高考数学一轮复习教案(含答案):第2章 第4节 二次函数与幂函数

合集下载

2020年高考数学一轮复习教案:第2章 第4节 二次函数与幂函数(含解析)

2020年高考数学一轮复习教案:第2章 第4节 二次函数与幂函数(含解析)

第四节 二次函数与幂函数[考纲传真] 1.(1)了解幂函数的概念;(2)结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x 的图象,了解它们的变化情况.2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.1.二次函数(1)二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0);顶点式:f (x )=a (x -h )2+k (a ≠0),顶点坐标为(h ,k ); 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象与性质函数 y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象定义域 R值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上减, 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上增 在⎝ ⎛⎦⎥⎤-∞,-b 2a 上增, 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上减 奇偶性 当b =0时为偶函数对称性函数的图象关于直线x =-b2a 对称2.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中x 是自变量,α是常数. (2)五种常见幂函数的图象与性质 函数特征性质y =xy =x 2y =x 3y =x 12y =x -1图象定义域 R R R {x |x ≥0} {x |x ≠0} 值域 R {y |y ≥0} R {y |y ≥0} {y |y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增(-∞,0)减, (0,+∞)增增增(-∞,0)和 (0,+∞)减公共点 (1,1)[常用结论]1.与二次函数有关的恒成立问题 设f (x )=ax 2+bx +c (a ≠0),则(1)f (x )>0恒成立的充要条件是⎩⎪⎨⎪⎧ a >0Δ<0;(2)f (x )<0恒成立的充要条件是⎩⎪⎨⎪⎧a <0Δ<0;(3)f (x )>0(a <0)在区间[m ,n ]恒成立的充要条件是⎩⎪⎨⎪⎧ f (m )>0f (n )>0;(4)f (x )<0(a >0)在区间[m ,n ]恒成立的充要条件是⎩⎪⎨⎪⎧f (m )<0f (n )<0.2.幂函数y =x α(α∈R )的图象特征(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性.(2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点.(3)当α>0时,y =x α在[0,+∞)上为增函数; 当α<0时,y =x α在(0,+∞)上为减函数.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)二次函数y =ax 2+bx +c ,x ∈R ,不可能是偶函数. ( )(2)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b24a .( )(3)幂函数的图象一定经过点(1,1)和点(0,0).( )(4)当n >0时,幂函数y =x n 在(0,+∞)上是增函数. ( ) [答案] (1)× (2)× (3)× (4)√2.(教材改编)已知幂函数f (x )=x α的图象过点(4,2),若f (m )=3,则实数m 的值为( )A.3 B .±3 C .±9D .9D [由题意可知4α=22α=2,所以α=12. 所以f (x )=x 12=x , 故f (m )=m =3⇒m =9.]3.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,120 B.⎝ ⎛⎭⎪⎫-∞,-120 C.⎝ ⎛⎭⎪⎫120,+∞ D.⎝ ⎛⎭⎪⎫-120,0 C [由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.]4.(教材改编)如图是①y=x a;②y=x b;③y=x c在第一象限的图象,则a,b,c的大小关系为()A.c<b<a B.a<b<cC.b<c<a D.a<c<bD[由图象知②③的指数大于零且b>c,①的指数小于零,因此b>c>a,故选D.]5.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.4[f(x)=x2+(a-4)x-4a,由f(x)是偶函数知a-4=0,所以a=4.]幂函数的图象与性质1.幂函数y=f(x)的图象过点(8,22),则幂函数y=f(x)的图象是()A B C DC[令f(x)=xα,由f(8)=22得8α=22,即23α=232,解得α=12,所以f(x)=x12,故选C.]2.若a=⎝⎛⎭⎪⎫1223,b=⎝⎛⎭⎪⎫1523,c=⎝⎛⎭⎪⎫1213,则a,b,c的大小关系是() A.a<b<c B.c<a<bC.b<c<a D.b<a<cD[a=⎝⎛⎭⎪⎫1223=⎝⎛⎭⎪⎫1413,b=⎝⎛⎭⎪⎫1523=⎝⎛⎭⎪⎫12513,c=⎝⎛⎭⎪⎫1213,由125<14<12得b<a<c,故选D.]3.(2019·兰州模拟)已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α等于( )A.12 B .1 C.32D .2C [由幂函数的定义知k =1. 又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]4.若(a +1) 12<(3-2a )12,则实数a 的取值范围是________.⎣⎢⎡⎭⎪⎫-1,23 [易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.]求二次函数的解析式的最大值是8,则f (x )=________.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________.(1)-4x 2+4x +7 (2)x 2+2x [(1)法一(利用一般式): 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7.法二(利用顶点式): 设f (x )=a (x -m )2+n . ∵f (2)=f (-1),∴抛物线的图象的对称轴为x =2+(-1)2=12.∴m =12.又根据题意函数有最大值8,∴n =8. ∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.(2)设函数的解析式为f (x )=ax (x +2),所以f (x )=ax 2+2ax , 由4a ×0-4a 24a =-1,得a =1,所以f (x )=x 2+2x .][规律方法] 求二次函数解析式的方法(1)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________.(2)若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.(1)x 2+2x +1 (2)-2x 2+4[(1)由题意知⎩⎨⎧a -b +1=0,-b2a =-1,解得⎩⎪⎨⎪⎧a =1,b =2.从而f (x )=x 2+2x +1.(2)由f (x )是偶函数知f (x )图象关于y 轴对称,所以-a =-⎝ ⎛⎭⎪⎫-2a b ,即b =-2或a =0,当a =0时,则f (x )=bx 2,值域为(-∞,0]或[0,+∞), 不满足已知值域(-∞,4],∴a =0舍去,所以f (x )=-2x 2+2a 2, 又f (x )的值域为(-∞,4], 所以2a 2=4,故f(x)=-2x2+4.]二次函数的图象与性质►考法1二次函数的图象【例2】已知abc>0,则二次函数f(x)=ax2+bx+c的图象可能是()D[A项,因为a<0,-b2a<0,所以b<0.又因为abc>0,所以c>0,而f(0)=c<0,故A错.B项,因为a<0,-b2a>0,所以b>0.又因为abc>0,所以c<0,而f(0)=c>0,故B错.C项,因为a>0,-b2a<0,所以b>0.又因为abc>0,所以c>0,而f(0)=c<0,故C错.D项,因为a>0,-b2a>0,所以b<0.又因为abc>0,所以c<0,而f(0)=c<0,故选D.]►考法2二次函数的单调性【例3】函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上是递减的,则实数a的取值范围是________.[-3,0][当a=0时,f(x)=-3x+1在[-1,+∞]上递减,满足条件.当a≠0时,f(x)的对称轴为x=3-a 2a,由f (x )在[-1,+∞)上递减知⎩⎪⎨⎪⎧a <0,3-a2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0].][拓展探究] 若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a 为何值?[解] 因为函数f (x )=ax 2+(a -3)x +1的单调减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a=-1,解得a =-3.►考法3 二次函数的最值【例4】 已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值. [解] (1)当a =0时,f (x )=-2x 在[0,1]上单调递减, 所以f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 的图象开口向上且对称轴为x =1a . ①当0<1a ≤1,即a ≥1时, f (x )=ax 2-2x 的对称轴在(0,1]内,所以f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,1上单调递增.所以f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a .②当1a >1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧, 所以f (x )在[0,1]上单调递减.所以f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象开口向下且对称轴x =1a <0,在y 轴的左侧,所以f (x )=ax 2-2x 在[0,1]上单调递减, 所以f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎨⎧a -2,a <1,-1a ,a ≥1.[拓展探究] 若将本例中的函数改为f (x )=x 2-2ax ,其他不变,应如何求解? [解] 因为f (x )=x 2-2ax =(x -a )2-a 2,对称轴为x =a . ①当a <0时,f (x )在[0,1]上是增函数, 所以f (x )min =f (0)=0.②当0≤a ≤1时,f (x )min =f (a )=-a 2. ③当a >1时,f (x )在[0,1]上是减函数, 所以f (x )min =f (1)=1-2a .综上所述,f (x )min =⎩⎪⎨⎪⎧0,a <0,-a 2,0≤a ≤1,1-2a ,a >1.对于②、③,通常要分对称轴在区间内、区间外两大类情况进行讨论.(1)一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()A B C D(2)若二次函数y=kx2-4x+2在区间[1,2]上是单调递增函数,则实数k的取值范围为()A.[2,+∞) B.(2,+∞)C.(-∞,0) D.(-∞,2)(1)C(2)A[(1)若a>0,则一次函数y=ax+b为增函数,二次函数y=ax2+bx+c的图象开口向上,故可排除A;若a<0,一次函数y=ax+b为减函数,二次函数y=ax2+bx+c的图象开口向下,故可排除D;对于选项B,看直线可知a>0,b>0,从而-b2a<0,而二次函数的对称轴在y轴的右侧,故应排除B,选C.(2)二次函数y=kx2-4x+2的对称轴为x=2k,当k>0时,要使函数y=kx2-4x+2在区间[1,2]上是增函数,只需2k≤1,解得k≥2.当k<0时,2k<0,此时抛物线的对称轴在区间[1,2]的左侧,该函数y=kx2-4x+2在区间[1,2]上是减函数,不符合要求.综上可得实数k的取值范围是[2,+∞).](3)已知函数f(x)=x2-2x,若x∈[-2,a],求f(x)的最小值.[解]因为函数f(x)=x2-2x=(x-1)2-1,所以对称轴为直线x=1,因为x =1不一定在区间[-2,a ]内,所以应进行讨论,当-2<a ≤1时,函数在[-2,a ]上单调递减,则当x =a 时,f (x )取得最小值,即f (x )min =a 2-2a ;当a >1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,f (x )取得最小值,即f (x )min =-1.综上,当-2<a ≤1时,f (x )min =a 2-2a ,当a >1时,f (x )min =-1.与二次函数有关的恒成立问题►考法1 形如f (x )≥0(x ∈R )求参数的范围【例5】 (2019·张掖模拟)不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是__________________.(-2,2] [当a -2=0,即a =2时,不等式即为-4<0,对一切x ∈R 恒成立,当a ≠2时,则有⎩⎪⎨⎪⎧ a -2<0,Δ=4(a -2)2+16(a -2)<0,即⎩⎪⎨⎪⎧a <2,-2<a <2,∴-2<a <2. 综上,可得实数a 的取值范围是(-2,2].]►考法2 形如f (x )≥0(x ∈[a ,b ])求参数的范围【例6】 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.[解] 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数,所以g (x )ma x =g (3)⇒7m -6<0,所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )ma x =g (1)⇒m -6<0,所以m <6,所以m <0.综上所述:m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪ m <67. 法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1. 因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪ m <67. ►考法3 形如f (x )≥0(参数k ∈[a ,b ])求x 的范围【例7】 对任意的k ∈[-1,1],函数f (x )=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是__________.(-∞,1)∪(3,+∞) [对任意的k ∈[-1,1],x 2+(k -4)x +4-2k >0恒成立,即g (k )=(x -2)k +(x 2-4x +4)>0,在k ∈[-1,1]时恒成立.只需g (-1)>0且g (1)>0,即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,解得x <1或x >3,所以x 的取值范围为(-∞,1)∪(3,+∞).][规律方法] 形如f (x )≥0(f (x )≤0)恒成立问题的求解思路(1)x ∈R 的不等式确定参数的范围时,结合二次函数的图象,利用判别式来求解.(2)x ∈[a ,b ]的不等式确定参数范围时,①根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求出参数的范围;②数形结合,利用二次函数在端点a ,b 处的取值特点确定不等式求参数的取值范围.③分离参数,变为a ≥g (x )或a ≤g (x )恒成立问题,然后再求g (x )的最值.(3)已知参数k ∈[a ,b ]的不等式确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(1)当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.(2)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________.(1)(-∞,-5] (2)⎝ ⎛⎭⎪⎫-∞,12 [(1)设f (x )=x 2+mx +4,当x ∈(1,2)时,f (x )<0恒成立⇔⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0⇒⎩⎪⎨⎪⎧m ≤-5,m ≤-4⇒m ≤-5. (2)2ax 2+2x -3<0在[-1,1]上恒成立.当x =0时,-3<0,成立;当x ≠0时,a <32⎝ ⎛⎭⎪⎫1x -132-16,因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12.综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12.]1.(2016·全国卷Ⅲ)已知a=243,b=323,c=2513,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<bA[利用幂函数的性质比较大小.a=243=443,b=343,c=2513=543.∵y=x 13在第一象限内为增函数,又5>4>3,∴c>a>b.]2.(2014·全国卷Ⅰ)设函数f(x)=则使得f(x)≤2成立的x的取值范围是________.(-∞,8][当x<1时,x-1<0,e x-1<e0=1≤2,∴当x<1时满足f(x)≤2.当x≥1时,x 12≤2,x≤23=8,∴1≤x≤8.综上可知x∈(-∞,8].]。

2017高考一轮复习教案二次函数与幂函数(后附完整答案)

2017高考一轮复习教案二次函数与幂函数(后附完整答案)

