21.3实际问题与一元二次方程 第二课时

合集下载

人教版九年级数学上册21.3 实际问题与一元二次方程(第2课时)公开课 精品教案

人教版九年级数学上册21.3 实际问题与一元二次方程(第2课时)公开课 精品教案

21.3 实际问题与一元二次方程教学时间课题21.3实际问题与一元二次方程(2)课型新授教学媒体多媒体教学目标知识技能1.能根据○1以流感为问题背景,按一定传播速度逐步传播的问题;○2以封面设计为问题背景,边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力.3.能根据具体问题的实际意义,检验结果是否合理.过程方法通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程.情感态度在分析解决问题的过程中逐步深入地体会一元二次方程的应用价值.教学重点建立数学模型,找等量关系,列方程教学难点找等量关系,列方程教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语:通过上节课的学习,谈谈列一元二次方程解决实际问题的一般步骤及应注意的问题.二、探究新知课本45页探究1分析:○1设每轮传染中平均一个人传染x了个人.这里的一轮指一个传染周期.○2第一轮的传染源有几个人?第一轮后有几个人被传染了流感?包括传染源在内,共有几个人患着流感?○3第二轮的传染源有几个人?第二轮后有几个人被传染了流感?包括第二轮的传染源在内,共有几个人患着流感?点题,板书课题.教师提出问题,并指导学生进行阅读,独立思考,学生根据个人理解,回答教师提出的问题.弄清题意,设出未知数,并表示相关量,根据相等关系尝试列方程,求根.根据实际问题要求,对根进行选择确定问题的解.教师组织学生合作交流,达到共识,联系上节课内容,进一步学习一元二次方程的应用弄清问题背景,特别注意分析清楚题意,题中没有特别说明,那么最早的患者没有痊愈,仍在继续传染别人.○4本题用来列方程的相等关系是什么?列出方程.拓展:课本思考.四轮呢?归纳:本题一流感为问题背景,讨论按一定传播速度逐步传播的问题,,特别需要注意的是,在第二轮传染中,在实际生活中,类似原型很多,比如细胞分裂,信息传播,传染病扩散,害虫繁殖等,一般就考虑两轮传播,这些问题有通性,在解题时有规律可循.课本47页探究3分析:○1正中央的长方形与整个封面的长宽比例相同,是什么含义?○2上下边衬与左右边衬的宽度相等吗?如果不相等,应该有什么关系?○3若设正中央的长方形的长和宽分别为9a㎝,7a㎝,尝试表示边衬的长度,并探究上下边衬与左右边衬的宽度的数量关系?○4“应如何设计四周边衬的宽度?”是要求四周边衬的宽度,除了根据上下边衬与左右边衬的宽度比为,设上下边衬宽为与左右边衬宽为.还可以根据正中央的长方形长与宽的比为9:7,设正中央的长方形的长为9x㎝,宽为7x ㎝.尝试列出方程.○5方程的两个根都是正数,但是它们不都是问题的解,需要根据它们的值的大小来确定哪个更合乎实际,这种取舍选择更多的要考虑问题的实际意义.归纳:○1在实际生活中有许多几何图形的问题原型,可以用一元二次方程作为数学模型来分析和解决○2.对于比较复杂的问题,可以通过设间接未知数的方法来列方程.三、课堂训练补充练习:1.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().师生汇总生活中常见的类似问题,总结这类题的做题技巧.教师提出问题,让学生结合画图独立理解并解答问题,培养学生对几何图形的分析能力,将数学知识和实际问题相结合的应用意识教师总结,学生体会学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正师生归纳总结,学生作笔记.让学生掌握这一类题型将几何图形的问题用一元二次方程方法来解决使学生巩固提高,了解学生掌握情况纳入知识系统,总结本节课内容,让学生体会方程刻画现实世界的模型作用.A.8cm B.64cm C.8cm2 D.64cm2 2.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.3.有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)4.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?四小结归纳谈一节课的收获和体会.五、作业设计必做:P18:4-8选做:P19:10补充作业:某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?教学反思。

