第一章 建筑材料的基本性质

合集下载

建筑材料的基本性质

建筑材料的基本性质

建筑材料的基本性质第⼀章建筑材料的基本性质1.建筑材料的基本物理性质密度:材料在绝对密实状态下单位体积的质量。

表观密度:材料在⾃然状态下单位体积的质量堆积密度:散粒或粉状材料,如砂、⽯⼦、⽔泥等,在⾃然堆积状态下单位体积的质量。

孔隙率:在材料⾃然体积内孔隙体积所占的⽐例。

空隙率:散粒材料⾃然堆积体积中颗粒之间的空隙体积所占的⽐例。

空隙率的⼤⼩反映了散粒材料的颗粒互相填充的致密程度。

材料的压实度:散粒堆积材料被碾压或振压等压实的程度。

相对密度:散粒材料压实程度的另⼀种表⽰⽅法。

2.材料与⽔有关的性质①亲⽔性:材料能被⽔润湿的性质(亲⽔性材料与⽔分⼦的亲和⼒⼤于⽔分⼦⾃⾝的内聚⼒)憎⽔性:材料不能被⽔润湿的性质。

②吸⽔性:材料浸⼊⽔中吸收⽔的能⼒(材料吸⽔率是固定的)吸湿性:材料在潮湿空⽓中吸收⽔分的性质。

【平衡含⽔率】:在⼀定温度和湿度条件下,材料与空⽓湿度达到平衡时的含⽔率。

③耐⽔性:材料长期在⽔作⽤下不破坏,且其强度也不显著降低的性质。

④抗渗性:材料抵抗压⼒⽔渗透的性质。

⑤抗冻性:材料在吸⽔饱和状态下,能经受多次冻融作⽤⽽不破坏,且强度和质量⽆显著降低的性质。

3.①材料的强度:材料在外⼒作⽤下抵抗破坏的能⼒。

影响材料强度的因素:孔隙率低,强度⾼温度⾼含⽔率⾼,强度低②材料的⽐强度:是材料的强度与其表观密度的⽐值③材料的理论强度:指结构完整的理想固体从材料结构的理论上分析,材料所能承受的最⼤应⼒。

4.弹性:材料在外⼒作⽤下产⽣变形,当外⼒除去后,变形能完全恢复的性质。

塑性:材料在外⼒作⽤下产⽣变形,外⼒除去后,仍保持变形后的形状,并不破坏的性质5.耐久性:材料在所处环境下,抵抗所受破坏作⽤,在规定的时间内,不变质、不损坏,保持其原有性能的性质。

6.材料(微观结构):晶体、玻璃体、胶体晶体类型:原⼦晶体,离⼦晶体,分⼦晶体,⾦属晶体第三章⽓硬性胶凝材料1.胶凝材料:在⼀定条件下,通过⾃⾝的⼀系列变化⽽把其他材料胶结成具有强度的整体的材料①有机胶凝材料:以天然或⼈⼯合成的⾼分⼦化合物为主要成分的胶凝材料。