第四节 二次函数与幂函数1.二次函数:掌握二次函数的图象与性质,会求二次函数的最值(值域)、单调区间.2.幂函数:(1)了解幂函数的概念.(2)结合函数y =x ,y =x 2,y =x 3,y =1x,y =x 12的图象,了解它们的变化情况.知识点一 五种常见幂函数的图象与性质 五种常见幂函数的图象与性质R R R {x |x ≥0} {x |x ≠0} 易误提醒 形如y =x α(α∈R )才是幂函数,如y =3x 2不是幂函数.[自测练习]1.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α=( )A.12B .1C.32D .2 知识点二 二次函数1.二次函数解析式的三种形式(1)一般式:f (x )=ax 2+bx +c (a ≠0).(2)顶点式:f (x )=a (x -m )2+n (a ≠0). (3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0).2.二次函数的图象和性质x ∈R易误提醒 研究函数f (x )=ax 2+bx +c 的性质,易忽视a 的取值情况而盲目认为f (x )为二次函数.必备方法1.函数y =f (x )对称轴的判断方法(1)对于二次函数y =f (x ),如果定义域内有不同两点x 1,x 2且f (x 1)=f (x 2),那么函数y =f (x )的图象关于x =x 1+x 22对称.(2)二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立的充要条件是函数y =f (x )的图象关于直线x =a 对称(a 为常数).2.与二次函数有关的不等式恒成立两个条件(1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.[自测练习]2.已知二次函数的图象如图所示,那么此函数的解析式可能是( )A .y =-x 2+2x +1B .y =-x 2-2x -1C .y =-x 2-2x +1D .y =x 2+2x +13.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________. 4.已知f (x )=4x 2-mx +5在[2,+∞)上是增函数,则实数m 的取值范围是________.考点一 幂函数的图象与性质|1.(2015·济南二模)若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝⎛⎭⎫12的值为( ) A.13 B.12 C.23D.432.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c3.(2015·安庆三模)若13(a+1)-<1-3(3-2a),则实数a 的取值范围是________.幂函数图象与性质应用的三个关注点(1)若幂函数y =x α(α∈R )是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断.(2)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0. (3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.(1)为了美观,在加工太阳镜时将下半部分轮廓制作成二次函数图象的形状(如图所示).若对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4cm ,最低点C 在x 轴上,高CH =1cm ,BD =2cm ,则右轮廓线DFE 所在的二次函数的解析式为( )A .y =14(x +3)2B .y =-14(x -3)2C .y =-14(x +3)2D .y =14(x -3)2(2)函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是( ) A .f (1)≥25 B .f (1)=25 C .f (1)≤25D .f (1)>25解决二次函数图象与性质问题时两个注意点(1)抛物线的开口、对称轴位置、定义区间三者相互制约常见的题型中这三者有两定一不定,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是给定区间上二次函数最值问题,先“定性”(作草图),再“定量”(看图求解),事半功倍.1.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-m ·x 在[2,4]上单调,求m 的取值范围.(2016·聊城模拟)设二次函数f (x )=ax 2+bx (a ≠0)满足条件:①f (-1+x )=f (-1-x );②函数f (x )的图象与直线y =x 只有一个公共点.(1)求f (x )的解析式;(2)若不等式πf (x )>⎝⎛⎭⎫1π2-tx在t ∈[-2,2]时恒成立,求实数x 的取值范围.不等式恒成立的求解方法由不等式恒成立求参数取值范围,常用分离参数法,转化为求函数最值问题,其依据是a ≥f (x )⇔a ≥f (x )max ,a ≤f (x )⇔a ≤f (x )min .2.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值,都有f (x )>0,求实数a 的取值范围.3.分类讨论思想在二次函数最值中的应用【典例】已知f(x)=ax2-2x(0≤x≤1),求f(x)的最小值.[思路分析]参数a的值确定f(x)图象的形状;a≠0时,函数f(x)的图象为抛物线,还要考虑开口方向和对称轴位臵.[思想点评](1)本题在求二次函数最值时,用到了分类讨论思想,求解中既对系数a的符号进行了讨论,又对对称轴进行讨论.在分类讨论时要遵循分类的原则:一是分类的标准要一致,二是分类时要做到不重不漏,三是能不分类的要尽量避免分类,绝不无原则的分类讨论.(2)在有关二次函数最值的求解中,若轴定区间动,仍应对区间进行分类讨论.[跟踪练习]设函数y=x2-2x,x∈[-2,a],若函数的最小值为g(x),求g(x).A组考点能力演练1.当ab>0时,函数y=ax2与f(x)=ax+b在同一坐标系中的图象可能是下列图象中的()2.(2015·芜湖质检)已知函数f(x)=x2+x+c.若f(0)>0,f(p)<0,则必有()A.f(p+1)>0B.f(p+1)<0C.f(p+1)=0D.f(p+1)的符号不能确定3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2D .m =14.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4,则m 的取值范围是( ) A .[0,4] B.⎣⎡⎦⎤32,4 C.⎣⎡⎭⎫32,+∞ D.⎣⎡⎦⎤32,35.(2015·沧州质检)如果函数f (x )=x 2+bx +c 对任意的x 都有f (x +1)=f (-x ),那么( ) A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2) C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)6.二次函数f (x )=x 2+(2-log 2m )x +m 是偶函数,则实数m =________. 7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.8.(2015·济南二模)已知函数f (x )=x 2-2x ,x ∈[a ,b ]的值域为[-1,3],则b -a 的取值范围是________.9.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图象过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式; (2)在(1)的条件下,当x ∈[-1,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.10.已知函数f (x )=x 2-2ax +5(a >1).(1)若f (x )的定义域和值域均是[1,a ],求实数a 的值;(2)若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.B组高考题型专练1.(2014·高考浙江卷)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()2.(2014·高考北京卷)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt +c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟3.(2013·高考辽宁卷)已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=() A.a2-2a-16 B.a2+2a-16C.-16 D.164.(2015·高考福建卷)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于________.1.解析:因为函数f (x )=k ·x α是幂函数,所以k =1,又函数f (x )的图象过点⎝⎛⎭⎫12,22,所以⎝⎛⎭⎫12α=22,解得α=12,则k +α=32. 答案:C2.解析:设二次函数的解析式为f (x )=ax 2+bx +c (a ≠0),由题图得:a <0,b <0,c >0.选C.答案:C3.解析:由已知得⎩⎪⎨⎪⎧a >0,4ac -164a=0,⇒⎩⎪⎨⎪⎧a >0,ac -4=0.答案:a >0,ac =44.解:因为函数f (x )=4x 2-mx +5的单调递增区间为⎣⎡⎭⎫m 8,+∞,所以m8≤2,即m ≤16. 答案:(-∞,16]1.解析:设f (x )=x a ,又f (4)=3f (2),∴4a =3×2a ,解得a =log 23,∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12log 23=13. 答案:A2.解析:幂函数a =2,b =12,c =-13,d =-1的图象,正好和题目所给的形式相符合,在第一象限内,x =1的右侧部分的图象,图象由下至上,幂指数增大,所以a >b >c >d .故选B.答案:B3.解析:不等式(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a .解得a <-1或23<a <32.答案:(-∞,-1)∪⎝⎛⎭⎫23,32[解析] 由题图可知,对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4cm ,最低点C 在x 轴上,高CH =1cm ,BD =2cm ,所以点C 的纵坐标为0,横坐标的绝对值为42+22=3,即C (-3,0),因为点F 与点C 关于y 轴对称,所以F (3,0),因为点F 是右轮廓线DFE 所在的二次函数图象的顶点,所以设该二次函数为y =a (x -3)2(a >0),将点D (1,1)代入得,a =14,即y =14(x -3)2,故选D. [答案] D(2)[解析] 函数f (x )=4x 2-mx +5的增区间为⎣⎡⎭⎫m 8,+∞,由已知可得m8≤-2⇒m ≤-16,所以f (1)=4×12-m ×1+5=9-m ≥25.[答案] A1.解:(1)f (x )=ax 2-2ax +2+b =a (x -1)2+2+b -a ,若a >0,则f (x )在区间[2,3]上是增函数.则有⎩⎪⎨⎪⎧ f (2)=2+b =2,f (3)=3a +2+b =5,解得⎩⎪⎨⎪⎧b =0,a =1.若a <0,则f (x )在区间[2,3]上是减函数,则有⎩⎪⎨⎪⎧f (2)=2+b =5,f (3)=3a +2+b =2,解得⎩⎪⎨⎪⎧b =3,a =-1.综上可知,a =1,b =0或a =-1,b =3. (2)由b <1知,a =1,b =0,则f (x )=x 2-2x +2, 所以g (x )=x 2-(m +2)x +2.因为g (x )在区间[2,4]上是单调函数,所以 m +22≥4或m +22≤2, 解得m ≥6或m ≤2.[解] (1)∵由①知f (x )=ax 2+bx (a ≠0)的对称轴是直线x =-1,∴b =2a .∵函数f (x )的图象与直线y =x 只有一个公共点,∴方程组⎩⎪⎨⎪⎧y =ax 2+bx ,y =x 有且只有一个解,即ax 2+(b -1)x =0有两个相同的实根,∴Δ=(b -1)2=0,即b =1,∴a =12.∴f (x )=12x 2+x .(2)∵π>1,∴πf (x )>⎝⎛⎭⎫1π2-tx 等价于f (x )>tx -2,即12x 2+x >tx -2在t ∈[-2,2]时恒成立⇔函数g (t )=xt -⎝⎛⎭⎫12x 2+x +2<0在t ∈[-2,2]时恒成立, ∴⎩⎪⎨⎪⎧ g (2)<0,g (-2)<0,即⎩⎪⎨⎪⎧x 2-2x +4>0,x 2+6x +4>0,解得x <-3-5或x >-3+5,故实数x 的取值范围是(-∞,-3-5)∪(-3+5,+∞).2.解:由f (x )>0,即ax 2-2x +2>0,x ∈(1,4), 得a >-2x 2+2x在(1,4)上恒成立.令g (x )=-2x 2+2x=-2⎝⎛⎭⎫1x -122+12, 1x ∈⎝⎛⎭⎫14,1,∴g (x )max =g (2)=12, 所以要使f (x )>0在(1,4)上恒成立,只要a >12即可. 【典例】[解] (1)当a =0时,f (x )=-2x 在[0,1]上递减,∴f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 图象的开口方向向上,且对称轴为x =1a. ①当1a≤1,即a ≥1时,f (x )=ax 2-2x 图象的对称轴在[0,1]内, ∴f (x )在⎣⎡⎦⎤0,1a 上递减,在⎣⎡⎦⎤1a ,1上递增. ∴f (x )min =f ⎝⎛⎭⎫1a =1a -2a =-1a. ②当1a>1,即0<a <1时,f (x )=ax 2-2x 图象的对称轴在[0,1]的右侧, ∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧, ∴f (x )=ax 2-2x 在[0,1]上递减.∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧ a -2, a <1,-1a,a ≥1. [跟踪练习] 解:∵函数y =x 2-2x =(x -1)2-1,∴对称轴为直线x =1,∵x =1不一定在区间[-2,a ]内,∴应进行讨论.当-2<a ≤1时,函数在[-2,a ]上单调递减,则当x =a 时,y 取得最小值,即y min =a 2-2a ;当a >1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y 取得最小值,即y min =-1.综上,g (x )=⎩⎪⎨⎪⎧a 2-2a ,-2<a ≤1,-1,a >1.A 组 考点能力演练1.解析:因为ab >0,所以,当a <0,b <0时,函数y =ax 2的图象开口向下,函数f (x )=ax +b 的图象在x ,y 轴上的截距均为负值,显然D 项满足条件;而当a >0,b >0时,函数y =ax 2的图象开口向上,函数f (x )=ax +b 的图象在x 轴上的截距为负值,在y 轴上的截距为正值,没有符合条件的选项,故选D.答案:D2.解析:函数f (x )=x 2+x +c 的图象的对称轴为直线x =-12,又∵f (0)>0,f (p )<0,∴-1<p <0,p +1>0,∴f (p +1)>0.答案:A3.解析:由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.答案:B4.解析:二次函数图象的对称轴为x =32,且f ⎝⎛⎭⎫32=-254,f (3)=f (0)=-4,由图得m ∈⎣⎡⎦⎤32,3.答案:D5.解析:由f (1+x )=f (-x )知f (x )的图象关于直线x =12对称,又抛物线f (x )开口向上,∴f (0)<f (2)<f (-2).答案:D6.解析:利用偶函数性质求解.因为偶函数的图象关于y 轴对称,所以-2-log 2m 2=0,解得m =4.答案:47.解析:∵f (x )=x -12=1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ), ∴⎩⎪⎨⎪⎧ a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧ a >-1,a <5,a >3,∴3<a <5.答案:(3,5)8.解析:由题意知,f (x )=x 2-2x =(x -1)2-1,因为函数f (x )在[a ,b ]上的值域为[-1,3],所以当a =-1时,1≤b ≤3;当b =3时,-1≤a ≤1,所以b -a ∈[2,4].答案:[2,4]9.解:(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a .因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0.所以4a 2-4a =0,所以a =1,所以b =2.所以f (x )=(x +1)2.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=⎝⎛⎭⎫x -k -222+1-(k -2)24. 由g (x )的图象知:要满足题意,则k -22≥2或k -22≤-1,即k ≥6或k ≤0,∴所求实数k 的取值范围为(-∞,0]∪[6,+∞).10.解:(1)∵f (x )=(x -a )2+5-a 2(a >1),∴f (x )在[1,a ]上是减函数.又定义域和值域均为[1,a ].∴⎩⎪⎨⎪⎧ f (1)=a ,f (a )=1,即⎩⎪⎨⎪⎧1-2a +5=a ,a 2-2a 2+5=1,解得a =2. (2)∵f (x )在区间(-∞,2]上是减函数,∴a ≥2.又x =a ∈[1,a +1],且(a +1)-a ≤a -1,∴f (x )max =f (1)=6-2a ,f (x )min =f (a )=5-a 2.∵对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,∴f (x )max -f (x )min ≤4,得-1≤a ≤3.又a ≥2,∴2≤a ≤3.故实数a 的取值范围是[2,3].B 组 高考题型专练1解析:函数y =x a (x ≥0)与y =log a x (x >0),选项A 中没有幂函数图象,不符合;对于选项B ,y =x a (x ≥0)中a >1,y =log a x (x >0)中0<a <1,不符合;对于选项C ,y =x a (x ≥0)中,0<a <1,y =log a x (x >0)中a >1,不符合,对于选项D ,y =x a (x ≥0)中0<a <1,y =log a x (x >0)中,0<a <1,符合,故选D.答案:D2.解析:由已知得⎩⎪⎨⎪⎧ 9a +3b +c =0.7,16a +4b +c =0.8,25a +5b +c =0.5,解得⎩⎪⎨⎪⎧ a =-0.2,b =1.5,c =-2,∴p =-0.2t 2+1.5t -2=-15⎝⎛⎭⎫t -1542+1316,∴当t =154=3.75时p 最大,即最佳加工时间为3.75分钟.故选B. 答案:B3.解析:f (x )=g (x ),即x 2-2(a +2)x +a 2=-x 2+(a -2)x -a 2+8,即x 2-2ax +a 2-4=0,解得x =a +2或x =a -2.f (x )与g (x )的图象如图.由图及H 1(x )的定义知H 1(x )的最小值是f (a +2),H 2(x )的最大值为g (a -2),A -B =f (a +2)-g (a -2)=(a +2)2-2(a +2)2+a 2+(a -2)2-2(a -2)2+a 2-8=-16.答案:C4.解析:依题意有a ,b 是方程x 2-px +q =0的两根,则a +b =p ,ab =q ,由p >0,q >0可知a >0,b >0.由题意可知ab =(-2)2=4=q ,a -2=2b 或b -2=2a ,将a -2=2b 代入ab =4可解得a =4,b =1,此时a +b =5,将b -2=2a 代入ab =4可解得a =1,b =4,此时a +b =5,则p =5,故p +q =9.答案:9。

高考数学一轮复习教学案二次函数与幂函数(含解析)

高考数学一轮复习教学案二次函数与幂函数(含解析)