九年级数学上册 第21章 一元二次方程 21.3 实际问题与一元二次方程(第2课时 平均变化率与销售

九年级数学上册 第21章 一元二次方程 21.3 实际问题与一元二次方程(第2课时 平均变化率与销售
谢谢收看
整理方程,得 4x2+12x-7=0,
增长率不能为 负数,但可以超 过1.
解这个方程得 x1=-3.5(舍去),x2=0.5.
所以这个增长率为50%.
例3 电商平台发现:某款手机平均每天可售出20台,每台盈利 400元.为了迎接“双十一”,平台决定采取适当的降价措施,扩大 销售量来增加盈利,并尽快占领市场.经市场调查发现:如果每台 手机每降低40元,那么平均每天就可多售出8台.如果想要平均每天 通过销售这款手机盈利12000元,那么每台手机应降价多少元?
解方程,得 y1≈0.225,y2≈1.775. 根据问题的实际意义,乙种药品成本的年平均下降率约为 22.5%.
第2课时 平均变化率与销售问题
问题1 药品年平均下降额(元)大能否说年平均下降率(百分 数)就大呢?
答:不能.甲种药品成本的年平均下降额为(5000-3000) ÷2=1000元,乙种药品成本的年平均下降额为(6000-3600) ÷2=1200元.显然,乙种药品成本的年平均下降额较大.但是, 两种药品的年平均下降率是一样的.
第二十一章 一元二次方程
21.3 实际问题与一元二次方程
第2课时 平均变化率与销售问题
例1 两年前生产1吨甲种药品的成本是5000元,随着生产技术的 进步,现在生产1吨甲种药品的成本是3000元,试求该药品成本的年 平均下降率是多少?
解:设甲种药品的年平均下降率为x.根据题意,列方程,得
5000 ( 1-x )2 = 3000, 解方程,得 x1≈0.225,x2≈1.775. 根据问题的实际意义,甲种药品成本的 年平均下降率约为22.5%.
两次下降后的值为a(1-x)2,n次下降后的值为a(1-x)ⁿ.
第2课时 平均变化率与销售问题

21.3 第2课时 增长率问题与一元二次方程 人教版数学九上同步课堂教案

21.3 第2课时 增长率问题与一元二次方程 人教版数学九上同步课堂教案

21.3实际问题与一元二次方程第2课时增长率问题与一元二次方程一、学习目标1.掌握建立数学模型以解决增长率与降低率问题.2.正确分析问题中的数量关系并建立一元二次方程模型.二、教学重难点重点:掌握建立数学模型以解决增长率与降低率问题.难点:正确分析问题中的数量关系并建立一元二次方程模型.三、教学过程【新课导入】[复习导入]问题:通过上节课的学习,请说一说列方程解应用题的一般步骤是怎样的?关键是什么?【新知探究】[思考]两年前生产1t 甲种药品的成本是5000元,生产1t 乙种药品的成本是6000元,随着生产技术的进步,现在生产1t 甲种药品的成本是3000元,生产1t 乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?[分析]甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元)乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元)虽然乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数)解:设甲种药品成本的年平均下降率为x ,则一年后甲种药品成本为5000(1- x )元,两年后甲种药品成本为5000(1- x )2元,依题意得5000(1-x )2 = 3000,解方程,得x 1≈0.225,x 2≈1.775 (舍去).答:甲种药品成本的年平均下降率约为22.5%.[思考]乙种药品成本的年平均下降率是多少?22.5%比较:两种药品成本的年平均下降率相同[思考]经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?[归纳总结]成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.[归纳总结]你能总结出有关增长率和降低率的有关数量关系吗?类似地,这种增长率的问题在实际生活中普遍存在,有一定的模式.若平均增长(或降低)百分率为x ,增长(或降低)前的是a ,增长(或降低)n 次后的量是b ,则它们的数量关系可表示为a(1±x)n =b (其中增长取“+”,降低取“-”).[思考]1.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x ,列方程( B )A.500(1+2x )=720B.500(1+x )2=720C.500(1+x 2)=720D.720(1+x )2=5002.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则x的值是1.[思考]某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?分析,完成下列问题:(1)未降价之前,某商场衬衫的总盈利为900元,(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利(20+4x)元,平均每天可售出(45-x)件.(用含x的代数式表示)(3)等量关系是每件衬衫的利润x每天的销量=2100元.[思考]根据分析如何列出方程求解?解:由题意得:(45-x)(20+4x)=2100,解得:x1=10,x2=30.因尽快减少库存,故x=30。