建筑材料 第一章 建筑材料的基本性质

建筑材料 第一章 建筑材料的基本性质

建筑材料第一章建筑材料的基本性质在建筑领域中,建筑材料是构建各类建筑物的基石。

了解建筑材料的基本性质对于设计、施工以及建筑物的长期性能至关重要。

这一章,我们将深入探讨建筑材料的一些关键基本性质。

首先,让我们来谈谈建筑材料的物理性质。

物理性质涵盖了多个方面,其中密度是一个重要的指标。

密度反映了材料单位体积的质量,它直接影响着材料的重量以及在建筑物中的使用方式。

例如,钢材的密度较大,因此在建筑中常用于需要承受较大荷载的结构部位;而泡沫塑料的密度较小,常被用作保温隔热材料,以减轻建筑物的自重。

另一个关键的物理性质是孔隙率。

孔隙率指的是材料内部孔隙的体积占总体积的比例。

孔隙的存在会对材料的性能产生显著影响。

例如,多孔的砖材具有较好的保温性能,但强度相对较低;而密实的混凝土则强度较高,但保温性能稍逊一筹。

材料的吸水性也是不可忽视的物理性质之一。

吸水性表示材料在水中吸收水分的能力。

像木材这样的天然材料,如果吸水性过高,可能会导致变形、腐朽等问题,影响其在建筑中的使用寿命。

再来说说建筑材料的力学性质。

强度是力学性质中的核心概念,包括抗压强度、抗拉强度、抗弯强度等。

不同的建筑结构和构件对材料的强度要求各不相同。

例如,柱子通常需要承受较大的压力,因此要求所用材料具有较高的抗压强度;而梁则需要同时具备较好的抗弯强度。

硬度反映了材料抵抗外物压入其表面的能力。

例如,大理石的硬度较高,常用于装饰性的地面和墙面;而一些较软的木材则需要进行特殊的处理来增加其表面硬度,以满足使用要求。

此外,建筑材料的弹性和塑性也是重要的力学性质。

具有良好弹性的材料在受力后能够恢复原状,如钢材;而塑性材料在受力超过一定限度后会产生永久变形,如某些塑料。

建筑材料的化学性质同样不容忽视。

耐腐蚀性是化学性质中的关键。

一些建筑材料在特定的化学环境中容易受到腐蚀,如钢材在潮湿且有腐蚀性气体的环境中容易生锈。

耐久性是衡量建筑材料长期性能的重要指标。

它综合考虑了材料在物理、化学和力学等多方面因素作用下,保持其性能稳定的能力。

建筑材料的基本性质(非常好的课件)

建筑材料的基本性质(非常好的课件)

材料的孔隙特征
(2)周围环境条件的影响,空气的湿度大、温度低时,材 料的吸湿性大,反之则小。
4)材料吸水与吸湿后对其性质的影响:会产生不利的影响, 如材料吸水或吸湿后,使其质量增加,体积膨胀,导热性增 大,强度和耐久性下降。
有一块砖重2625g,其含水率为5% ,该湿砖所含水 量为多少? 解:
(二)材料的吸水性与吸湿性
视密度
ρˊ ρˊ=m/vˊ
表观密度 ρ0
ρ0=m/ v0
堆积密度 ρ0ˊ ρ0ˊ=m/v0ˊ
①绝干状态②含闭口孔隙、 不含开口孔隙
①自然状态②含闭口、开 口孔隙 ①自然堆积状态②含闭口、 开口孔隙③含颗粒间的空 隙
二、密实度与孔隙率,填充率与空隙率
孔隙的特征 (1)按孔隙尺寸大小,可把孔隙分为粗大孔和细小孔 (2)按孔隙与外界之间是否连通,把孔隙分为开口孔、 封闭孔。 孔隙对材料的影响:(1)孔隙的多少(孔隙率)
观体积
表观体积是指包括内部封 闭孔隙在内的体积。其封 闭孔隙的多少,孔隙中是 否含有水及含水的多少, 均可能影响其总质量或体 积。
因此,材料的表观密 度与其内部构成状态及含 水状态有关。
材料四种含水状态
反映散粒堆积的紧密(压实)程度及可能的堆放空间。
4.堆积密度(又称松散容重)
(1)定义:散粒状或粉状材料,在自然堆积状态
与质量有关的性质
物理性质 与水有关的性质
材 料 的 基 力学性质 本
与热有关的性质
强度 变形性 抗冲击性 表面性质

质 耐久性
抗压强度
抗拉强度
材 料
强度 抗剪强度 抗弯(折)强度

弹性变形
力 变形性 塑性变形

弹、塑性变形

建筑材料课件第01章 建筑材料的基本性质

建筑材料课件第01章 建筑材料的基本性质
孔、容量仅700 kg/m3的加气混凝土砌块。在 抹灰前采用同样方式往墙上浇水,发觉原使 用的普通烧结粘土砖易吸足水量,但加气混 凝土砌块表面看来浇水不少,但实则吸水不 多,请分析原因。
第 15页
3.吸湿性
材料在潮湿空气中吸收水分的性质称为吸湿性。 材料的吸湿性用含水率表示:
Wh