第六节二次函数与幂函数[知识能否忆起]一、常用幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0} 值域R{y|y≥0}R{y|y≥0}{y|y≠0} 奇偶性奇偶奇非奇非偶奇单调性增(-∞,0]减(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)二、二次函数1.二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.2.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).3.二次函数的图象和性质a>0a<0 图象图象特点①对称轴:x=-b2a;②顶点:⎝⎛⎭⎫-b2a,4ac-b24a性质定义域 x ∈R值域y ∈⎣⎡4ac -b 24a ,+∞y ∈⎝⎛⎦⎤-∞,4ac -b 24a 奇偶性b =0时为偶函数,b ≠0时既非奇函数也非偶函数单调性x ∈-∞,⎦⎤-b 2a 时递减,x ∈-b2a,+∞时递增x ∈⎝⎛⎦⎤-∞,-b2a 时递增,x ∈⎣⎡⎭⎫-b 2a ,+∞时递减[小题能否全取]1.若f (x )既是幂函数又是二次函数,则f (x )可以是( ) A .f (x )=x 2-1 B .f (x )=5x 2 C .f (x )=-x 2D .f (x )=x 2解析:选D 形如f (x )=x α的函数是幂函数,其中α是常数.2.(教材习题改编)设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A 在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.3.(教材习题改编)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A.⎝⎛⎭⎫0,120B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞D.⎝⎛⎭⎫-120,0 解析:选C 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0得a >120.4.(教材习题改编)已知点M ⎝⎛⎭⎫33,3在幂函数f (x )的图象上,则f (x )的表达式为________.解析:设幂函数的解析式为y =x α,则3=⎝⎛⎭⎫33α,得α=-2.故y =x -2. 答案:y =x -25.如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图象关于直线x =1对称,则函数f (x )的最小值为________.解析:由题意知⎩⎨⎧-a +22=1,a +b =2,得⎩⎪⎨⎪⎧a =-4,b =6.则f (x )=x 2-2x +6=(x -1)2+5≥5. 答案:51.幂函数图象的特点(1)幂函数的图象一定会经过第一象限,一定不会经过第四象限,是否经过第二、三象限,要看函数的奇偶性;(2)幂函数的图象最多只能经过两个象限内;(3)如果幂函数的图象与坐标轴相交,则交点一定是原点. 2.与二次函数有关的不等式恒成立问题 (1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.[注意] 当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.幂函数的图象与性质典题导入[例1] 已知幂函数f (x )=(m 2-m -1)x-5m -3在(0,+∞)上是增函数,则m =________.[自主解答] ∵函数f (x )=(m 2-m -1)x -5m -3是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,-5m -3=-13,函数y =x -13在(0,+∞)上是减函数; 当m =-1时,-5m -3=2,函数y =x 2在(0,+∞)上是增函数. ∴m =-1. [答案] -1由题悟法1.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查: (1)α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸; 0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.以题试法1.(1)如图给出4个幂函数大致的图象,则图象与函数对应正确的是( )A .①y =x 13,②y =x 2,③y =x 12,④y =x -1B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1D .①y =x 13,②y =x 12,③y =x 2,④y =x -1解析:选B 由图①知,该图象对应的函数为奇函数且定义域为R ,当x >0时,图象是向下凸的,结合选项知选B.(2)(·淄博模拟)若a <0,则下列不等式成立的是( ) A .2a >⎝⎛⎭⎫12a>(0.2)aB .(0.2)a >⎝⎛⎭⎫12a>2aC.⎝⎛⎭⎫12a>(0.2)a>2aD .2a >(0.2)a >⎝⎛⎭⎫12a解析:选B 若a <0,则幂函数y =x a 在(0,+∞)上是减函数,所以(0.2)a >⎝⎛⎭⎫12a>0.所以(0.2)a >⎝⎛⎭⎫12a>2a .求二次函数的解析式典题导入[例2] 已知二次函数f (x )有两个零点0和-2,且它有最小值-1. (1)求f (x )解析式;(2)若g (x )与f (x )图象关于原点对称,求g (x )解析式. [自主解答] (1)由于f (x )有两个零点0和-2, 所以可设f (x )=ax (x +2)(a ≠0), 这时f (x )=ax (x +2)=a (x +1)2-a , 由于f (x )有最小值-1,所以必有⎩⎪⎨⎪⎧a >0,-a =-1,解得a =1.因此f (x )的解析式是f (x )=x (x +2)=x 2+2x .(2)设点P (x ,y )是函数g (x )图象上任一点,它关于原点对称的点P ′(-x ,-y )必在f (x )图象上,所以-y =(-x )2+2(-x ), 即-y =x 2-2x , y =-x 2+2x , 故g (x )=-x 2+2x .由题悟法求二次函数的解析式常用待定系数法.合理选择解析式的形式,并根据已知条件正确地列出含有待定系数的等式,把问题转化为方程(组)求解是解决此类问题的基本方法.以题试法2.设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图; (3)写出函数f (x )的值域.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图象如图,(3)由图象可知,函数f(x)的值域为(-∞,4].二次函数的图象与性质典题导入[例3]已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数.[自主解答](1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6].所以f(x)在[-4,2]上单调递减,在[2,6]上单调递增,故f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4.故a 的取值范围为(-∞,-6]∪[4,+∞).本例条件不变,求当a =1时,f (|x |)的单调区间. 解:当a =1时,f (x )=x 2+2x +3,则f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],故f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].由题悟法解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上二次函数最值问题的求法.以题试法3.(·泰安调研)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则a 的值为________.解析:f (x )=-(x -a )2+a 2-a +1, 当a >1时,y max =a ;当0≤a ≤1时,y max =a 2-a +1; 当a <0时,y max =1-a .根据已知条件⎩⎪⎨⎪⎧ a >1,a =2或⎩⎪⎨⎪⎧ 0≤a ≤1,a 2-a +1=2或⎩⎪⎨⎪⎧a <0,1-a =2,解得a =2或a =-1. 答案:2或-1二次函数的综合问题[例4] (·衡水月考)已知函数f (x )=x 2,g (x )=x -1. (1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围.[自主解答] (1)∃x ∈R ,f (x )<bg (x )⇒∃x ∈R , x 2-bx +b <0⇒(-b )2-4b >0⇒b <0或b >4. 故b 的取值范围为(-∞,0)∪(4,+∞). (2)F (x )=x 2-mx +1-m 2, Δ=m 2-4(1-m 2)=5m 2-4. ①当Δ≤0,即-255≤m ≤255时,则必需⎩⎨⎧m2≤0,-255≤m ≤255⇒-255≤m ≤0.②当Δ>0,即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2).若m2≥1,则x 1≤0, 即⎩⎪⎨⎪⎧ m 2≥1,F (0)=1-m 2≤0⇒m ≥2; 若m2≤0,则x 2≤0, 即⎩⎪⎨⎪⎧m 2≤0,F (0)=1-m 2≥0⇒-1≤m ≤-255.综上所述,m 的取值范围为[-1,0]∪[2,+∞).由题悟法二次函数与二次方程、二次不等式统称“三个二次”,它们之间有着密切的联系,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关“三个二次”的问题,数形结合,密切联系图象是探求解题思路的有效方法.4.若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解:(1)由f (0)=1,得c =1.即f (x )=ax 2+bx +1. 又f (x +1)-f (x )=2x ,则a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0得,m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).1.已知幂函数f (x )=x α的部分对应值如下表:x 1 12 f (x )122则不等式f (|x |)≤2的解集是(A .{x |0<x ≤2} B .{x |0≤x ≤4} C .{x |-2≤x ≤2}D .{x |-4≤x ≤4}解析:选D 由f ⎝⎛⎭⎫12=22⇒α=12,即f (x )=x 12,故f (|x |)≤2⇒|x |12≤2⇒|x |≤4,故其解集为{x |-4≤x ≤4}.2.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )解析:选D ∵a >b >c ,且a +b +c =0, ∴a >0,c <0.∴图象开口向上与y 轴交于负半轴.3.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b ) 解析:选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a .4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)解析:选D 由已知可得二次函数图象关于直线x =1对称,则f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]解析:选D 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)≤0,x ∈[0,1],所以a >0,即函数图象的开口向上,对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.6.若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A.⎝⎛⎭⎫-∞,-52B.⎝⎛⎭⎫52,+∞ C .(-∞,-2)∪(2,+∞)D.⎝⎛⎭⎫-52,+∞ 解析:选B 设f (x )=x 2-2mx +4,则题设条件等价于f (1)<0,即1-2m +4<0,解得m >52. 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图象关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图象都是抛物线型. 其中正确的有________.解析:从两个函数的定义域、奇偶性、单调性等性质去进行比较. 答案:①②⑤⑥8.(·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.若x ≥0,y ≥0,且x +2y =1,那么2x +3y 2的最小值为________. 解析:由x ≥0,y ≥0,x =1-2y ≥0知0≤y ≤12,令t =2x +3y 2=3y 2-4y +2, 则t =3⎝⎛⎭⎫y -232+23. 在⎣⎡⎦⎤0,12上递减,当y =12时,t 取到最小值,t min =34.答案:3410.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数,且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.解:∵f (x )在(0,+∞)上是增函数, ∴-12p 2+p +32>0,即p 2-2p -3<0.∴-1<p <3.又∵f (x )是偶函数且p ∈Z , ∴p =1,故f (x )=x 2.11.已知二次函数f (x )的图象过点A (-1,0)、B (3,0)、C (1,-8). (1)求f (x )的解析式;(2)求f (x )在x ∈[0,3]上的最值; (3)求不等式f (x )≥0的解集.解:(1)由题意可设f (x )=a (x +1)(x -3), 将C (1,-8)代入得-8=a (1+1)(1-3),得a =2. 即f (x )=2(x +1)(x -3)=2x 2-4x -6. (2)f (x )=2(x -1)2-8,当x ∈[0,3]时,由二次函数图象知, f (x )min =f (1)=-8,f (x )max =f (3)=0. (3)f (x )≥0的解集为{x |x ≤-1,或x ≥3}.12.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-m ·x 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . 当a >0时,f (x )在[2,3]上为增函数,故⎩⎪⎨⎪⎧ f (3)=5,f (2)=2,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2,⇒⎩⎪⎨⎪⎧a =1,b =0. 当a <0时,f (x )在[2,3]上为减函数,故⎩⎪⎨⎪⎧ f (3)=2,f (2)=5,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =2,4a -4a +2+b =5,⇒⎩⎪⎨⎪⎧a =-1,b =3.(2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2. g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, ∵g (x )在[2,4]上单调,∴2+m 2≤2或m +22≥4.∴m ≤2或m ≥6.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13 B.12 C.34D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.(·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.答案:⎝⎛⎦⎤-94,-2 3.(·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知得c =1,a -b +c =0,-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.1.比较下列各组中数值的大小. (1)30.8,30.7;(2)0.213,0.233;(3)4.125,3.8-25,(-1.4)35;(4)0.20.5,0.40.3.解:(1)函数y =3x 是增函数,故30.8>30.7. (2)y =x 3是增函数,故0.213<0.233.(3)4.125>1,0<3.8-25<1,而(-1.4)35<0,故4.125>3.8-25>(-1.4)35.(4)先比较0.20.5与0.20.3,再比较0.20.3与0.40.3,y =0.2x 是减函数,故0.20.5<0.20.3;y =x 0.3在(0,+∞)上是增函数,故0.20.3<0.40.3.则0.20.5<0.40.3.2.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D 当-b2a <0时,ab >0,从而c >0,可排除A ,C ;当-b2a >0时,ab <0,从而c <0,可排除B ,选D.3.已知函数f (x )=ax 2-2x +1. (1)试讨论函数f (x )的单调性;(2)若13≤a ≤1,且f (x )在[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ),求g (a )的表达式;(3)在(2)的条件下,求证:g (a )≥12.解:(1)当a =0时,函数f (x )=-2x +1在(-∞,+∞)上为减函数; 当a >0时,抛物线f (x )=ax 2-2x +1开口向上,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为减函数,在⎣⎡⎭⎫1a ,+∞上为增函数; 当a <0时,抛物线f (x )=ax 2-2x +1开口向下,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为增函数,在⎣⎡⎭⎫1a ,+∞上为减函数. (2)∵f (x )=a ⎝⎛⎭⎫x -1a 2+1-1a, 由13≤a ≤1得1≤1a ≤3,∴N (a )=f ⎝⎛⎭⎫1a =1-1a . 当1≤1a <2,即12<a ≤1时,M (a )=f (3)=9a -5,故g (a )=9a +1a-6;当2≤1a ≤3,即13≤a ≤12时,M (a )=f (1)=a -1,故g (a )=a +1a-2.∴g (a )=⎩⎨⎧a +1a-2,a ∈⎣⎡⎦⎤13,12,9a +1a -6,a ∈⎝⎛⎦⎤12,1.(3)证明:当a ∈⎣⎡⎦⎤13,12时,g ′(a )=1-1a 2<0, ∴函数g (a )在⎣⎡⎦⎤13,12上为减函数; 当a ∈⎝⎛⎦⎤12,1时,g ′(a )=9-1a 2>0, ∴函数g (a )在⎝⎛⎦⎤12,1上为增函数,∴当a =12时,g (a )取最小值,g (a )min =g ⎝⎛⎭⎫12=12. 故g (a )≥12.。

2020版高考数学一轮复习第2章函数导数及其应用第4节二次函数与幂函数教学案含解析理20190627317

2020版高考数学一轮复习第2章函数导数及其应用第4节二次函数与幂函数教学案含解析理20190627317

第四节二次函数与幂函数[考纲传真] 1.(1)了解幂函数的概念;(2)结合函数y=x,y=x2,y=x3,y=x12,y=1x 的图象,了解它们的变化情况.2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.1.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0);顶点式:f(x)=a(x-h)2+k(a≠0),顶点坐标为(h,k);零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象与性质函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)图象定义域R值域⎣⎢⎡⎭⎪⎫4ac-b24a,+∞⎝⎛⎦⎥⎤-∞,4ac-b24a 单调性在⎝⎛⎦⎥⎤-∞,-b2a上减,在⎣⎢⎡⎭⎪⎫-b2a,+∞上增在⎝⎛⎦⎥⎤-∞,-b2a上增,在⎣⎢⎡⎭⎪⎫-b2a,+∞上减奇偶性当b=0时为偶函数对称性函数的图象关于直线x=-b2a对称(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)五种常见幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域 R R R {x |x ≥0} {x |x ≠0} 值域 R {y |y ≥0} R {y |y ≥0} {y |y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增(-∞,0) (0,+∞)增减,增增(-∞,0)和(0,+∞)减公共点 (1,1)[常用结论]1.与二次函数有关的恒成立问题 设f (x )=ax 2+bx +c (a ≠0),则(1)f (x )>0恒成立的充要条件是⎩⎪⎨⎪⎧ a >0Δ<0;(2)f (x )<0恒成立的充要条件是⎩⎪⎨⎪⎧a <0Δ<0;(3)f (x )>0(a <0)在区间[m ,n ]恒成立的充要条件是⎩⎪⎨⎪⎧fm >0f n >0;(4)f (x )<0(a >0)在区间[m ,n ]恒成立的充要条件是⎩⎪⎨⎪⎧fm <0f n <0.2.幂函数y =x α(α∈R )的图象特征(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性.(2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点. (3)当α>0时,y =x α在[0,+∞)上为增函数; 当α<0时,y =x α在(0,+∞)上为减函数.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)二次函数y =ax 2+bx +c ,x ∈R ,不可能是偶函数.( )(2)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b24a . ( )(3)幂函数的图象一定经过点(1,1)和点(0,0). ( ) (4)当n >0时,幂函数y =x n在(0,+∞)上是增函数. ( )[答案] (1)× (2)× (3)× (4)√2.(教材改编)已知幂函数f (x )=x α的图象过点(4,2),若f (m )=3,则实数m 的值为( )A. 3 B .± 3 C .±9D .9D [由题意可知4α=22α=2,所以α=12.所以f (x )=x 12=x ,故f (m )=m =3⇒m =9.]3.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,120 B.⎝ ⎛⎭⎪⎫-∞,-120 C.⎝⎛⎭⎪⎫120,+∞D.⎝ ⎛⎭⎪⎫-120,0C [由题意知⎩⎪⎨⎪⎧a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.]4.(教材改编)如图是①y =x a;②y =x b;③y =x c在第一象限的图象,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .a <c <bD [由图象知②③的指数大于零且b >c ,①的指数小于零,因此b >c >a ,故选D.] 5.若f (x )=(x +a )(x -4)为偶函数,则实数a =________.4 [f (x )=x 2+(a -4)x -4a ,由f (x )是偶函数知a -4=0,所以a =4.]幂函数的图象与性质1.幂函数y =f (x )的图象过点(8,22),则幂函数y =f (x )的图象是( )A BC DC [令f (x )=x α,由f (8)=22得8α=22,即23α=232,解得α=12,所以f (x )=x 12,故选 C.]2.若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <aD .b <a <cD [a =⎝ ⎛⎭⎪⎫1223=⎝ ⎛⎭⎪⎫1413,b =⎝ ⎛⎭⎪⎫1523=⎝ ⎛⎭⎪⎫12513,c =⎝ ⎛⎭⎪⎫1213,由125<14<12得b <a <c ,故选D.]3.(2019·兰州模拟)已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α等于( )A.12 B .1 C.32D .2C [由幂函数的定义知k =1. 又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.] 4.若(a +1) 12<(3-2a ) 12,则实数a 的取值范围是________.⎣⎢⎡⎭⎪⎫-1,23 [易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.][规律方法] 幂函数的性质与图象特征的关系 1幂函数的形式是y =xαα∈R ,其中只有一个参数α,因此只需一个条件即可确定其解析式.2判断幂函数y =xαα∈R 的奇偶性时,当α是分数时,一般将其先化为根式,再判断.3若幂函数y =x α在0,+∞上单调递增,则α>0,若在0,+∞上单调递减,则α<0.求二次函数的解析式【例1】 (1)f (x )的最大值是8,则f (x )=________.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________.(1)-4x 2+4x +7 (2)x 2+2x [(1)法一(利用一般式): 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7.法二(利用顶点式): 设f (x )=a (x -m )2+n . ∵f (2)=f (-1),∴抛物线的图象的对称轴为x =2+-12=12.∴m =12.又根据题意函数有最大值8,∴n =8.∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8. ∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.(2)设函数的解析式为f (x )=ax (x +2),所以f (x )=ax 2+2ax , 由4a ×0-4a 24a =-1,得a =1,所以f (x )=x 2+2x .] [规律方法] 求二次函数解析式的方法(1)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________.(2)若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.(1)x 2+2x +1 (2)-2x 2+4 [(1)由题意知⎩⎪⎨⎪⎧a -b +1=0,-b2a=-1,解得⎩⎪⎨⎪⎧a =1,b =2.从而f (x )=x 2+2x +1.(2)由f (x )是偶函数知f (x )图象关于y 轴对称,所以-a =-⎝⎛⎭⎪⎫-2a b ,即b =-2或a =0,当a =0时,则f (x )=bx 2,值域为(-∞,0]或[0,+∞), 不满足已知值域(-∞,4],∴a =0舍去,所以f (x )=-2x 2+2a 2, 又f (x )的值域为(-∞,4], 所以2a 2=4, 故f (x )=-2x 2+4.]二次函数的图象与性质►考法1 【例2】 已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )D [A 项,因为a <0,-b2a <0,所以b <0.又因为abc >0,所以c >0, 而f (0)=c <0,故A 错.B 项,因为a <0,-b2a>0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错. C 项,因为a >0,-b2a<0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错. D 项,因为a >0,-b2a>0,所以b <0.又因为abc >0,所以c <0,而f (0)=c <0,故选D.] ►考法2 二次函数的单调性【例3】 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________.[-3,0] [当a =0时,f (x )=-3x +1在[-1,+∞]上递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上递减知⎩⎪⎨⎪⎧a <0,3-a2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0].][拓展探究] 若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a 为何值? [解] 因为函数f (x )=ax 2+(a -3)x +1的单调减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a=-1,解得a =-3.►考法3 二次函数的最值【例4】 已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值. [解] (1)当a =0时,f (x )=-2x 在[0,1]上单调递减, 所以f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 的图象开口向上且对称轴为x =1a.①当0<1a≤1,即a ≥1时,f (x )=ax 2-2x 的对称轴在(0,1]内,所以f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,1上单调递增.所以f (x )min =f ⎝ ⎛⎭⎪⎫1a=1a -2a=-1a.②当1a>1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧,所以f (x )在[0,1]上单调递减. 所以f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象开口向下且对称轴x =1a<0,在y 轴的左侧,所以f (x )=ax 2-2x 在[0,1]上单调递减, 所以f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a,a ≥1.[拓展探究] 若将本例中的函数改为f (x )=x 2-2ax ,其他不变,应如何求解? [解] 因为f (x )=x 2-2ax =(x -a )2-a 2,对称轴为x =a. ①当a <0时,f (x )在[0,1]上是增函数, 所以f (x )min =f (0)=0.②当0≤a ≤1时,f (x )min =f (a )=-a 2. ③当a >1时,f (x )在[0,1]上是减函数, 所以f (x )min =f (1)=1-2a.综上所述,f (x )min =⎩⎪⎨⎪⎧0,a <0,-a 2,0≤a ≤1,1-2a ,a >1.[规律方法] 二次函数最值的求法,二次函数的区间最值问题一般有三种情况:①对称轴和区间都是给定的;②对称轴动,区间固定;③对称轴定,区间变动.解决这类问题的思路是抓住“三点一轴”进行数形结合,三点指的是区间两个端点和中点,一轴指的是对称轴.具体方法是利用函数的单调性及分类讨论的思想求解.对于②、③,通常要分对称轴在区间内、区间外两大类情况进行讨论.致是( )A B C D(2)若二次函数y =kx 2-4x +2在区间[1,2]上是单调递增函数,则实数k 的取值范围为( )A .[2,+∞)B .(2,+∞)C .(-∞,0)D .(-∞,2)(1)C (2)A [(1)若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b2a<0,而二次函数的对称轴在y 轴的右侧,故应排除B ,选C.(2)二次函数y =kx 2-4x +2的对称轴为x =2k,当k >0时,要使函数y =kx 2-4x +2在区间[1,2]上是增函数,只需2k≤1,解得k ≥2.当k <0时,2k<0,此时抛物线的对称轴在区间[1,2]的左侧,该函数y =kx 2-4x +2在区间[1,2]上是减函数,不符合要求.综上可得实数k 的取值范围是[2,+∞).](3)已知函数f (x )=x 2-2x ,若x ∈[-2,a ],求f (x )的最小值. [解] 因为函数f (x )=x 2-2x =(x -1)2-1, 所以对称轴为直线x =1,因为x =1不一定在区间[-2,a ]内,所以应进行讨论,当-2<a ≤1时,函数在[-2,a ]上单调递减,则当x =a 时,f (x )取得最小值,即f (x )min =a 2-2a ;当a >1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,f (x )取得最小值,即f (x )min =-1.综上,当-2<a ≤1时,f (x )min =a 2-2a , 当a >1时,f (x )min =-1.与二次函数有关的恒成立问题►考法f x x 【例5】 (2019·张掖模拟)不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是__________________.(-2,2] [当a -2=0,即a =2时,不等式即为-4<0,对一切x ∈R 恒成立, 当a ≠2时,则有⎩⎪⎨⎪⎧a -2<0,Δ=4a -22+16a -2<0,即⎩⎪⎨⎪⎧a <2,-2<a <2,∴-2<a <2.综上,可得实数a 的取值范围是(-2,2].]►考法2 形如f (x )≥0(x ∈[a ,b ])求参数的范围【例6】 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.[解] 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )m ax =g (3)⇒7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )m ax =g (1)⇒m -6<0,所以m <6,所以m <0.综上所述:m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. ►考法3 形如f (x )≥0(参数k ∈[a ,b ])求x 的范围【例7】 对任意的k ∈[-1,1],函数f (x )=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是__________.(-∞,1)∪(3,+∞) [对任意的k ∈[-1,1],x 2+(k -4)x +4-2k >0恒成立,即g (k )=(x -2)k +(x 2-4x +4)>0,在k ∈[-1,1]时恒成立.只需g (-1)>0且g (1)>0,即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,解得x<1或x>3,所以x的取值范围为(-∞,1)∪(3,+∞).][规律方法]形如f x≥0f x≤0恒成立问题的求解思路1x∈R的不等式确定参数的范围时,结合二次函数的图象,利用判别式来求解.2x∈[a,b]的不等式确定参数范围时,①根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求出参数的范围;②数形结合,利用二次函数在端点a,b处的取值特点确定不等式求参数的取值范围.③分离参数,变为a≥g x或a≤g x恒成立问题,然后再求g x的最值.3已知参数k∈[a,b]的不等式确定x的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(1)当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是________.(2)已知a是实数,函数f(x)=2ax2+2x-3在x∈[-1,1]上恒小于零,则实数a的取值范围为________.(1)(-∞,-5] (2)⎝⎛⎭⎪⎫-∞,12[(1)设f(x)=x2+mx+4,当x∈(1,2)时,f(x)<0恒成立⇔⎩⎪⎨⎪⎧f1≤0,f2≤0⇒⎩⎪⎨⎪⎧m≤-5,m≤-4⇒m≤-5.(2)2ax2+2x-3<0在[-1,1]上恒成立.当x=0时,-3<0,成立;当x≠0时,a<32⎝⎛⎭⎪⎫1x-132-16,因为1x∈(-∞,-1]∪[1,+∞),当x=1时,右边取最小值12,所以a<12.综上,实数a的取值范围是⎝⎛⎭⎪⎫-∞,12.]1.(2016·全国卷Ⅲ)已知a=243,b=323,c=2513,则( )A.b<a<c B.a<b<cC.b<c<a D.c<a<bA [利用幂函数的性质比较大小.a =243=423,b =323,c =2513=523.∵y =x 23在第一象限内为增函数,又5>4>3,∴c >a >b.]2.(2014·全国卷Ⅰ)设函数f (x )=则使得f (x )≤2成立的x 的取值范围是________.(-∞,8] [当x <1时,x -1<0,ex -1<e 0=1≤2, ∴当x <1时满足f (x )≤2.当x ≥1时,x 13≤2,x ≤23=8,∴1≤x ≤8.综上可知x ∈(-∞,8].]自我感悟:______________________________________________________ ________________________________________________________________ ________________________________________________________________。