21.3 实际问题与一元二次方程(第二课时)几何图形问题和数字问题(课件)九年级数学上册(人教版)

21.3 实际问题与一元二次方程(第二课时)几何图形问题和数字问题(课件)九年级数学上册(人教版)

分层作业
【基础达标作业】 5.某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙 (墙的长度不限),另外三面用总长为20米的护栏围成.若计划建造 车棚的面积为50平方米,则这个车棚的长和宽分别应为多少米.
分层作业
【能力提升作业】 1.(2023·广东揭阳·统考一模)如图,有一面积为600m2的长方形 鸡场,鸡场的一边靠墙(墙长35m),另三边用竹篱笆围成,其中一 边开有1m的门,竹篱笆的总长为69m.设鸡场垂直于墙的一边长为 xm,则列方程正确的是( )
中考链接
3.(2023·东营)如图,老李想用长为70m的栅栏,再借助房屋的外墙 (外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门 (建在EF处,另用其他材料). (1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈? (2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能 ,请说明理由.9 = 0 【提问】为什么舍去2.8?请说明原因?
所以9y=1.8 cm,7y=1.4 cm 答:上、下边衬的宽度为1.8cm,左、右边衬的宽度为1.4cm
27 21
典例解析
要设计一本书的封面,封面长 27 cm,宽 21 cm,正中央是一个与整个封面长宽比例相同 的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边 衬等宽,应如何设计四周边衬的宽度?
A.24 B.35 C.42 D.53 4.2021年7月1日是建党100周年纪念日,在本月日历表上可以用小方框圈出四个数( 如图所示),圈出的四个数中,最小数与最大数的乘积能否为33或65,若能求出最小 数:若不能请说明理由.
当堂测试
5.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙, 另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留 一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?

21.3实际问题与一元二次方程(第二课时)同步练习含答案

21.3实际问题与一元二次方程(第二课时)同步练习含答案

20cm 图①
解:
30cm
D
C
分析:由横、竖彩条的宽度比为 2∶3,可设每个横
彩条的宽为 2x ,则每个竖彩条的宽为3x .为更好
30cm
地寻找题目中的等量关系,通过平移可将横、竖彩
AB 20cm 图②
条分别集中,原问题转化为如图②的情况,得到矩 形
ABCD .
少?
◆课下作业 ●拓展提高
1、矩形的周长为 8 2 ,面积为 1,则矩形的长和宽分别为________.
●拓展提高
1、 2 2 7 , 2 2 7 . 设矩形的长 x ,则宽为 4 2 x .
根据题意,得 x(4 2 x) 1.
整理,得 x2 4 2x 1 0 .
用公式法解方程,得 x1 2 2+ 7,x2 2 2 7 ,
当长为 x1 2 2+ 7 时,则宽为 2 2 7 .
解这个方程,得:6 ,x
100 2=200+ 3
6
.
∵x
100 2=200+ 3
6
不合题意,舍去.

x
100 =200- 3
6
≈118.4.
∴相遇时补给船大约航行了 118.4海里.
●体验中考
1、B. 依题意, 满足的方程是 (50 2x)(80 2x) 5400 , x
∴则修建的路宽应为 1 米.故选 A.
3、解:设此长方体箱子的底面宽是 x 米,则长是 (x 2) 米.
根据题意,得: x(x 2) 15 ,
整理,得: x 2x 15 0 , 因式分解得,2(x 3)(x 5) 0 ,
解得, x1 3, x2 5 .