ms m
材料的理论抗拉强度可用下式表示:
fm
E
d
式中:fm——理论抗拉强度,N/m2; E——弹性模量; γ——单位表面能,J/m2; d——原子间的距离。(平均为2×10-8cm)。
按理论计算,材料的抗拉强度fm≈1/10·E。
第 28页
由于材料中都有缺陷,使破坏应力大大低于 理论强度。缺陷主要有:
的性质,可用下式表示:
Q m C (T1 T2 )
式中Q ——材料的热容量,kJ;
m ——材料的重量,kg;
T1-T2 ——材料受热或冷却前后的温度差,K; C ——材料的比热,kJ/(kg·K)。
材料比热的物理意义是指1kg重的材料,在温度每改
变1K时所吸收或放出的热量。
第 21页
材料名称 钢 铜
花岗岩 普通混凝土
水泥砂浆 普通粘土砖 粘土空心砖
松木 泡沫塑料
冰 水 静止空气
导热系数W/(m·K) 55 370
2.91~3.08 1.28~1.51
0.93 0.4~0.7
0.64 0.17~0.35
0.03 2.20 0.60 0.025
比热J/(g·K) 0.46 0.38 0.92 0.88 0.84 0.84 0.92 2.51 1.30 2.05 4.19
2.导热性

第一章 建筑材料的基本性质

第一章 建筑材料的基本性质
久性指标
耐久性是一个综合性性能
耐久性主要包括:
耐水性 抗渗性 抗冻性 抗腐蚀性
耐水性
抗渗 性 抗老化性
耐久性
耐磨性
抗冻性
抗老化性
耐磨性
抗腐蚀性
42
建筑材料
1. 耐水性
广义定义:材料抵抗水破坏作用的能力。 狭义定义:材料浸水饱和后不被破坏,强度也不显著 降低的性质。 指标:软化系数KR 材料吸水饱和时的抗压强度,MPa
ε
B
A
混凝土的弹塑性变形曲线图
33
建筑材料
三、材料的脆性与韧性
脆性:材料在外力作用下突然破坏,无明显塑性变形。
韧性:冲击、振动荷载下,能吸收较大的能量,产生一定
变形不破坏。
脆性材料:石、砖、砼、陶瓷、玻璃、铸铁等 韧性材料:低碳钢、木材、玻璃钢等。
34
建筑材料
案例分析
1. 铸铁造桥酿成灾祸 概况:1876年6月,英国人用铸铁在北海的Tay湾上建造了全长
加气混凝土砌块虽多孔,但其气孔大多数为“墨水瓶”
结构,肚大口小,毛细管作用差,只有少数孔是水分蒸发 形成的毛细孔。故吸水及导湿均缓慢,材料的吸水性不仅 要看孔数量多少,还需看孔的结构。
11
建筑材料
五、材料的热工性质
导热性 热容量
12
建筑材料
(一) 导热性

定义:材料传导热量的能力。 指标:导热系数λ
温隔热性↑ ; P ↑ ,连通孔、粗孔↑ (孔隙粗大或贯通,空气对流

孔隙率和孔隙特征


作用加强),λ↑,导热性↑,保温隔热性↓ 。
15
建筑材料
影响导热性的因素:

棉袄浸水后保暖 性变差?

建筑材料第一章 建筑材料的基本性质

建筑材料第一章  建筑材料的基本性质

二、材料与水有关的性质
(二)材料的吸湿性与吸水性
1 .吸湿性
材料在潮湿空气中吸收水分的性质称为吸湿性。材料的吸湿性用含水 率表示。含水率是指材料内部所含水的质量占材料干燥质量的百分比,用公 式表示为:
W mk m1 100% m1
(1-9)
式中 W——材料的含水率(%);
mk——材料吸湿后的质量(g); m1——材料在绝对干燥状态下的质量(g)。
k Qd HAt
(1-13)
式中 Q——透过材料试件的水量(cm3); H——水头差(cm); A——渗水面积(cm2); d——试件厚度(cm); t——渗水时间(h); k——渗透系数(cm/h)。
章目录
节目录
二、材料与水有关的性质
(五)材料的抗冻性
材料在吸水饱和状态下能经受多次冻融循环作 用而不被破坏,强度不显著降低,且其质量也不显 著减小的性质称为抗冻性。
E 100% E0
(1-18)
式中 α——材料的吸声系数; E0——传递给材料的全部入射声能; E——被材料吸收(包括透过)的声能。
章目录
节目录
四、材料的声学性能
(二)隔声性
1.隔空气声
声波在空气中传播遇到密实的围护结构(如墙 体)时,声波将激发墙体产生振动,并使声音透过墙 体传至另一空间中。空气对墙体的激发服从“质量定 律”,即墙体的单位面积质量越大,隔声效果越好。
节目录
二、材料与水有关的性质
(二)材料的热容量与比热
2.材料的比热 比热c是真正反映不同材料热容性差别的参数,
它可由式(1-15)导出:
c Q m(T2 T1 )
(1-16)
材料的比热值大小与其组成和结构有 关。通常所说材料的比热值是指其干燥状态 下的比热值。