2023年高考数学总复习第二章 函数概念与基本初等函数第4节:幂函数与二次函数(教师版)

2023年高考数学总复习第二章 函数概念与基本初等函数第4节:幂函数与二次函数(教师版)

2023年高考数学总复习第二章函数概念与基本初等函数第4节二次函数性质的再研究与幂函数考试要求 1.了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=x 12,y=1x的图像,了解它们的变化情况;2.理解二次函数的图像和性质,能用二次函数、方程、不等式之间的关系解决简单问题.1.幂函数(1)幂函数的定义如果一个函数,底数是自变量x,指数是常量α,即y=xα,这样的函数称为幂函数.(2)常见的五种幂函数的图像(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图像和性质1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),>0,<0时,恒有f (x )>0;<0,<0时,恒有f (x )<0.3.(1)幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限;(2)幂函数的图像过定点(1,1),如果幂函数的图像与坐标轴相交,则交点一定是原点.1.思考辨析(在括号内打“√”或“×”)(1)函数y =2x 13是幂函数.()(2)当α>0时,幂函数y =x α在(0,+∞)上是增函数.()(3)二次函数y =ax 2+bx +c (a ≠0)的两个零点可以确定函数的解析式.()(4)二次函数y=ax2+bx+c(x∈[a,b])的最值一定是4ac-b24a.()答案(1)×(2)√(3)×(4)×解析(1)由于幂函数的解析式为f(x)=xα,故y=2x 13不是幂函数,(1)错误.(3)确定二次函数的解析式需要三个独立的条件,两个零点不能确定函数的解析式.(4)对称轴x=-b2a,当-b2a不在给定定义域内时,最值不是4ac-b24a,故(4)错误.2.(2021·全国甲卷)下列函数中是增函数的为()A.f(x)=-xB.f(x)C.f(x)=x2D.f(x)=3x答案D解析取x1=-1,x2=0,对于A项有f(x1)=1,f(x2)=0,所以A项不符合题意;对于B项有f(x1)=32,f(x2)=1,所以B项不符合题意;对于C项有f(x1)=1,f(x2)=0,所以C项不符合题意.故选D.3.(易错题)若函数y=mx2+x+2在[3,+∞)上是减函数,则m的取值范围是________.答案-∞,-16解析当m=0时,函数在给定区间上是增函数;当m≠0时,二次函数的对称轴为直线x=-12m,<0,-12m≤3,∴m≤-16.4.(易错题)已知幂函数f(x)=x-12,若f(a+1)<f(10-2a),则a的取值范围是________.答案(3,5)解析∵幂函数f(x)=x-12在定义域(0,+∞)上单调递减,∴由f(a+1)<f(10-2a),a +1>0,10-2a >0,a +1>10-2a ,∴3<a <5.5.(2018·上海卷)已知α-2,-1,-12,12,1,2,3若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______.答案-1解析由y =x α为奇函数,知α取-1,1,3.又y =x α在(0,+∞)上递减,∴α<0,取α=-1.6.已知函数f (x )=-2x 2+mx +3(0≤m ≤4,0≤x ≤1)的最大值为4,则m 的值为________.答案22解析f (x )=-2x 2+mx +3=-x m 4+m 28+3,∵0≤m ≤4,∴0≤m4≤1,∴当x =m4时,f (x )取得最大值,∴m 28+3=4,解得m =2 2.考点一幂函数的图像和性质1.若幂函数y =f (x )的图像过点(4,2),则幂函数y =f (x )的大致图像是()答案C解析设幂函数的解析式为y =x α,因为幂函数y =f (x )的图像过点(4,2),所以2=4α,解得α=12.所以y=x,其定义域为[0,+∞),且是增函数,当0<x<1时,其图像在直线y =x的上方,对照选项,C正确.2.若幂函数f(x)=(2b-1)x a2-10a+23(a,b∈Z)为偶函数,且f(x)在(0,+∞)上是减函数,则a,b的值分别为()A.2,1B.4,1C.5,1D.6,1答案C解析由幂函数的定义得2b-1=1,∴b=1.又∵a2-10a+23=(a-5)2-2,函数f(x)为偶函数且在(0,+∞)上为减函数,∴(a-5)2-2<0,故a=4,5,6.又(a-5)2-2为偶数,∴a=5.3.如图是①y=x a;②y=x b;③y=x c在第一象限的图像,则a,b,c的大小关系为()A.c<b<aB.a<b<cC.b<c<aD.a<c<b答案D解析由幂函数的图像和单调性可知a<0,b>1,0<c<1,∴a<c<b.4.(2021·郑州质检)幂函数f(x)=(m2-3m+3)x m的图像关于y轴对称,则实数m=________.答案2解析由幂函数定义,知m2-3m+3=1,解得m=1或m=2,当m=1时,f(x)=x的图像不关于y轴对称,舍去,当m=2时,f(x)=x2的图像关于y轴对称,因此m =2.5.若(a +1)-13<(3-2a )-13,则实数a 的取值范围是________.答案(-∞,-1)23,32解析不等式(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得a <-1或23<a <32.感悟提升1.对于幂函数图像的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图像越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x 轴.考点二二次函数的解析式例1已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解法一(利用“一般式”)设f (x )=ax 2+bx +c (a ≠0).4a +2b +c =-1,a -b +c 1,4ac -b24a=8,a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7.法二(利用“顶点式”)设f (x )=a (x -m )2+n (a ≠0).因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8,所以y=f(x)=+8.因为f(2)=-1,所以+8=-1,解得a=-4,所以f(x)=-+8=-4x2+4x+7.法三(利用“零点式”)由已知f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1)(a≠0),即f(x)=ax2-ax-2a-1.又函数有最大值8,即4a(-2a-1)-(-a)24a=8.解得a=-4或a=0(舍).故所求函数的解析式为f(x)=-4x2+4x+7.感悟提升求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:训练1(1)已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值为f(-1)=0,则f(x)=________.(2)已知二次函数f(x)的图像经过点(4,3),在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)=________.答案(1)x2+2x+1(2)x2-4x+3解析(1)设函数f(x)的解析式为f(x)=a(x+1)2=ax2+2ax+a,由已知f(x)=ax2+bx+1,所以a=1,b=2a=2,故f(x)=x2+2x+1.(2)因为f(2-x)=f(2+x)对x∈R恒成立,所以y=f(x)的图像关于x=2对称.又y=f(x)的图像在x轴上截得的线段长为2,所以f(x)=0的两根为2-22=1或2+22=3.所以二次函数f(x)与x轴的两交点坐标为(1,0)和(3,0).因此设f(x)=a(x-1)(x-3).又点(4,3)在y=f(x)的图像上,所以3a=3,则a=1.故f(x)=(x-1)(x-3)=x2-4x+3.考点三二次函数的图像和性质角度1二次函数的图像例2(1)二次函数y=ax2+bx+c的图像如图所示.则下列结论正确的是______(填序号).①b2>4ac;②c>0;③ac>0;④b<0;⑤a-b+c<0.(2)设函数f(x)=x2+x+a(a>0),若f(m)<0,则()A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<0答案(1)①②⑤(2)C解析(1)由题图知,a<0,-b2a>0,c>0,∴b>0,ac<0,故②正确,③④错误.又函数图像与x轴有两交点,∴Δ=b2-4ac>0,故①正确;又由题图知f(-1)<0,即a-b+c<0,故⑤正确.(2)因为f(x)的对称轴为x=-12,f(0)=a>0,所以f(x)的大致图像如图所示.由f(m)<0,得-1<m<0,所以m+1>0>-1 2,所以f(m+1)>f(0)>0.角度2二次函数的单调性与最值例3(1)函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取值范围是()A.[-3,0)B.(-∞,-3]C.[-2,0]D.[-3,0]答案D解析当a=0时,f(x)=-3x+1在[-1,+∞)上单调递减,满足题意.当a≠0时,f(x)的对称轴为直线x=3-a 2a,由f(x)在[-1,+∞)a<0,3-a2a≤-1,解得-3≤a<0.综上,a的取值范围为[-3,0].(2)(2021·西安模拟)已知f(x)=ax2-2x(0≤x≤1),求f(x)的最小值.解①当a=0时,f(x)=-2x在[0,1]上递减,∴f(x)min=f(1)=-2.②当a>0时,f(x)=ax2-2x图像开口方向向上,且对称轴为x=1 a .(ⅰ)当1a≤1,即a≥1时,f(x)=ax2-2x图像的对称轴在[0,1]内,∴f(x)在0,1a上递减,在1a,1上递增.∴f(x)min=1a=1a-2a=-1a.(ⅱ)当1a>1,即0<a<1时,f(x)=ax2-2x图像的对称轴在[0,1]的右侧,∴f(x)在[0,1]上递减.∴f(x)min=f(1)=a-2.③当a<0时,f(x)=ax2-2x的图像的开口方向向下,且对称轴x=1a<0,在y轴的左侧,∴f(x)=ax2-2x在[0,1]上递减.∴f(x)min=f(1)=a-2.综上所述,f(x)min-2,a<1,-1a,a≥1.感悟提升 1.闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图像,根据函数的单调性及分类讨论的思想求解.2.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图像的对称轴与区间的位置关系,当含有参数时,要依据图像的对称轴与区间的位置关系进行分类讨论.角度3二次函数中的恒成立问题例4(1)已知a是实数,函数f(x)=2ax2+2x-3在x∈[-1,1]上恒小于零,则实数a的取值范围是________.(2)函数f(x)=a2x+3a x-2(a>1),若在区间[-1,1]上f(x)≤8恒成立,则实数a的最大值为________.答案(2)2解析(1)由题意知2ax2+2x-3<0在[-1,1]上恒成立,当x=0时,-3<0,符合题意,a∈R;当x≠0时,a-1 6,因为1x∈(-∞,-1]∪[1,+∞),所以当x=1时,不等号右边式子取最小值1 2,所以a<1 2 .综上,实数a∞(2)令a x=t,因为a>1,x∈[-1,1],所以1a≤t≤a,原函数化为g(t)=t2+3t-2,t∈1a,a,显然g(t)在1a,a上单调递增,所以f(x)≤8恒成立,即g(t)max=g(a)≤8成立,所以有a2+3a-2≤8,解得-5≤a≤2,又a>1,所以1<a≤2,所以a的最大值为2.感悟提升由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否易分离.其中分离参数的依据是:a≥f(x)恒成立⇔a≥f(x)max,a≤f(x)恒成立⇔a ≤f(x)min.训练2(1)(2021·长春五校联考)已知二次函数f(x)满足f(3+x)=f(3-x),若f(x)在区间[3,+∞)上单调递减,且f(m)≥f(0)恒成立,则实数m的取值范围是()A.(-∞,0]B.[0,6]C.[6,+∞)D.(-∞,0]∪[6,+∞)(2)(2022·泰安调研)当x∈(0,+∞)时,ax2-3x+a≥0恒成立,则实数a的取值范围是________.答案(1)B(2)32,+∞解析(1)设f(x)=ax2+bx+c(a,b,c∈R,且a≠0),∵f(3+x)=f(3-x),∴a(3+x)2+b(3+x)+c=a(3-x)2+b(3-x)+c,∴x(6a+b)=0,∴6a+b=0,∴f(x)=ax2-6ax+c=a(x-3)2-9a+c.又∵f(x)在区间[3,+∞)上单调递减,∴a<0,∴f(x)的图像是以直线x=3为对称轴,开口向下的抛物线,∴由f(m)≥f(0)恒成立,得0≤m≤6,∴实数m的取值范围是[0,6].(2)由ax2-3x+a≥0,得a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当x=1时等号成立,∴y=3x+1x≤32,故a≥32.(3)设函数f(x)=x2-2x+2,x∈[t,t+1],t∈R,求函数f(x)的最小值.解f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,函数图像的对称轴为x=1.当t+1≤1,即t≤0时,函数图像如图(1)所示,函数f(x)在区间[t,t+1]上为减函数,所以最小值为f(t+1)=t2+1;当t<1<t+1,即0<t<1时,函数图像如图(2)所示,在对称轴x=1处取得最小值,最小值为f(1)=1;当t≥1时,函数图像如图(3)所示,函数f(x)在区间[t,t+1]上为增函数,所以最小值为f(t)=t2-2t+2.综上可知,当t≤0时,f(x)min=t2+1,当0<t<1时,f(x)min=1,当t≥1时,f(x)min=t2-2t+2.1.若f (x )是幂函数,且满足f (4)f (2)=3,则()A.3B.-3C.13D.-13答案C解析设f (x )=x α,则4α2α=2α=3,∴=13.2.若函数f (x )=(m 2-m -1)x m 是幂函数,且其图像与坐标轴无交点,则f (x )()A.是偶函数B.是定义域内的减函数C.是定义域内的增函数D.在定义域内没有最小值答案D解析幂函数f (x )=(m 2-m -1)x m 的图像与坐标轴无交点,可得m 2-m -1=1,且m ≤0,解得m =-1,则函数f (x )=x -1是奇函数,在定义域上不是减函数,且无最值.3.(2021·河南名校联考)函数y =1-|x -x 2|的图像大致是()答案C解析∵当0≤x ≤1时,y =x 2-x +1+34,又当x >1或x <0时,y =-x 2+x +1+54,因此,结合图像,选项C 正确.4.(2021·西安检测)已知函数f (x )=x -3,若a =f (0.60.6),b =f (0.60.4),c =f (0.40.6),则a ,b ,c 的大小关系是()A.a <c <bB.b <a <cC.b <c <aD.c <a <b答案B解析∵0.40.6<0.60.6<0.60.4,又y =f (x )=x -3在(0,+∞)上是减函数,∴b <a <c .5.若二次函数y =kx 2-4x +2在区间[1,2]上是单调递增函数,则实数k 的取值范围是()A.[2,+∞)B.(2,+∞)C.(-∞,0)D.(-∞,2)答案A解析二次函数y =kx 2-4x +2图像的对称轴为直线x =2k,当k >0时,要使函数y =kx 2-4x +2在区间[1,2]上是增函数,只需2k ≤1,解得k ≥2;当k <0时,2k <0,此时抛物线的对称轴在区间[1,2]的左侧,则函数y =kx 2-4x +2在区间[1,2]上是减函数,不符合要求.综上可得实数k 的取值范围是[2,+∞).6.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图像三等分,即有BM =MN =NA ,那么a -1b=()A.0B.1C.12D.2答案A解析BM =MN =NA ,点A (1,0),B (0,1),所以将两点坐标分别代入y =x a ,y =x b ,得a =log 1323,b =log 2313,∴a -1b =log 1323-1log 2313=0.7.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.答案-22,解析因为函数图像开口向上,(m )=m 2+m 2-1<0,(m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0.8.(2021·青岛联考)已知函数f (x )=x 2-2ax +b (a >1)的定义域和值域都为[1,a ],则b =________.答案5解析f (x )=x 2-2ax +b 的图像关于x =a 对称,所以f (x )在[1,a ]上为减函数,又f (x )的值域为[1,a ],(1)=1-2a +b =a ,(a )=a 2-2a 2+b =1.消去b ,得a 2-3a +2=0,解得a =2(a >1),从而得b =3a -1=5.9.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 的值都有f (x )>0,则实数a的取值范围为________.答案解析由题意得a >2x -2x2对1<x <4恒成立,又2x -2x2=-+12,14<1x<1,max=12,∴a >12.10.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图像过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[3,5]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a .因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0.所以4a 2-4a =0,所以a =1,b =2.所以f (x )=x 2+2x +1.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1+1.由g (x )的图像知,要满足题意,则k -22≥5或k -22≤3,即k ≥12或k ≤8,所以所求实数k 的取值范围为(-∞,8]∪[12,+∞).11.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图像恒在函数y =2x +m 的图像的上方,求实数m 的取值范围.解(1)设f (x )=ax 2+bx +c (a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以,2a =2且a +b =0,解得a =1,b =-1,又f (0)=1,所以c =1.因此f(x)的解析式为f(x)=x2-x+1.(2)因为当x∈[-1,1]时,y=f(x)的图像恒在y=2x+m的图像上方,所以在[-1,1]上,x2-x+1>2x+m恒成立;即x2-3x+1>m在区间[-1,1]上恒成立.所以令g(x)=x2-3x+1-5 4,因为g(x)在[-1,1]上的最小值为g(1)=-1,所以m<-1.故实数m的取值范围为(-∞,-1).12.已知在(-∞,1]上递减的函数f(x)=x2-2tx+1,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值范围是()A.[-2,2]B.[1,2]C.[2,3]D.[1,2]答案B解析由于f(x)=x2-2tx+1的图像的对称轴为x=t,又y=f(x)在(-∞,1]上是减函数,所以t≥1.则在区间[0,t+1]上,f(x)max=f(0)=1,f(x)min=f(t)=t2-2t2+1=-t2+1,要使对任意的x1,x2∈[0,t+1],都有|f(x1)-f(x2)|≤2,只需1-(-t2+1)≤2,解得-2≤t≤ 2.又t≥1,∴1≤t≤ 2.13.(2022·太原调研)对于问题:当x>0时,均有[(a-1)x-1](x2-ax-1)≥0,求实数a的所有可能值.几位同学提供了自己的想法.甲:解含参不等式,其解集包含正实数集;乙:研究函数y=[(a-1)x-1](x2-ax-1);丙:分别研究两个函数y1=(a-1)x-1与y2=x2-ax-1;丁:尝试能否参变量分离研究最值问题.你可以选择其中某位同学的想法,也可以用自己的想法,可以得出的正确答案为______.答案3 2解析选丙.画出y2=x2-ax-1的草图,y2=x2-ax-1过定点C(0,-1).∴y2=x2-ax-1与x轴有两个交点,且两交点在原点两侧,又y1=(a-1)x-1也过定点C(0,-1),故直线y1=(a-1)x-1只有过点A,C才满足题意,∴a-1>0,即a>1,令y1=0得x=1a-1,y2=x2-ax-1,-aa-1-1=0,解得a=0(舍)或a=3 2 .14.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.解(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],函数图像的对称轴为直线x=-32∈[-2,3],∴f(x)min==94-92-3=-214,f(x)max=f(3)=15,∴f(x)的值域为-214,15.(2)函数图像的对称轴为直线x=-2a-12.①当-2a-12≤1,即a≥-12时,f(x)max=f(3)=6a+3,∴6a+3=1,即a=-13,满足题意;②当-2a-12>1,即a<-12时,f(x)max=f(-1)=-2a-1,∴-2a-1=1,即a=-1,满足题意.综上可知,a=-13或-1.。