2014年秋人教版九上课件:21.3实际问题与一元二次方程(2)

2014年秋人教版九上课件:21.3实际问题与一元二次方程(2)
1 x1=-2(不符,舍去) ,x2= =0.125=12.5% 8 答:所求的年利率是12.5% .
想 一 想
二、跟踪练习:
青山村种的水稻2011年平均每公顷产7200kg,2013年平均每公顷产 8460kg,求水稻每公顷产量的年平均增长率. 解: 设年平均增长率为x, 则有7200(1+x)2=8460, 解得x1=0.08,x2=-2.08(舍). 即年平均增长率为8%. 答:水稻每公顷产量的年平均增长率为8%.
1. 列一元二次方程解应用题的步骤:审、设、找、列、解、 答。最后要检验根是否符合实际意义
2. 若平均增长(降低)率为 x,增长(或降低)前的基数是 a,增长(或降低)n 次后的 量是 b,则有: a (1 x ) b (常见 n=2)
n
一、小组合作:
某人将2000元人民币按一年定期存入银行,到期后支取 1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入 银行,若存款的利率不变,到期后本金和利息共1320元,求这种存 款方式的年利率. 分析: 设这种存款方式的年利率为x,第一次存2000元取1000元,剩 下的本金和利息是1000+2000x· 80%;第二次存,本金就变为1000 +2000x· 80%,其它依此类推. 解:设这种存款方式的年利率为x, 则: 1000+2000x•80%+(1000+2000x•80%)x· 80%=1320 整理,得: 1280x2+800x+1600x=320,即8x2+15x-2=0 解得:
预习导学
二、自学检测:
某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长 百分率是多少?
【分析】 如果设平均每月增长的0(1+x) 元, 12月份的营业额为 5000(1+x)(1+x) 元,