建筑材料 第一章 建筑材料的基本性质


解: 孔隙率
P V0 V 100% V0
1
0
100%
ρ0=m/V0=2420/(24×11.5×5.3)=1.65g/cm3
ρ=m/V=50/19.2=2.60g/cm3
P
1
1.65 2.6
100%
36.5%
§1.2 材料的力学性质
一、材料的强度
材料在外力作用下抵抗破坏的能力称为材料 的强度,以材料受外力破坏时单位面积上所承受 的外力表示。材料在建筑物上所承受的外力主要 有拉力、压力、剪力和弯力,材料抵抗这些外力 破坏的能力,分别称为抗拉、抗压、抗剪和抗弯 强度。
§1.3 材料与水有关的性质
建筑物中的材料在使用过程中经常会直接或 间接与水接触,如水坝、桥墩、屋顶等,为防 止建筑物受到水的侵蚀而影响使用性能,有必 要研究材料与水接触后的有关性质。
§1.3 材料与水有关的性质
(一)材料的亲水性与憎水性 材料容易被水润湿的性质称为亲水性。具有
这种性质的材料称为亲水性材料,如砖、石、 木材、混凝土等。
§1.2 材料的力学性质
课堂练习: 3、已知甲材料在绝对密实状态下的体积为40cm3,
在自然状态下体积为160 cm3;乙材料的密实度为 80%,求甲、乙两材料的孔隙率,并判断哪种材料 较宜做保温材料?
解:(1)甲材料的孔隙率
P甲=(V0-V)/V0×100%=(160-40)/160×100% =75%
§1.1 材料的基本物理性质
(一)密度 钢材、玻璃等少数密实材料可根据外形尺
寸求得体积。
大多数有孔隙的材料,在测 定材料的密度时,应把材料磨成 细粉,干燥后用李氏瓶测定其体 积(排液法)。材料磨的越细, 测得的密度数值就越精确。砖、 石等材料的密度即用此法测得。

1建筑材料的基本性质

相同的化学成分组成的材料,不同矿物的矿物成 分,材料的性质也是不同的。
例如:硅酸盐水泥熟料中,铝酸三钙、硅酸三钙、 硅酸二钙和铁铝酸四钙的性能都是不同的;
3. 相组成
系统:把一种或一组从周围环境中被想象 地孤 立起来的物质称为系统。 相:把系统中一切具有相同组成、相同物理性 质和化学性质的均匀部分的总和称为相。 材料内部,特别是固体相和结构特征直接决定 材料的力学性能。
4. 耐燃性
耐燃性是指材料能够经受火焰和高温的作用而 不破坏,强度也不显著降低的性能,是影响建 筑物防火、结构耐火等级的重要因素。 根据材料的耐燃性可分为四类: (1)不燃材料,混凝土,石材等 (2)难燃材料,沥青混凝土 (3)可燃材料,木材,沥青等 (4)易燃材料,纤维植物
5. 温度变形 温度变形是指材料在温度变化时产生体积变
Qa
AZ(t2 t1)
显然,导热系数越小,材料的隔热性能越好。
材料的导热系数决定于: (1)材料的化学组成、结构、构造; (2)孔隙率与孔隙特征、含水状况导热时的温度。
2. 热容量 材料加热时吸收热量,冷却时放出热量的性质称 为热容量。 热容量的大小用比热容来表示。 比热容在数值上等于1g材料,温度升高或降低 1K时所吸收或放出的能量Q。
化,多数的材料在温度升高时体积膨胀,温度 下降时体积收缩。用线膨胀系数α来表示
L
(t2 t1)L
第二节 材料的力学性质
材料的力学性质,主要是指在外力(荷载)作用 下抵抗破坏的能力和变形的有关性质。
一、理论强度 二、强度、比强度 三、材料的变形性质
一、理论强度
➢固体材料的强度主要取决于结构质点间的相互 作用力。 ➢理论上来说,材料受外力作用后破坏主要是由于 拉力造成质点间的断裂,或者是剪力造成质点间 的滑移。 ➢材料的理论强度一般都远远大于实际强度。