高三 一轮复习 二次函数与幂函数 教案

高三 一轮复习 二次函数与幂函数 教案

二次函数与幂函数1.五种常见幂函数的图像与性质函数 特征 性质y =xy =x 2y =x 3y =x 12y =x -1图像定义域 R R R {x |x ≥0} {x |x ≠0} 值域 R {y |y ≥0} R {y |y ≥0} {y |y ≠0} 奇偶性奇偶 奇非奇非偶奇 单调性增(-∞,0]减,(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1) 2.二次函数解析式的三种形式 (1)一般式:f (x )=ax 2+bx +c (a ≠0); (2)顶点式:f (x )=a (x -m )2+n (a ≠0); (3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 3.二次函数的图像和性质a >0a <0图像定义域 x ∈R值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在⎝⎛⎦⎤-∞,-b2a 上递减,在⎣⎡⎭⎫-b 2a ,+∞上递增在⎝⎛⎦⎤-∞,-b2a 上递增,在⎣⎡⎭⎫-b 2a ,+∞上递减奇偶性 b =0时为偶函数,b ≠0时既不是奇函数也不是偶函数图像特点①对称轴:x =-b2a ;②顶点:⎝⎛⎭⎫-b 2a,4ac -b 24a1.研究函数f (x )=ax 2+bx +c 的性质,易忽视a 的取值情况而盲目认为f (x )为二次函数. 2.形如y =x α(α∈R )才是幂函数,如y =3x 12不是幂函数.[试一试]1.(2013·南通二调)已知幂函数f (x )=k ·x α的图像过点⎝⎛⎭⎫12,22,则k +α=________.2.已知函数f (x )=ax 2+x +5的图像在x 轴上方,则a 的取值范围是________.1.函数y =f (x )对称轴的判断方法(1)对于二次函数y =f (x ),如果定义域内有不同两点x 1,x 2且f (x 1)=f (x 2),那么函数y =f (x )的图像关于x =x 1+x 22对称. (2)二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立的充要条件是函数y =f (x )的图像关于直线x =a 对称(a 为常数).2.与二次函数有关的不等式恒成立两个条件 (1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.3.两种数学思想(1)数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(2)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.[练一练]如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图像关于直线x =1对称,则函数f (x )的最小值为________.考点一幂函数的图像与性质1.幂函数y =f (x )的图像过点(4,2),则幂函数y =f (x )的解析式为______________________.2.图中曲线是幂函数y =x α在第一象限的图像.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的α值依次为____________.3.设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是________.[类题通法]1.幂函数y =x α的图像与性质由于α的值不同而比较复杂,一般从两个方面考查:(1)α的正负:α>0时,图像过原点和(1,1),在第一象限的图像上升;α<0时,图像不过原点,在第一象限的图像下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图像和性质是解题的关键.考点二求二次函数的解析式[典例]已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数的解析式.[类题通法]求二次函数解析式的方法根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:[针对训练]已知y=f(x)为二次函数,且f(0)=-5,f(-1)=-4,f(2)=-5,求此二次函数的解析式.考点三二次函数的图像与性质研究二次函数在闭区间上的最值解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.归纳起来常见的命题角度有:(1)轴定区间定求最值;(2)轴动区间定求最值;(3)轴定区间动求最值.角度一轴定区间定求最值1.已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)当a=1时,求f(|x|)的单调区间.角度二轴动区间定求最值2.已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.角度三轴定区间动求最值3.设函数y=x2-2x,x∈[-2,a],若函数的最小值为g(a),求g(a).[类题通法]影响二次函数在闭区间上的最大值与最小值的要素和求法:(1)最值与抛物线的开口方向、对称轴位置、闭区间三个要素有关.(2)常结合二次函数在该区间上的单调性或图像求解,在区间的端点或二次函数图像的顶点处取得最值.当开口方向或对称轴位置或区间不确定时要分情况讨论.[课堂练通考点]1.(2014·徐州摸底)已知二次函数f(x)=ax2-4x+c+1(a≠0)的值域是[1,+∞),则1a+9c的最小值是________.2.(2014·苏北四市期末)已知函数f(x)=x2-2x,x∈[a,b]的值域为[-1,3],则b-a的取值范围是________.3.二次函数的图像过点(0,1),对称轴为x=2,最小值为-1,则它的解析式为________.4.若二次函数f(x)=ax2-4x+c的值域为[0,+∞),则a,c满足的条件是________.5.已知函数f(x)=(m2-m-1)x-5m-3,m为何值时,f(x)是幂函数,且在(0,+∞)上是增函数?[课下提升考能]第Ⅰ组:全员必做题1.(2014·镇江模拟)已知a∈(0,+∞),函数f(x)=ax2+2ax+1,若f(m)<0,比较大小:f(m+2)________1(用“<”“=”或“>”连接).2.(2013·苏锡常镇一调)如图,已知二次函数y=ax2+bx+c(a,b,c为实数,a≠0)的图像过点C(t,2),且与x轴交于A,B两点,若AC⊥BC,则实数a的值为________.3.(2013·盐城二调)设函数f(x)=|x|x+bx+c,则下列命题中,真命题的序号有________.(1)当b>0时,函数f(x)在R上是单调增函数;(2)当b<0时,函数f(x)在R上有最小值;(3)函数f(x)的图像关于点(0,c)对称;(4)方程f(x)=0可能有三个实数根.。