人教版数学九年级上册21、3 实际问题与一元二次方程 第二课时

实际问题与一元二次方程第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标1.掌握建立数学模型以解决增长率与降低率问题.2.经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.教学重点如何解决增长率与降低率问题.教学难点某些量的变化状况,不能衡量另外一些量的变化状况.教学过程一、导入新课问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?分析:总利润=每件平均利润×总件数.设每张贺年卡应降价x元,•x×100).则每件平均利润应是(0.3-x)元,总件数应是(500+0.1解:设每张贺年卡应降价x元,则x)=120.(0.3-x)(500+1000.1解得:x=0.1.答:每张贺年卡应降价0.1元.我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系.二、新课教学例 1 某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;0.30.751000.10.2534=≈,从这些数目看,好象两种贺年卡每张降价的绝对量一样大,下面我们就通过解题来说明这个问题.解:(1)从上面可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元.(2)乙种贺年卡:设每张乙种贺年卡应降价y 元,则:(0.75-y )(200+0.25y ×34)=120. 即(34-y )(200+136y )=120 整理:得68y 2+49y -15=0y =49268-±⨯ ∴y ≈-0.98(不符题意,应舍去)y ≈0.23元答:乙种贺年卡每张降价的绝对量大.因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对量也有同样的变化规律.例2 两年前生产1 t 甲种药品的成本是5 000元,生产1 t 乙种药品的成本是6 000元,随着生产技术的进步,现在生产1 t 甲种药品的成本是3 000元,生产1 t 乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析和解答见教材第20页.三、巩固练习1.填空.(1)一个产品原价为a 元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.(2)甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.(3)一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L ,设每次倒出液体x L ,则列出的方程是________.参考答案:(1)2 (2)1 (3)(1-63x )2=2863 2.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg ,销售单价每涨1元,月销售量就减少10kg ,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的关系式.(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg .(2)销售利润y =(销售单价x -销售成本40)×销售量[500-10(x -50)](3)月销售成本不超过10000元,那么销售量就不超过1000040=250kg,在这个提前下,求月销售利润达到8000元,销售单价应为多少.解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6 750元.(2)y=(x-40)[500-10(x-50)]=-10x2+1 400x-40 000(3)由于水产品不超过10 000÷40=250kg,定价为x元,则(x-400)[500-10(x-50)]=8 000.解得:x1=80,x2=60.当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).四、课堂小结本节课应掌握:建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.五、布置作业习题21.3 第7题.21.1 一元二次方程【学习目标】1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力.2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项.【重点难点】重点:由实际问题列出一元二次方程和一元二次方程的概念.难点:由实际问题列出一元二次方程,准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项.【自主先学】请观察一下,下列哪些是方程?⑴⑵2x+y=16⑶3x+y -1 ⑷3x-4=2x+6一元一次方程的概念:一元一次方程的一般形式:【课堂活动】一、请根据题目意思列出方程,并化简:1.要设计一座高2 m 的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,求雕像的下部应设计为高多少米?2.有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?二、这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的有什么共同点呢?不同点呢?对照一元一次方程,写出一元二次方程的概念:一元二次方程的一般式:练一练:1、将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项(1)4x(x+2) =25 (2)(3 x -2)(x +1)=x -3 (3)x(x-4)=02、(小组合作)已知关于x的方程(a2— 4)x 2— ax +2x+a —2=0⑴若此方程是一元一次方程,则a的取值范围是什么?⑵若此方程是一元二次方程,则a的取值范围是什么?三、下面哪些数能使方程x2–x– 6 = 0 成立?-3 , -2 ,-1 ,0 , 1, 2, 3一元二次方程的解 : 叫作一元二次方程的解(又叫做根).练一练:若x =2是方程 的一个根,你能求出a 的值吗?四、课堂小结:一元二次方程的概念,一元二次方程的一般式,一元二次方程的解. 2450ax x +-=。

《实际问题与一元二次方程》第二课时增长率问题 教案

人教版数学九年级上21.3第二课时教学设计课题21.3.2解一元二次方程单元第二十一章学科数学年级九年级上学习目标情感态度和价值观目标探究感受用一元二次方程解决实际问题的过程,提高数学应用意识。

能力目标通过列方程解应用题体会一元二次方程在实际生活中的应用,经历将实际问题转化为数学问题的过程。

知识目标 1.掌握建立数学模型以解决增长率与降低率问题2.正确分析问题中的数量关系并建立一元二次方程模型。

重点建立数学模型以解决增长率与降低率问题。

难点正确分析问题中的数量关系并建立一元二次方程模型。

学法探究学习、合作交流法教法启发引导、讲练结合法教学过程教学环节教师活动学生活动设计意图导入新课一、情境导入思考:小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是80分,第二次月考增长了10%,第三次月考又增长了10%,问他第三次数学成绩是多少?分析:教师引导学生积极讨论,引入新课。

创设问题情境,激发学生的解题求知欲。

结解决传播问题的注意事项。

数学思想。

三、重难点精讲例题:某例题某公司2014年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.变化率问题:若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b (常见n=2)学生独立完成,再合作交流,教师最后巡视指导,并总结解决变化率问题的主义事项和技巧规律。

学生思考使用一元二次方程解决变化率问题,进一步加强对所学知识的理解和掌握。

四、学以致用菜农李伟种植的某蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售. 通过实际应用练习使用一元二次方程解决变化率问题的过程。

师生交流看通过解决实际问题,进一步巩固一元二次方程在实际变化。

21.3 实际问题与一元二次方程 2024-2025学年人教版数学九年级上册

行第二次降价?
解:(2)设第一次降价售出 a 件,则第二次降价售出
(20- a )件.由题意,得
[60(1-10%)-40] a +(48.6-40)×(20- a )

≥200,解得 a ≥5 .