建筑材料-第一章 建筑材料的基本性质

第一章建筑材料的基本性质内容提要了解和掌握材料的基本性质,对于合理选用材料至关重要。

本章主要介绍材料的基本物理、力学、化学性质和有关参数及计算公式。

在建筑物中,建筑材料要承受各种不同的作用,因而要求建筑材料具有相应的不同性质。

如用于建筑结构的材料要受到各种外力的作用,因此,选用的材料应具有所需要的力学性能。

又如,根据建筑物各种不同部位的使用要求,有些材料应具有防水、绝热、吸声等性能;对于某些工业建筑,要求材料具有耐热、耐腐蚀等性能。

此外,对于长期暴露在大气中的材料,要求能经受风吹、日晒、雨淋、冰冻而引起的温度变化、湿度变化及反复冻融等的破坏作用。

为了保证建筑物的耐久性,要求在工程设计与施工中正确的选择和合理的使用材料,因此,必须熟悉和掌握各种材料的基本性质。

1.1 建筑材料的基本物理性质建筑材料在建筑物的各个部位的功能不同,均要承受各种不同的作用,因而要求建筑材料必须具有相应的基本性质。

物理性质包括密度、密实性、空隙率、孔隙率(计算材料用量、构件自重、配料计算、确定堆放空间)一、材料的密度、表观密度与堆积密度密度是指物质单位体积的质量。

单位为g/cm3或kg/m3。

由于材料所处的体积状况不同,故有实际密度(密度)、表观密度和堆积密度之分。

(1)实际密度 (True Density)以前称比重、真实密度),简称密度(Density)。

实际密度是指材料在绝对密实状态下,单位体积所具有的质量,按下式计算:式中: ρ-实际密度(g/cm3);m-材料在干燥状态下的质量(g);V-材料在绝对密实状态下的体积(cm3)。

绝对密实状态下的体积是指不包括孔隙在内的体积。

除了钢材、玻璃等少数接近于绝对密实的材料外,绝大多数材料都有一些孔隙,如砖、石材等块状材料。

在测定有孔隙的材料密度时,应把材料磨成细粉以排除其内部孔隙,经干燥至恒重后,用密度瓶(李氏瓶)测定其实际体积,该体积即可视为材料绝对密实状态下的体积。

材料磨得愈细,测定的密度值愈精确。

第一章 建筑材料的基本性质

第一章 建筑材料的基本性质 土木工程材料的基本性质,是指材料处于不同的使用条件和使用环境时,通常必须考虑的最基本的、共有的性质。

(1)材料的基本物理性质 1 密度材料在绝对密实状态下单位体积的质量用ρ表示。

按下式计算:V m=ρ材料的绝对密实体积是指不包括材料孔隙在内的体积。

钢材、玻璃等少数密实材料可根据外形尺寸求得体积。

大多数有孔隙的材料,在测定材料的密度时,应把材料磨成细粉,干燥后用李氏瓶测定其体积。

材料磨得越细,测得的密度数值就越精确。

2 表观密度材料在自然状态下单位体积的质量称为表观密度,用ρ 表示。

按下式计算:00V m=ρ材料在自然状态下的体积是指包含材料内部孔隙的体积。

当材料孔隙内含有水分时,其质量和体积(可以忽略)均有所变化,故测定表观密度时,须注明其含水情况。

按照含水状态分为:干表观密度、气干表观密度和饱和表观密度。

孔隙的分类 ①按尺寸大小:微细孔隙(D <0.01mm)细小孔隙( 0.01mm < D < 1mm)粗大孔隙(D>1mm)②孔隙的构造:开口孔隙 闭口孔隙干表观密度(干燥状态) 气干表观密度 (与空气湿度有关 平衡时的状态)00V m =ρoV m m 水+=0ρ 饱和表观密度(吸水饱和状态)饱和表观密度(吸水饱和状态)0V m m 饱和水+=ρ3 孔隙率在材料自然体积内孔隙体积所占的比例,称为材料的孔隙率,用Ρ表示。