新课标2023版高考数学一轮总复习第2章函数第4节二次函数与幂函数教师用书

第四节 二次函数与幂函数考试要求:1.通过具体实例,结合y =x ,y =x -1,y =x 2,y =x 12,y =x 3的图象,理解它们的变化规律,了解幂函数.2.理解简单二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.一、教材概念·结论·性质重现 1.幂函数的概念一般地,函数y =x α称为幂函数,其中α为常数.幂函数的特征(1)自变量x 处在幂底数的位置,幂指数α为常数. (2)x α的系数为1. (3)解析式只有一项. 2.常见的五种幂函数的图象3.幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,因此在第一象限内都有图象,并且图象都通过点(1,1).(2)如果α>0,则幂函数的图象通过原点,并且在(0,+∞)上是增函数.(3)如果α<0,则幂函数在(0,+∞)上是减函数,且在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方且无限逼近y 轴;当x 无限增大时,图象在x 轴上方且无限逼近x 轴.4.二次函数的图象与性质解析式f (x )=ax 2+bx +c (a >0) f (x )=ax 2+bx +c (a <0)图象定义域 R值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递增; 在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递减在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增;在⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递减奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数 顶点 ⎝⎛⎭⎪⎫-b 2a ,4ac -b 24a 对称性 图象关于直线x =-b2a成轴对称图形二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关. (1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0且Δ<0”. (2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0且Δ<0”. 二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”. (1)函数y =2x 12是幂函数.( × )(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (3)当n <0时,幂函数y =x n是定义域上的减函数. ( × ) (4)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( × )2.已知幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫4,12,则f (2)=( ) A .14 B .4 C .22D . 2C 解析:设f (x )=x α,因为图象过点⎝ ⎛⎭⎪⎫4,12,所以f (4)=4α=12,解得α=-12,所以f (2)=2-12=22.3.二次函数f (x )的图象经过(0,3),(2,3)两点,且f (x )的最大值是5,则该函数的解析式是( )A .f (x )=2x 2-8x +11 B .f (x )=-2x 2+8x -1 C .f (x )=2x 2-4x +3D .f (x )=-2x 2+4x +3D 解析:二次函数f (x )的图象经过(0,3),(2,3)两点,则图象的对称轴为x =1.又由函数的最大值是5,可设f (x )=a (x -1)2+5(a ≠0).于是3=a +5,解得a =-2.故f (x )=-2(x -1)2+5=-2x 2+4x +3.故选D .4.(多选题)(2022·海南中学月考)若幂函数y =f (x )的图象经过点(3,27),则幂函数f (x )是( )A .奇函数B .偶函数C .增函数D .减函数AC 解析:设幂函数为f (x )=x α(α为常数),因为其图象经过点(3,27),所以27=3α,解得α=3,所以幂函数f (x )=x 3.因为f (x )的定义域为R ,且f (-x )=(-x )3=-x 3=-f (x ),所以f (x )是奇函数,又α=3>0,所以f (x )在R 上是增函数.5.已知函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值是__________.-1 解析:因为函数y =2x 2-6x +3的图象的对称轴为x =32>1,所以函数y =2x 2-6x+3在[-1,1]上单调递减.当x =1时,y 取得最小值,所以y min =2-6+3=-1.考点1 幂函数的图象和性质——基础性1.幂函数y =f (x )的图象经过点(3,3),则f (x )是( ) A .偶函数,且在区间(0,+∞)上是增函数 B .偶函数,且在区间(0,+∞)上是减函数 C .奇函数,且在区间(0,+∞)上是减函数 D .非奇非偶函数,且在区间(0,+∞)上是增函数D 解析:设幂函数f (x )=x a ,则f (3)=3a=3,解得a =12,所以f (x )=x 12=x ,是非奇非偶函数,且在区间(0,+∞)上是增函数.2.(2021·南昌月考)若幂函数y =(m 2-3m +3)·x m 2-m -2的图象不过原点,则( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1B 解析:因为幂函数y =(m 2-3m +3)xm 2-m -2的图象不过原点,所以⎩⎪⎨⎪⎧m 2-m -2≤0,m 2-3m +3=1,解得m =1或2,符合题意.故选B .3.与函数y =x 12-1的图象关于x 轴对称的图象大致是( )B 解析:y =x 12的图象位于第一象限且函数图象是上升的,函数y =x 12-1的图象可看作由y =x 12的图象向下平移一个单位长度得到的(如选项A 中的图象所示).将y =x 12-1的图象关于x 轴对称后即为选项B .4.若(a +1)-2>(3-2a )-2,则a 的取值范围是___________.(-∞,-1)∪⎝ ⎛⎭⎪⎫-1,23∪(4,+∞) 解析:因为(a +1)-2>(3-2a )-2,又f (x )=x -2为偶函数,且在(0,+∞)上单调递减, 所以⎩⎪⎨⎪⎧|a +1|<|3-2a |,a +1≠0,3-2a ≠0,解得a <23且a ≠-1或a >4.1.解决这类问题要优先考虑幂函数的定义以及解析式,然后结合幂函数的图象与性质来求解.2.有些题目,如第4题利用幂函数的推广性质以及函数有关性质共同得出结论.考点2 二次函数的解析式——综合性已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,求二次函数f (x )的解析式.解:(方法一:利用二次函数的一般式)设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故f (x )=-4x 2+4x +7.(方法二:利用二次函数的顶点式)设f (x )=a (x -m )2+n (a ≠0).因为f (2)=f (-1),所以抛物线的对称轴为x =2+-12=12.所以m =12.又根据题意函数有最大值8,所以n =8,所以y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4, 所以f (x )=-4×⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.(方法三:利用二次函数的零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1),a ≠0, 即f (x )=ax 2-ax -2a -1. 又函数有最大值y max =8,即4a-2a -1-a24a=8,解得a =-4.故f (x )=-4x 2+4x +7.求二次函数解析式的策略1.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关D .与a 无关,但与b 有关B 解析:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点, 则m =x 21+ax 1+b ,M =x 22+ax 2+b .所以M -m =x 22-x 21+a (x 2-x 1),显然与a 有关,与b 无关.2.(2022·青岛模拟)设a ,b 为不相等的实数,若二次函数f (x )=x 2+ax +b 满足f (a )=f (b ),则f (2)=( )A .7B .5C .4D .2C 解析:由f (x )=x 2+ax +b 可得函数f (x )图象的对称轴为直线x =-a2.又由a ≠b ,f (a )=f (b )得f (x )图象的对称轴为直线x =a +b 2,所以-a 2=a +b2,得2a +b =0,所以f (2)=4+2a +b =4.故选C .考点3 二次函数的图象和性质——应用性考向1 二次函数的图象应用(1)已知函数f (x )=ax 2-x -c ,且f (x )>0的解集为(-2,1),则函数y =f (-x )的图象为( )D 解析:因为函数f (x )=ax 2-x -c ,且f (x )>0的解集为(-2,1),所以-2,1是方程ax2-x -c =0的两根.把x =-2,1分别代入方程得⎩⎪⎨⎪⎧4a +2-c =0,a -1-c =0,联立解得a =-1,c=-2.所以f (x )=-x 2-x +2.所以函数y =f (-x )=-x 2+x +2,可知其图象开口向下,与x 轴的交点坐标分别为(-1,0)和(2,0).故选D .(2)对数函数y =log a x (a >0且a ≠1)与二次函数y =(a -1)x 2-x 在同一坐标系内的图象可能是( )A 解析:若0<a <1,则y =log a x 在(0,+∞)上单调递减;y =(a -1)x 2-x 的图象开口向下,对称轴在y 轴左侧,排除C ,D .若a >1,则y =log a x 在(0,+∞)上单调递增,y =(a -1)x 2-x 的图象开口向上,且对称轴在y 轴右侧,因此B 不正确,只有A 满足.1.解决二次函数图象问题的基本方法 (1)排除法.抓住函数的特殊性质或特殊点.(2)讨论函数图象,依据图象特征,得到参数间的关系. 2.分析二次函数图象问题的要点一是看二次项系数的符号;二是看对称轴和顶点;三是看函数图象上的一些特殊点.从这三方面入手,能准确地判断出二次函数的图象.反之,也能从图象中得到如上信息.考向2 二次函数的单调性若函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上单调递减,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-3]C .[-2,0]D .[-3,0]D 解析:当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意.当a ≠0时,f (x )的图象对称轴为x =3-a2a .由f (x )在[-1,+∞)上单调递减知⎩⎪⎨⎪⎧a <0,3-a2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0].若函数f (x )=ax 2+(a -3)x +1的单调递减区间是[-1,+∞),则a =________. -3 解析:由题意知f (x )必为二次函数且a <0. 又3-a2a=-1,所以a =-3.利用二次函数的单调性解题时的注意点(1)对于二次函数的单调性,关键是看图象的开口方向与对称轴的位置.若开口方向或对称轴的位置不确定,则需要分类讨论.(2)利用二次函数的单调性比较大小,一定要将待比较的两数(或式)通过二次函数的图象的对称性转化到同一单调区间上比较.考向3 二次函数的最值已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.解:f (x )=a (x +1)2+1-a .①当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去. ②当a >0时,函数f (x )在区间[-1,2]上单调递增,最大值为f (2)=8a +1=4,解得a =38.③当a <0时,函数f (x )在区间[-1,2]上单调递减,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.将本例改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解:f (x )=(x +a )2+1-a 2,f (x )的图象是开口向上的抛物线,对称轴为直线x =-a .①当-a <12,即a >-12时,f (x )max =f (2)=4a +5.②当-a ≥12,即a ≤-12时,f (x )max =f (-1)=2-2a .综上,f (x )max=⎩⎪⎨⎪⎧4a +5,a >-12,2-2a ,a ≤-12.二次函数的最值问题的类型二次函数的最值问题主要有以下几类:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系.当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.考向4 二次函数中的恒成立问题已知函数f (x )=x 2-x +1,在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围.解:由题意可知,f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0.令g (x )=x 2-3x +1-m ,要使g (x )>0在[-1,1]上恒成立,只需使函数g (x )在[-1,1]上的最小值大于0即可.因为g (x )=x 2-3x +1-m 在[-1,1]上单调递减, 所以g (x )min =g (1)=-m -1, 由-m -1>0得m <-1.因此,满足条件的实数m 的取值范围是(-∞,-1).由不等式恒成立求参数的取值范围将问题归结为求函数的最值,依据是a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .1.(2021·洛阳一中检测)已知函数f (x )=ax 2+bx +c .若a >b >c 且a +b +c =0,则f (x )的图象可能是( )D 解析:由a >b >c 且a +b +c =0,得a >0,c <0,所以函数图象开口向上,排除选项A ,C .又f (0)=c <0,排除选项B .故选D .2.(多选题)设函数f (x )=ax 2+bx +c (a ≠0),对任意实数t 都有f (4+t )=f (-t )成立,则f (-1),f (1),f (2),f (5)中,最小的可能是( )A .f (-1)B .f (1)C .f (2)D .f (5)ACD 解析:因为对任意实数t 都有f (4+t )=f (-t )成立,所以函数f (x )=ax 2+bx +c (a ≠0)图象的对称轴是x =2.当a >0时,函数值f (-1),f (1),f (2),f (5)中,最小的是f (2);当a <0时,函数值f (-1),f (1),f (2),f (5)中,最小的是f (-1)和f (5).3.函数f (x )=ax 2-(a -1)x -3在区间[-1,+∞)上是增函数,则实数a 的取值范围是( )A .⎝⎛⎦⎥⎤-∞,13 B .(-∞,0)C .⎝ ⎛⎦⎥⎤0,13D .⎣⎢⎡⎦⎥⎤0,13 D 解析:若a =0,则f (x )=x -3,f (x )在区间[-1,+∞)上是增函数,符合题意.若a ≠0,因为f (x )在区间[-1,+∞)上是增函数,故⎩⎪⎨⎪⎧a >0,a -12a≤-1,解得0<a ≤13.综上,0≤a ≤13.故选D .4.已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为___________.⎝ ⎛⎭⎪⎫-∞,12 解析:2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,-3<0,成立; 当x ≠0时,a <32⎝ ⎛⎭⎪⎫1x -132-16,易知1x ∈(-∞,-1]∪[1,+∞),所以当x =1时,函数f (x )取最小值12,所以a <12.综上,实数a 的取值范围是⎝⎛⎭⎪⎫-∞,12.。

高考文科数学一轮复习经典教案(带详解)第二章第4节:幂函数与二次函数

第4节 幂函数与二次函数【最新考纲】 1.了解幂函数的概念;结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x的图象,了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.高考会这样考 1.求二次函数的解析式;2.求二次函数的值域或最值,考查和一元二次方程、一元二次不等式的综合应用;3.利用幂函数的图像、性质解决有关问题.要 点 梳 理1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式: 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质[友情提示]1. 二次函数的三种形式(1)已知三个点的坐标时,宜用一般式.(2)已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. (3)已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f (x )更方便. 2. 幂函数的图像(1)在(0,1)上,幂函数中指数越大,函数图像越靠近x 轴,在(1,+∞)上幂函数中指数越大,函数图像越远离x 轴.(2)函数y =x ,y =x 2,y =x 3,y =x 12,y =x -1可作为研究和学习幂函数图像和性质的代表.基 础 自 测1.思考辨析(在括号内打“√”或“×”) (1)函数y =2x 13是幂函数.( )(2)当n >0时,幂函数y =x n 在(0,+∞)上是增函数.( ) (3)二次函数y =ax 2+bx +c (x ∈R )不可能是偶函数.( )(4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b 24a .( )解析 (1)由于幂函数的解析式为f (x )=x α,故y =2x 13不是幂函数,(1)错. (3)由于当b =0时,y =ax 2+bx +c =ax 2+c 为偶函数,故(3)错.(4)对称轴x =-b 2a ,当-b2a 小于a 或大于b 时,最值不是4ac -b 24a ,故(4)错.答案 (1)× (2)√ (3)× (4)×2.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A.12B.1C.32D.2解析 因为f (x )=k ·x α是幂函数,所以k =1.又f (x )的图象过点⎝⎛⎭⎫12,22,所以⎝⎛⎭⎫12α=22,所以α=12,所以k +α=1+12=32.答案 C3.已知a =243,b =323,c =2513,则( ) A.b <a <cB.a <b <cC.b <c <aD.c <a <b解析 因为a =243=423,b =323,c =523又y =x 23在(0,+∞)上是增函数,所以c >a >b . 答案 A4.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( ) A.与a 有关,且与b 有关 B.与a 有关,但与b 无关 C.与a 无关,且与b 无关 D.与a 无关,但与b 有关解析 设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.答案 B5.若函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围是________.解析 二次函数f (x )图象的对称轴是x =1-a ,由题意知1-a ≥3,∴a ≤-2. 答案 (-∞,-2]错误!题型分类错误!考点突破考点一 幂函数的图象和性质【例1】 (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )(2)已知幂函数f (x )=(n 2+2n -2)xn 2-3n(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( ) A.-3B.1C.2D.1或2解析 (1)设幂函数的解析式为y =x α, 因为幂函数y =f (x )的图象过点(4,2), 所以2=4α,解得α=12.所以y =x ,其定义域为[0,+∞),且是增函数,当0<x <1时,其图象在直线y =x 的上方,对照选项,C 正确.(2)∵幂函数f (x )=(n 2+2n -2)x n2-3n在(0,+∞)上是减函数,∴⎩⎪⎨⎪⎧n 2+2n -2=1,n 2-3n <0,∴n =1, 又n =1时,f (x )=x -2的图象关于y 轴对称,故n =1.答案 (1)C (2)B规律方法 1.对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.【变式练习1】 (1)若a <0,则0.5a ,5a ,5-a 的大小关系是( ) A.5-a <5a <0.5a B.5a <0.5a <5-a C.0.5a <5-a <5aD.5a <5-a <0.5a(2)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2,若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析 (1)5-a=⎝⎛⎭⎫15a,因为a <0时,函数y =x a 单调递减,且15<0.5<5,所以5a <0.5a<5-a . (2)在同一坐标系中,作y =f (x )的图象与直线y =k ,如图所示,则当0<k <1时,关于x 的方程f (x )=k 有两个不同的实根. 答案 (1)B (2)(0,1)考点二 二次函数的解析式【例2】 (一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解 法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二 (用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). ∵f (2)=f (-1),∴抛物线的对称轴为x =2+(-1)2=12,∴m =12.又根据题意,函数有最大值8,∴n =8, ∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三 (用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍).∴所求函数的解析式为f (x )=-4x 2+4x +7.规律方法求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:【变式练习2】(1)若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析由f(x)是偶函数知f(x)图象关于y轴对称,∴b=-2,∴f(x)=-2x2+2a2,又f(x)的值域为(-∞,4],∴2a2=4,故f(x)=-2x2+4.答案-2x2+4(2)若将例2条件变为:二次函数f(x)=ax2+bx+c(a≠0),满足①不等式f(x)+2x>0的解集为{x|1<x<3},②方程f(x)+6a=0有两个相等的实数根,试确定f(x)的解析式.解因为f(x)+2x>0的解集为(1,3),设f(x)+2x=a(x-1)(x-3),且a<0,所以f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a.由方程f(x)+6a=0得ax2-(2+4a)x+9a=0.因为方程有两个相等的实数根,所以Δ=[-(2+4a)]2-4a·9a=0,解得a=1或a=-15.由于a<0,舍去a=1.所以f(x)=-15x2-65x-35.考点三二次函数的图象与性质的应用(多维探究)命题角度1二次函数的单调性与最值【例3-1】已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增, ∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15, 故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4, 故a 的取值范围是(-∞,-6]∪[4,+∞).命题角度2 二次函数的图象应用【例3-2】 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1x i =( )A.0B.mC.2mD.4m解析 由f (x )=f (2-x )知函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象也关于直线x =1对称,所以这两函数的交点也关于直线x =1对称.不妨设x 1<x 2<…<x m ,则x 1+x m2=1,即x 1+x m =2,同理有x 2+x m -1=2,x 3+x m -2=2,…,又∑mi =1x i =x m +x m -1+…+x 1,所以2∑m i =1x i =(x 1+x m )+(x 2+x m -1)+…+(x m +x 1)=2m ,所以∑m i =1x i =m . 答案 B命题角度3 二次函数的恒成立问题【例3-3】 已知在(-∞,1]上递减的函数f (x )=x 2-2tx +1,且对任意的x 1,x 2∈[0,t +1],总有|f (x 1)-f (x 2)|≤2,则实数t 的取值范围是( ) A.[-2,2] B.[1,2] C.[2,3]D.[1,2]解析 由于f (x )=x 2-2tx +1的图象的对称轴为x =t , 又y =f (x )在(-∞,1]上是减函数,所以,t ≥1. 则在区间[0,t +1]上,f (x )max =f (0)=1, f (x )min =f (t )=t 2-2t 2+1=-t 2+1, 要使对任意的x 1,x 2∈[0,t +1], 都有|f (x 1)-f (x 2)|≤2,只需1-(-t 2+1)≤2,解得-2≤t ≤ 2. 又t ≥1,∴1≤t ≤ 2. 答案 B规律方法 1.二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成. 2.由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .【变式练习3】 已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R . (1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值范围.解 (1)由题意知⎩⎪⎨⎪⎧-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎪⎨⎪⎧a =1,b =2.所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为 (-∞,-1].(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间 [-3,-1]上恒成立,令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝⎛⎭⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1, 故k 的取值范围是(-∞,1).错误!课后练习A 组 (时间:40分钟)一、选择题1.幂函数f (x )=(m 2-4m +4)·x m 2-6m +8在(0,+∞)上为增函数,则m 的值为( ) A.1或3B.1C.3D.2解析 由题意知⎩⎨⎧m 2-4m +4=1,m 2-6m +8>0,解得m =1.答案 B2.若函数f (x )=x 2+ax +b 的图象与x 轴的交点为(1,0)和(3,0),则函数f (x )( ) A.在(-∞,2]上递减,在[2,+∞)上递增 B.在(-∞,3)上递增 C.在[1,3]上递增 D.单调性不能确定解析 由已知可得该函数图象的对称轴为x =2,又二次项系数为1>0,所以f (x )在(-∞,2]上是递减的,在[2,+∞)上是递增的. 答案 A3.在同一坐标系内,函数y =x a (a ≠0)和y =ax +1a 的图象可能是( )解析 若a <0,由y =x a 的图象知排除C ,D 选项,由y =ax +1a 的图象知应选B ;若a >0,y =x a 的图象知排除A ,B 选项,但y =ax +1a 的图象均不适合,综上选B. 答案 B4.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A.(-∞,-2) B.(-2,+∞) C.(-6,+∞)D.(-∞,-6)解析 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max , 令f (x )=x 2-4x -2,x ∈(1,4),所以f (x )<f (4)=-2,所以a <-2. 答案 A5.已知函数f (x )=ax 2+bx +c (a ≠0),且2是f (x )的一个零点, -1是f (x )的一个极小值点,那么不等式f (x )>0的解集是( ) A.(-4,2)B.(-2,4)C.(-∞,-4)∪(2,+∞)D.(-∞,-2)∪(4,+∞)解析 依题意,f (x )是二次函数,其图象是抛物线,开口向上,对称轴为x =-1,方程ax 2+bx +c =0的一个根是2,另一个根是-4.因此f (x )=a (x +4)(x -2)(a >0),于是f (x )>0,解得x >2或x <-4. 答案 C 二、填空题6.已知函数f (x )为幂函数,且f (4)=12,则当f (a )=4f (a +3)时,实数a 等于________. 解析 设f (x )=x α,则4α=12,所以α=-12. 因此f (x )=x -12,从而a -12=4(a +3)-12,解得a =15.答案157.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是________.解析 由题意可知函数f (x )的图象开口向下,对称轴为x =2(如图),若f (a )≥f (0),从图象观察可知0≤a ≤4.答案 [0,4]8.已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是________. 解析 由x +y =1,x ≥0,y ≥0,得0≤x ≤1. ∴x 2+y 2=x 2+(1-x )2=2x 2-2x +1=2⎝ ⎛⎭⎪⎫x -122+12.当x =12时,x 2+y 2有最小值12,当x =0或x =1时,x 2+y 2有最大值1.∴x 2+y 2的取值范围是⎣⎢⎡⎦⎥⎤12,1. 答案 ⎣⎢⎡⎦⎥⎤12,1 三、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)的图象经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解 幂函数f (x )的图象经过点(2,2), ∴2=2(m 2+m )-1,即212=2(m 2+m )-1. ∴m 2+m =2,解得m =1或m =-2.又∵m ∈N *,∴m =1.∴f (x )=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数. 由f (2-a )>f (a -1)得⎩⎨⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32. ∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32. 10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解 (1)设f (x )=ax 2+bx +1,则f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以,2a =2且a +b =0,解得a =1,b =-1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方,所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).B 组 (时间:20分钟)11.已知f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在区间(1,+∞)上一定( )A.有最小值B.有最大值C.是减函数D.是增函数 解析 由于f (x )在(-∞,1)上有最小值,所以x =a <1,g (x )=f (x )x =x +a x -2a ,若a ≤0,则g (x )在(0,+∞)和(-∞,0)上单调递增,则g (x )在(1,+∞)上单调递增.若0<a <1,则g (x )=x +a x -2a 在(a ,+∞)上单调递增,则g (x )在(1,+∞)上单调递增.综上可得,g (x )=x +a x -2a 在(1,+∞)上单调递增.答案 D12.函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x 的零点个数为________. 解析 令f (x )=0,得x 12=⎝ ⎛⎭⎪⎫12x ,在平面直角坐标系中分别画出函数y =x 12与y = ⎝ ⎛⎭⎪⎫12x 的图象. 如图所示,由图可知两函数图象有1个交点,故f (x )的零点只有一个.答案 113.已知函数f (x )=ax 2+bx +c (a >0,b ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.解 (1)由已知c =1,a -b +c =0,且-b 2a =-1,解得a =1,b =2,∴f (x )=(x +1)2.∴F (x )=⎩⎨⎧(x +1)2,x >0,-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x -x 的最大值为-2.∴-2≤b ≤0.故b 的取值范围是[-2,0].。