∵ a 为非负整数,∴ a 的最小值是6.
答:第一次降价至少售出6件后,方可进行第二次降价.
典例导思
根据题意,得60(1- x )2=48.6,
解得 x 1=0.1=10%, x 2=1.9(舍去).
答:该商品每次降价的百分率为10%.
典例导思
(2)若该商品每件的进价为40元,计划通过以上两次降价的方
式,将库存的该商品20件全部售出,并且确保两次降价销售的总
利润不少于200元,那么第一次降价至少售出多少件后,方可进
(1+ x )2.当问题变为下降(或减产)率为 x 时,第二
次减少后的数量则为 a (1- x )2.
知识导航
例如:某品牌某羽绒服在冬季来临之际涨价销售,10、
11月份的平均增长率为 x ,9月份的售价为1 000元,10
月份的售价为
元,11月份的售
1 000(1+ x )
价为
元.若11月份的售价为1



典例导思
题型二 列一元二次方程解循环问题
例2 要组织一次篮球联赛,赛制为单循环形式(每两
队之间都赛一场),计划安排21场比赛,则参赛球队的
个数是( C )
A. 5个
B. 6个
C. 7个
D. 8个
典例导思
3. 在一次同学聚会上,每两人都互赠了一份礼物,所有人共送
了210份礼物,则参加聚会的同学有
知识导航

21.3.2实际问题与一元二次方程探究2


2 、某经济开发区今年一月份工 业产值达50亿元,第一季度总产值 达 175 亿元,问二、三月份平均每 月的增长率为多少?设平均每月增 长 率 为 x, 根 据 题 意 得 方 程 : 2=175 50+50(1+x)+50(1+x) ________________________
例3 : 商店里某种商品在两个月里降价两次,现在该商 品每件的价格比两个月前下降了 36 %,问平均每月降价 百分之几?
答 : 每张贺年片应降价0.1元.

5、新亚商场销售某种冰箱,每台进 价为2500元.市场调研表明:当销售 价为2900元时,平均每天能售出8台; 而当销价每降低50元时,平均每天 能多售4台.商场要想使这种冰箱的 销售利润平均每天达到5000元,每 台冰箱的定价应为多少元?