按下式计算:%100)1(1%1000000⨯-=-=⨯-=ρρV V V V V P bk p p p +=孔隙率=开口孔隙率+闭口孔隙率开口孔隙率Pk=%1000⨯V V 开口孔隙闭口孔隙率Pb=%1000⨯V V 闭口孔隙4堆积密度散粒或粉状材料,如砂、石子、水泥等,在自然堆积状态下单位体积的质量称为堆积密度,用ρ' 表示。

按下式计算:00V m '='ρ由于散粒材料堆积的紧密程度不同,堆积密度可分为疏松堆积密度、振实堆积密度和紧密堆积密度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7、当材料在空气中吸水达到饱和时,其含水 率( A )吸水率。 A等于 B大于 C小于 D不一定
四、问答题
土木工程对材料的基本要求 必须满足哪五个条件的要求 ?
答:必须满足如下五个条件的要求: ①必须具备足够的强度,能够安全地承受设计 荷载; ②材料自身的质量以轻为宜(即表观密度较小 ),以减轻下部结构和地基的负荷; ③具有与使用环境相适应的耐久性,以减少维 修费用; ④用于装饰的材料,应能美化建筑,产生一定 的艺术效果; ⑤用于特殊部位的材料,应具有相应的特殊功 能,例如屋面材料能隔热、防水,楼板和内墙 材料能隔声等。
1、大多数建筑材料均应具备的性质,即材 料的 (基本性质 ) 。 2、材料的 (组成) 及( 结构) 是决定材料性 质的基本因素,要掌握材料的性质必须 了解材料的( 组成) 、( 结构) 与材料性 质之间的关系。 3、建筑材料按化学性质分三大类:( 有 机 ) 、( 无机 ) 、( 复合材料) 。 4、建筑材料的技术性质主要有:(物理 ) 、(力学 )、( 耐久性 ) 。
6、热容: 热容量是指材料在温度变化 时吸收或放出热量的能力。其大小用 比热容来表示。 7、强度 8、耐水性:材料长期在水的作用下既不 破坏,强度又不显著降低的性质称为 耐久性。 9、硬度:是指材料表面抵抗硬物压入或 刻划的能力。
二、填空题
9、材料抗渗性大小与 (孔隙率P ) 和 (孔隙 特征) 有关。 10、材料的变形特征有两种类型 (弹性 ) 和 ( 塑性) 。 11、根据材料被破坏前塑性变形显著与否 ,将材料分为 (塑性材料 )与 (脆性材料 ) 两大类。
三、选择题
1.孔隙率增大,材料的( B)降低。 A、密度 B、表观密度 C、憎水性 D、抗冻性 2.材料在水中吸收水分的性质称为( A )。 A、吸水性 B、吸湿性 C、耐水性 D、渗透性
3.材料的孔隙率增大时,其性质保持不变的 是( C )。 A、表观密度 B、堆积密度 C、密度 D、强度 4.下列性质属于力学性质的有( ABCD )。 A、强度 B、硬度 C、弹性 D、脆性
5、材料的堆积密度是指( B )材料在自然 堆积状态下,单位体积的质量。 A块体 B颗粒状 C固体 D液体 6、材料的体积密度是指材料在( B )下, 单位体积的质量。 A绝对密实状态 B自然状态 C自然堆积状态 D含水饱和状态
5、当水与材料接触时,沿水滴表面作切线 ,此切线和水与材料接触面的夹角,称 ( 润湿角 ) 。 6、材料吸收水分的能力,可用吸水率表示 ,一般有两种表示方法:(质量吸水率W ) 和 (体积吸水率W0 ) 。 7、材料在水作用下,保持原有性质的能力 ,称 (耐水性 ) 用 (软化系数 ) 表示。 8、材料抵抗压力水渗透的性质称 (抗渗性) ,用 (渗透系数 )或 (抗渗标号 )表示。
第一章 建筑材料的基本性质 答案
一、名词解释
1、密度:材料在绝对密实状态下,单位 体积的质量(比重) 2、孔隙率:散粒材料在某堆积体积中, 颗粒之间的空隙体积所占的比率 3、抗渗性:抵抗压力水渗透的性质 4、抗冻性:材料饱水状态下,能经受多 次冻融交替作用,既不破坏,强度又 不显著降低的性质。 5、导热系数: 导热性是指材料传导热 量的能力。用导热系数来表示。
相关文档
最新文档