高考数学一轮复习学案:二次函数与幂函数学案理北师大版

第四节二次函数与幕函数[考纲传真](教师用书独具)1.(1) 了解幕函数的概念;(2)结合函数y= x, y = x2,13 1y = x , y = x2, y = -的图像,了解它们的变化情况2理解二次函数的图像和性质,x能用二次函数、方程、不等式之间的关系解决简单问题.双基自主测评I 梳理自測巩固基础知识(对应学生用书第16页)[基础知识填充]1. 二次函数(1)二次函数解析式的三种形式一般式:f (x) = ax + bx+ c(0);2顶点式:f (x) = a(x- h) + k(a z0),顶点坐标为(h, k);零点式:f (x) = a( x—x"( x —X2)( a^ 0), X1, X2为f (x)的零点.(2)二次函数的图像与性质函数2y = ax + bx+ c( a> 0)2y= ax 十bx+ c(a< 0)J1图像Xu/g 1:定义域R值域;4ac —b2)+ 8 i1 4a,十丿4ac—b2]—4a 一I ,在!-m,—上减在在!一OO,--坯上增,在单调性-b V —若十^广增7 b r方,十8上减对称性函数的图像关于x=—-2对称2a2. 幕函数(1) 定义:如果一个函数,底数是自变量x,指数是常量a,即y = x a,这样的函数称为幕函数.(2) 五种常见幕函数的图像与性质特\函、/ \数y = x2y = x3y= x 1 y = x2—1y= x4.200[知识拓展] 若f (x ) = ax + bx + c (a ^0),则当*时,恒有f (x ) >0;当*A V 0 △ v 0时,恒有f (x ) V 0.[基本能力自测](思考辨析)判断下列结论的正误.(正确的打“V”,错误的打“X”) 二次函数y = ax 2+ bx + c , x € R 不可能是偶函数.()24ac — b二次函数y = ax + bx + c , x €[a , b ]的最值一定是 .(4a幕函数的图像一定经过点 (1,1)和点(0,0).( )当n >0时,幕函数y = x 在(0 ,+^)上是增函数.( )[答案]X (2) X (3) X (4) V2. 2y =x , y =y = 4x 2, y = x 5 + 1, y = (x — 1)2, y = x , y = a x ( a > 1),上述函数是幕函1.(1)(1)4.数的有( B. 1个D. 3个i a >0,得 a >-0.]1 — 20a v 0,20若f (x ) = (x + a )( x — 4)为偶函数,则实数a = _________ .24 [f (x ) = x + (a — 4)x — 4a ,由 f (x )是偶函数知 a — 4 = 0,所以 a = 4.]A. 0个 C. 2个 3.C [只有已知函数f (x ) = ax + x + 5的图像在x 轴上方,则 y = x 是幕函数,故选 C.]a 的取值范围是(A. 0, 20B.一oo,C. 20D.20'C [由题意知,a >0,I A V 0,< 0.)1• f (x ) = x 2.故选 C.2(2) a = 23 = 43, b = 33, c = 253 = 53. 2••• y = x 3在第一象限内为增函数,又 5> 4 > 3,••• c > a > b.][规律方法](1)幕函数的形式是y = x a( a € R),其中只有一个参数 a ,因此只需一个条件 即可确定其解析式•⑵若幕函数y = x a( a € R)是偶函数,则 a 必为偶数•当a 是分数时,一般先将其化为根式,再判断•5.(教材改编)已知幕函数y = f (x )的图像过点2, '则此函数的解析式为区间上递减.y = x2 (0,+口 [设 f (x ) = x a ,则 2a 韦,11 --所以a =- 2,即幕函数的解析式为y = x 2,单调减区间为(0,+m ).]题型(对应学生用书第17页)幕函数的图像与性质(1)幕函数y = f (x )的图像过点(4,2),则幕函数y = f (x )的图像是( )⑵(2016 •全国卷川)已知b = 33,c = 253,则()A. b v a < cB. a < b < cC. b < c < aD. c < a < b(1)C (2)A [(1)令 f (x ) = x,由41 2,⑶若幕函数y = x a在(0,+m )上单调递增,则a > 0,若在(0,+m )上单调递减,则a[跟踪训练](1)已知幕函数2f (x ) = ( n + 2 !n —2) • x n 一3n( n € Z)在(0 , +^)上是减函数,贝U n 的值为()A. — 3B. 1C. 2D. 1 或 21 1(2)若(a + 1)2v (3 — 2a )2,则实数a 的取值范围是 ________________ .(1)B (2) — 1, I )[⑴ 由于f (x )为幕函数,所以n 2+ 2n — 2= 1,解得n = 1或n =— -2118I.当 n = 1 时,f (x ) = x = x 在(0,+^)上是减函数;当 n = — I 时,f (x ) = x 在(0 , X+ ^)上是增函数•故 n = 1符合题意,应选 B.(2)易知函数y = x 2的定义域为[0 ,+^),在定义域内为增函数, a+1> 0, I2所以 \3-2a >0,解得一 1w a v |.]^a +1 v 3 — 2a ?创二次函数的解析式•【导学号:79140037】[解]法一(利用一般式): 设 f (x ) = ax 2+ bx + c (0).4a + 2b + c =— 1a —b +c =— 1, 4ac — b 2=8,a=— 4,解得」b = 4,•••所求二次函数为 f (x ) = — 4x 2 + 4x + 7.■C = 7. 法二(利用顶点式):2设 f (x ) = a (x —m ) + n .••• f(2) = f( — 1),由题意得 4a• m ^2.又根据题意函数有最大值 8,二n = 8.•-y = f (x ) = a x -2 | + 8.••• f(2) =- 1 ,• a 2-2 + 8=- 1,解得 a =-4, • f (x ) =- 4 x - 2 + 8=- 4x 2+ 4x + 7. 法三(利用零点式):由已知f (x ) + 1 = 0的两根为x i = 2, X 2=- 1,故可设 f (x ) + 1= a (x -2)( x + 1), 即 f (x ) = ax - ax -2a - 1.24a ( 一 2a - 1) 一 ( 一 a )又函数的最大值是 8,即 ---------- 厂」一 =8,解得a =-4, •所求函数的解析式为 f (x ) =- 4x 2 + 4x + 7. [规律方法]用待定系数法求二次函数的解析式,关键是灵活选取二次函数解析式的形式, 选法如下:[跟踪训练]已知二次函数f (x )的图像经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x € R ,都有f (2 - x ) = f (2 + x ),求f (x )的解析式. [解]•/ f (2 -x ) = f (2 + x )对 x € R 恒成立, • f (x )的对称轴为x = 2.又••• f (x )的图像被x 轴截得的线段长为 2,• f (x ) = 0的两根为1和3.设 f (x )的解析式为 f (x ) = a (x - 1)( x - 3)( a M 0). 又••• f (x )的图像过点(4,3), • 3 a = 3, a = 1.•所求f (x )的解析式为f (x ) = (x - 1)( x -3), 即 f (x ) = x 2- 4x + 3.•••抛物线的图像的对称轴为x = 2 +( - 1)1 2.9. 设abc > 0,则二次函数f (x ) = ax 2 + bx + c 的图像可能是()A(2017 •广州十六中月考)若函数f (x ) = x 2— 2x +1在区间[a , a + 2]上的最小值为仅已知函数 f (x ) = x 2 + bx + c ( b , c € R),对任意的 x € R ,恒有 f '(x ) w f (x ).◎角度1二次函数图像的识别及应用D [由 A , C, D 知,f (0) = c v 0.T abc > 0,「. ab v 0,二对称轴x =— 2a > 0,知AC 错误,D 符合要求.由B 知f (0) v 0, B 错误.]b=c > 0 ,二 ab > 0 ,二 x =—— 2a◎角度2二次函数的最值问题 4,则a 的取值集合为(C [f (x ) = x 2— 2x + 1 = (x — 1)2,图像的对称轴是 x = 1.因为f (x )在区间[a , a +2]上的最小值为 4,所以当 1 w a 时,y min = f ( a ) = (a — 1) 2= 4,解得 a =— 1(舍去)或 a = 3;当 a + 2w 1,即卩 a w — 1 时,y min = f (a + 2) = (a +1)2= 4,解得 a = 1(舍去)或 a =— 3;当a v 1 v a + 2,即一1v a v 1时,y min = f (1) = 0工4,不符合题意,故 a 的取值集合为{ — 3,3}.]◎角度3二次函数中的恒成立问题 2(1)证明:当 X 》0 时,f ( x ) w(x + c );2 2⑵ 若对满足题设条件的任意 b , c ,不等式f (c ) — f (b ) w Me — b )恒成立,求 M 的最小值.[解](1)证明:易知 f '(x ) = 2x + b . 由题设,对任意的 x € R,2x + b w x 2+ bx + c ,2即x + (b — 2)x + c — b 》0恒成立,2b 2所以△= (b — 2) — 4( c — b ) w 0,从而 c > — + 1.b ;x 1= |b |,是 01,且 02A. [ — 3,3]B. [ —1,3]C. { — 3,3}D. { — 1,— 3,3}二次函数的图像与性质当且仅当b =±2时等号成立. 因此 2c — b = c + (c — b ) >0.2当 x 》0 时,有(x + c ) — f (x ) = (2 c — b )x + c (c — 1) >0.2故当 x 》0 时,f (x ) w(x + c ).(2)由(1)知,c >1 b |,则 当c > | b |时,有f (c ) — f (b ) c 2— b 2 + bc — b 2 c + 2b M >2 ---------- 2=2 ---------- 2=c — bc — b b + c .而函数 g (t ) = 2—1-+^( — 1 <t < 1)的值域为 i —g, 3 , -3\因此,当c > | b |时,M 的取值范围为g,+s .当 c = | b | 时,由(1)知,b =± 2, c = 2. 此时 f (c ) — f (b ) =— 8 或 0,且 c 2 — b 2= 0, 从而 f (c ) — f (b ) w Me 2— b 2)恒成立. 3综上所述,M 的最小值为2.[规律方法] 1.二次函数的最值问题的类型及求解方法1类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动•2求解方法:抓住“三点一轴”进行数形结合,三点是指区间两个端点和中点,一轴指 的是对称轴,具体方法是利用配方法、函数的单调性及分类讨论的思想求解 2.二次函数中恒成立问题的求解思路由不等式恒成立求参数的取值范围,常用分离参数法,转化为求函数最值问题,其依据是a > f x ? a > f x max , a < f x ? a < f x min .[跟踪训练] ⑴ 已知函数f (x ) = ax 2— 2x + 2,若对一切x € I 1, 2 !, f (x ) >0都成立,则实C. [ — 4, +m) D. ( — 4,+^)2(2)已知函数f (x ) = x + mx- 1,若对于任意x €[m , m + 1],都有f (x ) <0成立,则 实数m 的取值范围是 _________________ .令t = c 则—1<t <1,士b = 2—丄b +c 1 +1数a 的取值范围为()【导学号:79140038】B.⑵ 因为函数f (x ) = x 2+ mx- 1的图像是开口向上的抛物线,要使对于任意x €[m m f (m v o ,+ 1],都有f (x ) v 0,则有<f (m+ 1) v 0,广 2 2 . —|— m + m - 1 v 0, .[2所以实数m 的取值范围是f (x ) > 0都成立,所以当x € 即㈣ 1)2+ nW 1) - 1 v 0, (1)B ⑵ [⑴因为对一切x € 则实数a 的取值范围为。