7、 新华商场销售某种冰箱,每台进价为250元.市场调研 表明:当销售价为2900元时,平均每天能售出8台;而当销 价每降低50元时,平均每天能多售4台.商场要想使这种冰 箱的销售利润平均每天达到5000元,每台冰箱的定价应 为多少元?
x (40 x 30)(600 10 ) 10000. 1 2 整理得 : x 50 x 400 0. 解这个方程, 得 x1 10, x2 40. 40 x1 40 10 50;40 x2 40 40 80. 600 10 x1 600 100 500;600 10 x2 600 400 200. 答 : 每个台灯的定价应为50元或80元,
5000(1 80 x%) 2 5145.
解这个方程 : (1 0.8x) 2 1.029, (1 0.8 x) 1.0144, 1 1.0144 x , 0.8 x1 0.018 1.8%; x2 2.518 0(不合题意, 舍去). 答 : 这种储蓄的年利率约是1.8%.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导学精练,合作探究
问题1 思考,并填空: 1.某农户的粮食产量年平均增长率为 x,第一年 60 000 (1+ x )kg, 的产量为 60 000 kg,第二年的产量为____________ 2 60 000 1+ x ( ) 第三年的产量为______________ kg.
导学精练,合作探究
“变化率问题”的基本特征:平均变化率保持不变; 解决“变化率问题”的关键步骤:找出变化前的数量、 变化后的数量,找出相应的等量关系.
布置作业
教科书复习题 21
第 9 题.
成果展示
1、你是如何理解下降额与下降率的?他们之间的联系 与区别是什么? 2、问题中有哪些数量关系? 3、答案为什么选择22.5%作为答案?同此你可以得出 乙种药品成本的年平均下降率? 4、经过计算你能得出什么结论?成本下降额大的药品, 它的成本下降率一定也大吗?应怎样全面地比较几个 对象的变化状况? 两种药品成本的年平均下降率相等,成本下降额较 大的产品,其成本下降率不一定较大.成本下降额表示 绝对变化量,成本下降率表示相对变化量,两者兼顾才 能全面比较对象的变化状况.
2.某糖厂 2012 年食糖产量为 a 吨,如果在以后两 年平均减产的百分率为 x,那么预计 2013 年的产量将是 2 _________ . a (1 - x) .2014 年的产量将是__________ a (1 - x)
导学精练,合作探究
问题2 你能归纳上述两个问题中蕴含的共同等量 关系吗? 两年后:
成果展示 解:设甲种药品的成本的年平均下降率为x, 2 依题意得: 50001 x 3000 解得:x1 0.225, x2 1.775 舍去 则甲种药品成本的年平均下降率约为22.5%。
设乙种药品的成本的年平均下降率为y, 2 依题意得:60001 y 3600 解得: x1 0.225, x2 1.775 舍去 则乙种药品成本的年平均下降率约为22.5%。 答:两种药品成本的年平均下降率相等。
解:
7 2
20 20(1 x) 20(1 x) 95
2
整理得: 4x2 12x 7 0
x1
即 (2 x 7)(2 x 1) 0
舍 x2 0.5 去 答:每年接受科技培训的人次的平均增长率为 50%
归ห้องสมุดไป่ตู้小结
问题4 你能概括一下“变化率问题”的基本特征 吗?解决“变化率问题”的关键步骤是什么?
成果展示
探究2:两年前生产1 吨甲种药品的成本是5000元,生产1 吨乙种药品的成本是6000元,随着生产技术的进步,现在 生产1 吨甲种药品的成本是3000元,生产1吨乙种药品的成 本是3600元。哪种药品成本的年平均下降率较大?
设甲种药品的年平均下降率是x,乙种药品的年平均下降 率是y,请填写下表: 两年前 两年后 的成本 的成本 甲种药品 乙种药品 5000 6000 3000 3600 年平均 下降率 x y 根据题意列出方程 5000(1-x)2=3000 6000(1-y)2=3600
2 变化后的量 = 变化前的量 × (1 ± x)
巩固提升
1.某厂今年一月的总产量为500吨,三月的总产量为 720吨,平均每月增长率是x,列方程( B A.500(1+2x)=720 C.500(1+x2)=720 B.500(1+x)2=720 D.720(1+x)2=500 )
2.某校去年对实验器材的投资为2万元,预计今明两年
的投资总额为8万元,若设该校今明两年在实验器材投
资上的平均增长率是x,则可列方程

巩固提升 惠州市开展“科技下乡”活动三年来,接受科 技培训的人员累计达95万人次,其中第一年培 训了20万人次,设每年接受科技培训的人次的 平均增长率都为x,根据题意列出的方程是:
分析:本题中的相等关系为第一年培训人数+第二年 培训人数+第三年培训人数=95万。
导学精练,合作探究
1.某农户的粮食产量年平均增长率为 x,第一 年的产量为 60 000 kg,第二年的产量为 ____________ kg,第三年的产__________kg. 2.某糖厂 2012 年食糖产量为 a 吨,如果在以后 两年平均减产的百分率为 x,那么预计 2013 年 的产量将是_________.2014 年的产量将是 __________ 3.你能归纳上述两个问题中蕴含的共同等量关系吗? 两年后: 变化后的量 = 变化前的量×____________
九年级
上册
21.3 实际问题与一元二次方程 (第2课时)
自学互助
认真看课本P19-20探究2 ,完成:
1、你是如何理解下降额与下降率的?他们之间的联 系与区别是什么? 2、问题中有哪些数量关系? 3、答案为什么选择22.5%作为答案?同此你可以得出 乙种药品成本的年平均下降率? 4、经过计算你能得出什么结论?成本下降额大的药 品,它的成本下降率一定也大吗?应怎样全面地比较 几个对象的变化状况?
相关文档
最新文档