周期,从而得到频率。

因存在半个时间单位的问题,可能会有1个时间单位的误差。

速度较高时,测得的周期较小,误差所占的比例变大,所以T法宜测量低速。

如要增加速度测量的上限,可以减码器的脉冲数,或使用更小更精确的计时单位,使一次测量的时间值尽可能大。

M法、T法各且优劣和适应范围,编码器线数不能无限增加、测量时间也不能太长(得考虑实时性)、计时单位也不能无限小,所以往往候M法、T法都无法胜任全速度范围内的测量。

因此产生了M法、T法结合的M/T测速法:
低速时测周期、高速时测频率。

定量分析:
M/T法中的“低速”、“高速”如何确定呢?假定能接受的误差范围为1%、M 法测得脉冲数为f, T法测得时间为t。

M法:
2/f <= 1% ==> f >= 200即一次测量的最小脉冲数为200,设此频率对应的速度为V1T法:
( 1/(t-1) - 1/t ) / (1/t) <= 1% ==> t >= 101即一次测量的时间为101个单位,设此周期对应的速度为V2若计时单位为mS,则t>= 101mS这只是理论精度,实际应用还要考虑脉冲信号采集的延迟,软件处理所需花费的时间。

若V1 < V2,则M/T法能满足全范围内的速度测量。

一个系统设计之前,就需要详细的计算,使V1<V2或尽可能接近。

不能光凭经验估算确定高低速、传动比、编码线数。

然后很不幸,很多现有系统中会出现V1 > V2,就会出现(V2, V1)这一段速度无论M法还是T法都无法覆盖的情况,一个缓解的办法就是在(V2,V1)段同时使用M法和T法测量,然后取平均值,但要解决好M/T测量的同步问题。

相关文档
最新文档