高考数学一轮复习(回扣主干知识+提升学科素养)第二章 第四节 二次函数与幂函数教案 文

第四节二次函数与幂函数【考纲下载】1.了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=1x,y=x12的图象,了解它们的变化情况.2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.1.幂函数的定义形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数.2.五种幂函数的图象3.五种幂函数的性质y=x y=x2y=x3y=x 12y=x-1定义域R R R[0,+∞)(-∞,0)∪(0,+∞)值域R[0,+∞)R[0,+∞)(-∞,0)∪(0,+∞)奇偶性奇偶奇非奇非偶奇单调性增x∈[0,+增增x∈(0,+∞)时,增∞)时,减x∈(-∞,0] 时,减x∈(-∞,0) 时,减4.二次函数的图象和性质a>0a<0图象定义域R值域⎣⎢⎡⎭⎪⎫4ac-b24a,+∞⎝⎛⎦⎥⎤-∞,4ac-b24a 单调性在⎝⎛⎦⎥⎤-∞,-b2a上递减,在⎣⎢⎡⎭⎪⎫-b2a,+∞上递增在⎝⎛⎦⎥⎤-∞,-b2a上递增,在⎣⎢⎡⎭⎪⎫-b2a,+∞上递减奇偶性b=0时为偶函数,b≠0时为非奇非偶函数图象特点①对称轴:x=-b2a;②顶点:⎝⎛⎭⎪⎫-b2a,4ac-b24a1.函数y=(x+1)3,y=x3+1,y=x都是幂函数吗?提示:y=(x+1)3与y=x3+1不是幂函数;y=x是幂函数.2.幂函数的图象能出现在第四象限吗?提示:不能.因为当x>0时,根据幂运算,幂函数y=xα>0恒成立,所以幂函数在第四象限没有图象.3.ax2+bx+c>0(a≠0)与ax2+bx+c<0(a≠0)恒成立的条件分别是什么?提示:(1)ax2+bx+c>0(a≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a>0,Δ<0.(2)ax2+bx+c<0(a≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a<0,Δ<0.1.已知点M ⎝⎛⎭⎪⎫33,3在幂函数f (x )的图象上,则f (x )的表达式为( ) A .f (x )=x 2 B .f (x )=x -2C .f (x )=x 12D .f (x )=x解析:选B 设f (x )=x α,则3=⎝⎛⎭⎪⎫33α,∴α=-2.即f (x )=x -2. 2.(教材习题改编)如图中曲线是幂函数y =x n在第一象限的图象.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12解析:选B 由幂函数图象及其单调性之间的关系可知,曲线C 1,C 2,C 3,C 4所对应的n 依次为2,12,-12,-2.3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ) A .先减后增 B .先增后减 C .单调递减 D .单调递增解析:选D 因为f (x )=(m -1)x 2+2mx +3为偶函数,所以2m =0,即m =0.所以f (x )=-x 2+3.由二次函数的单调性可知,f (x )=-x 2+3在(-5,-3)上为增函数. 4.已知f (x )=4x 2-mx +5在[2,+∞)上是增函数,则实数m 的取值范围是________.解析:因为函数f (x )=4x 2-mx +5的单调递增区间为⎣⎢⎡⎭⎪⎫m8,+∞,所以m8≤2,即m ≤16.答案:(-∞,16]5.设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________.解析:当m =0时,显然成立;当m ≠0时,⎩⎪⎨⎪⎧m <0,Δ=-m 2+4m <0,解得-4<m <0.综上可知,实数m 的取值范围是(-4,0].答案:(-4,0]数学思想(二)分类讨论在求二次函数最值中的应用二次函数在闭区间上的最值问题,一定要根据对称轴与区间的相对位置关系确定最值,当函数解析式中含有参数时,要根据参数的最值情况进行分类讨论.[典例] (2014·运城模拟)已知x ∈[-1,1]时,f (x )=x 2-ax +a2>0恒成立,则实数a 的取值范围是( )A .(0,2)B .(2,+∞)C .(0,+∞)D .(0,4)[解题指导] f (x )>0恒成立⇔f (x )min >0.求函数f (x )=x 2-ax +a2的最小值应抓住问题中的区间两端点与对称轴的位置关系进行分类讨论,结合图象和函数的单调性及恒成立条件建立关于a 的不等式求解.[解析] 二次函数图象开口向上,对称轴为x =a2,又 x ∈[-1,1]时,f (x )=x2-ax +a2>0恒成立,即f (x )最小值>0.①当a 2≤-1,即a ≤-2时,f (-1)=1+a +a 2>0,解得a >-23,与a ≤-2矛盾;②当a 2≥1,即a ≥2时,f (1)=1-a +a2>0,解得a <2,与a ≥2矛盾;③当-1<a2<1,即-2<a <2时,Δ=(-a )2-4·a2<0,解得0<a <2.综上得实数a 的取值范围是(0,2).[答案] A[题后悟道] 二次函数求最值问题,一般先用配方法化为y =a (x -m )2+n 的形式,得顶点(m , n )和对称轴方程x =m ,结合二次函数的图象求解.常见有三种类型:(1)顶点固定,区间也固定;(2)顶点含参数(即顶点为动点),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外;(3)顶点固定,区间变动,这时要讨论区间中的参数.讨论的目的是确定对称轴和区间的关系,明确函数的单调性,从而确定函数的最值.已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,则实数a 的值为________.解析:f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去; (2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.答案:38或-3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节 二次函数与幂函数[考纲传真] 1.(1)了解幂函数的概念;(2)结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x 的图象,了解它们的变化情况.2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.1.二次函数(1)二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0);顶点式:f (x )=a (x -h )2+k (a ≠0),顶点坐标为(h ,k ); 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象与性质R2.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中x 是自变量,α是常数. (2)五种常见幂函数的图象与性质R R R {x |x ≥0} {x |x ≠0} 1.与二次函数有关的恒成立问题 设f (x )=ax 2+bx +c (a ≠0),则(1)f (x )>0恒成立的充要条件是⎩⎨⎧ a >0Δ<0;(2)f (x )<0恒成立的充要条件是⎩⎨⎧a <0Δ<0;(3)f (x )>0(a <0)在区间[m ,n ]恒成立的充要条件是⎩⎨⎧ f (m )>0f (n )>0;(4)f (x )<0(a >0)在区间[m ,n ]恒成立的充要条件是⎩⎨⎧f (m )<0f (n )<0.2.幂函数y =x α(α∈R )的图象特征(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性.(2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点.(3)当α>0时,y =x α在[0,+∞)上为增函数; 当α<0时,y =x α在(0,+∞)上为减函数.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)二次函数y =ax 2+bx +c ,x ∈R ,不可能是偶函数. ( ) (2)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a .( )(3)幂函数的图象一定经过点(1,1)和点(0,0).( )(4)当n >0时,幂函数y =x n 在(0,+∞)上是增函数. ( ) [答案] (1)× (2)× (3)× (4)√2.(教材改编)已知幂函数f (x )=x α的图象过点(4,2),若f (m )=3,则实数m 的值为( )A.3 B .±3 C .±9D .9D [由题意可知4α=22α=2,所以α=12. 所以f (x )=x 12=x , 故f (m )=m =3⇒m =9.]3.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,120 B.⎝ ⎛⎭⎪⎫-∞,-120 C.⎝ ⎛⎭⎪⎫120,+∞ D.⎝ ⎛⎭⎪⎫-120,0 C [由题意知⎩⎨⎧ a >0,Δ<0,即⎩⎨⎧a >0,1-20a <0,得a >120.]4.(教材改编)如图是①y =x a ;②y =x b ;③y =x c 在第一象限的图象,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .a <c <bD [由图象知②③的指数大于零且b >c ,①的指数小于零,因此b >c >a ,故选D.]5.若f (x )=(x +a )(x -4)为偶函数,则实数a =________.4 [f (x )=x 2+(a -4)x -4a ,由f (x )是偶函数知a -4=0,所以a =4.]1)A B C DC [令f (x )=x α,由f (8)=22得8α=22, 即23α=232,解得α=12,所以f (x )=x 12,故选C.]2.若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <c <aD .b <a <cD [a =⎝ ⎛⎭⎪⎫1223=⎝ ⎛⎭⎪⎫1413,b =⎝ ⎛⎭⎪⎫1523=⎝ ⎛⎭⎪⎫12513,c =⎝ ⎛⎭⎪⎫1213,由125<14<12得b <a <c ,故选D.]3.(2020·兰州模拟)已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α等于( )A.12 B .1 C.32D .2C [由幂函数的定义知k =1. 又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.] 4.若(a +1) 12<(3-2a )12,则实数a 的取值范围是________.⎣⎢⎡⎭⎪⎫-1,23 [易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎨⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.]的最大值是8,则f (x )=________.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________.(1)-4x 2+4x +7 (2)x 2+2x [(1)法一(利用一般式): 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎨⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7.法二(利用顶点式): 设f (x )=a (x -m )2+n . ∵f (2)=f (-1),∴抛物线的图象的对称轴为x =2+(-1)2=12.∴m =12.又根据题意函数有最大值8,∴n =8. ∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1, 解得a =-4,∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.(2)设函数的解析式为f (x )=ax (x +2),所以f (x )=ax 2+2ax , 由4a ×0-4a 24a =-1,得a =1,所以f (x )=x 2+2x .]的最小值为f (-1)=0,则f (x )=________.(2)若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.(1)x 2+2x +1 (2)-2x 2+4 [(1)由题意知⎩⎪⎨⎪⎧a -b +1=0,-b2a =-1,解得⎩⎨⎧a =1,b =2.从而f (x )=x 2+2x +1.(2)由f (x )是偶函数知f (x )图象关于y 轴对称,所以-a =-⎝ ⎛⎭⎪⎫-2a b ,即b =-2或a =0,当a =0时,则f (x )=bx 2,值域为(-∞,0]或[0,+∞), 不满足已知值域(-∞,4],∴a =0舍去,所以f (x )=-2x 2+2a 2, 又f (x )的值域为(-∞,4], 所以2a 2=4, 故f (x )=-2x 2+4.]►考法1 二次函数的图象【例2】 已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )D [A 项,因为a <0,-b2a <0, 所以b <0.又因为abc >0,所以c >0, 而f (0)=c <0,故A 错.B 项,因为a <0,-b2a >0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错. C 项,因为a >0,-b2a <0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错. D 项,因为a >0,-b2a >0,所以b <0.又因为abc >0,所以c <0,而f (0)=c <0,故选D.]►考法2 二次函数的单调性【例3】 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________.[-3,0] [当a =0时,f (x )=-3x +1在[-1,+∞]上递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a2a , 由f (x )在[-1,+∞)上递减知⎩⎪⎨⎪⎧a <0,3-a2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0].][拓展探究] 若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a 为何值?[解] 因为函数f (x )=ax 2+(a -3)x +1的单调减区间为[-1,+∞),所以⎩⎨⎧a <0,a -3-2a=-1,解得a =-3.►考法3 二次函数的最值【例4】 已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值. [解] (1)当a =0时,f (x )=-2x 在[0,1]上单调递减, 所以f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 的图象开口向上且对称轴为x =1a . ①当0<1a ≤1,即a ≥1时, f (x )=ax 2-2x 的对称轴在(0,1]内,所以f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,1上单调递增.所以f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a .②当1a >1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧,所以f (x )在[0,1]上单调递减. 所以f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象开口向下且对称轴x =1a <0,在y 轴的左侧,所以f (x )=ax 2-2x 在[0,1]上单调递减, 所以f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a,a ≥1.[拓展探究] 若将本例中的函数改为f (x )=x 2-2ax ,其他不变,应如何求解? [解] 因为f (x )=x 2-2ax =(x -a )2-a 2,对称轴为x =a . ①当a <0时,f (x )在[0,1]上是增函数, 所以f (x )min =f (0)=0.②当0≤a ≤1时,f (x )min =f (a )=-a 2. ③当a >1时,f (x )在[0,1]上是减函数, 所以f (x )min =f (1)=1-2a .综上所述,f (x )min =⎩⎨⎧0,a<0,-a 2,0≤a ≤1,1-2a ,a >1.中的图象大致是( )A B C D(2)若二次函数y=kx2-4x+2在区间[1,2]上是单调递增函数,则实数k的取值范围为()A.[2,+∞) B.(2,+∞)C.(-∞,0) D.(-∞,2)(1)C(2)A[(1)若a>0,则一次函数y=ax+b为增函数,二次函数y=ax2+bx+c的图象开口向上,故可排除A;若a<0,一次函数y=ax+b为减函数,二次函数y=ax2+bx+c的图象开口向下,故可排除D;对于选项B,看直线可知a>0,b>0,从而-b2a<0,而二次函数的对称轴在y轴的右侧,故应排除B,选C.(2)二次函数y=kx2-4x+2的对称轴为x=2k,当k>0时,要使函数y=kx2-4x+2在区间[1,2]上是增函数,只需2k≤1,解得k≥2.当k<0时,2k<0,此时抛物线的对称轴在区间[1,2]的左侧,该函数y=kx2-4x+2在区间[1,2]上是减函数,不符合要求.综上可得实数k的取值范围是[2,+∞).](3)已知函数f(x)=x2-2x,若x∈[-2,a],求f(x)的最小值.[解]因为函数f(x)=x2-2x=(x-1)2-1,所以对称轴为直线x=1,因为x=1不一定在区间[-2,a]内,所以应进行讨论,当-2<a≤1时,函数在[-2,a]上单调递减,则当x=a 时,f(x)取得最小值,即f(x)min=a2-2a;当a>1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x=1时,f(x)取得最小值,即f(x)min=-1.综上,当-2<a≤1时,f(x)min=a2-2a,当a>1时,f(x)min=-1.►考法1形如f(x)≥0(x∈R)求参数的范围【例5】 (2020·张掖模拟)不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是__________________.(-2,2] [当a -2=0,即a =2时,不等式即为-4<0,对一切x ∈R 恒成立,当a ≠2时,则有⎩⎨⎧ a -2<0,Δ=4(a -2)2+16(a -2)<0, 即⎩⎨⎧ a <2,-2<a <2,∴-2<a <2. 综上,可得实数a 的取值范围是(-2,2].]►考法2 形如f (x )≥0(x ∈[a ,b ])求参数的范围【例6】 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.[解] 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数,所以g (x )ma x =g (3)⇒7m -6<0,所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )ma x =g (1)⇒m -6<0,所以m <6,所以m <0.综上所述:m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪ m <67. 法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1. 因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪ m <67. ►考法3 形如f (x )≥0(参数k ∈[a ,b ])求x 的范围【例7】 对任意的k ∈[-1,1],函数f (x )=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是__________.(-∞,1)∪(3,+∞) [对任意的k ∈[-1,1],x 2+(k -4)x +4-2k >0恒成立,即g (k )=(x -2)k +(x 2-4x +4)>0,在k ∈[-1,1]时恒成立.只需g (-1)>0且g (1)>0,即⎩⎨⎧ x 2-5x +6>0,x 2-3x +2>0, 解得x <1或x >3,所以x 的取值范围为(-∞,1)∪(3,+∞).]围是________.(2)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________.(1)(-∞,-5] (2)⎝ ⎛⎭⎪⎫-∞,12 [(1)设f (x )=x 2+mx +4,当x ∈(1,2)时,f (x )<0恒成立⇔⎩⎨⎧ f (1)≤0,f (2)≤0⇒⎩⎨⎧m ≤-5,m ≤-4⇒m ≤-5. (2)2ax 2+2x -3<0在[-1,1]上恒成立.当x =0时,-3<0,成立;当x ≠0时,a <32⎝ ⎛⎭⎪⎫1x -132-16,因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12.综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12.]1.(2020·全国卷Ⅲ)已知a =243,b =323,c =2513,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <bA [利用幂函数的性质比较大小.a =243=443,b =343,c =2513=543.∵y =x 13在第一象限内为增函数,又5>4>3,∴c >a >b .]2.(2020·全国卷Ⅰ)设函数f (x )=则使得f (x )≤2成立的x 的取值范围是________.(-∞,8] [当x <1时,x -1<0,e x -1<e 0=1≤2,∴当x <1时满足f (x )≤2.当x ≥1时,x 12≤2,x ≤23=8,∴1≤x ≤8.综上可知x ∈(-∞,8].]。

相关文档
最新文档