2015年甘肃省张掖市甘州区安阳乡中学九年级上学期期中数学试卷和解析

合集下载

甘肃省张掖市九年级上学期数学期中考试试卷

甘肃省张掖市九年级上学期数学期中考试试卷

甘肃省张掖市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017九上·恩阳期中) 若方程(m-1)x2+ x-2=0是关于x的一元二次方程,则m的取值范围是()。

A . m = 0B . m ≠ 1C . m ≥0且m ≠ 1D . m 为任意实数2. (2分)已知x=1是方程x2 -3x+c =0的一个根,则c的值为()A . - 4B . - 2C . 2D . 43. (2分) (2018八上·柳州期中) 下列四个图形中,不是轴对称图形的是()A .B .C .D .4. (2分)将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A . y=(x-1)2+2B . y=(x+1)2+2C . y=(x-1)2-2D . y=(x+1)2-25. (2分) (2018八下·楚雄期末) 如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′与边OB交于点C(A′不在 OB上),则∠A′CO的度数为()A . 85°B . 75°C . 95°D . 105°6. (2分) (2015九上·宜昌期中) 不在抛物线y=x2﹣2x﹣3上的一个点是()A . (﹣1,0)B . (3,0)C . (0,﹣3)D . (1,4)7. (2分)如图,用20m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积为()m2A . 45B . 50C . 60D . 658. (2分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A . 55°B . 45°C . 40°D . 35°9. (2分)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A . 第一、二、三象限B . 第一、二、四象限C . 第二、三、四象限D . 第一、三、四象限10. (2分)(2013·镇江) 二次函数y=x2﹣4x+5的最小值是()A . ﹣1B . 1C . 3D . 5二、填空题 (共7题;共12分)11. (1分) (2018九上·东湖期中) 与点P(3,4)关于原点对称的点的坐标为________.12. (1分)如图是某市2013﹣2016年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是________年,私人汽车拥有量年增长率最大的是________年.13. (1分) (2020九上·秦淮期末) 二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是________.14. (1分)(2017·农安模拟) 如图,在平面直角坐标系中,正方形ABCD的三个顶点A、B、D均在抛物线y=ax2﹣4ax+3(a<0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则AC长为________.15. (1分)(2018·龙湾模拟) 如图,点A是反比例函数y= (x>0)图象上的一点,点B是反比例函数y=﹣(x<0)图象上的点,连接OA、OB、AB,若∠AOB=90°,则sin∠A=________16. (1分) (2017九上·拱墅期中) 设二次函数,当时,总有,当时,总有,则的取值范围是________.17. (6分)(2017·江都模拟) 如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.三、解答题 (共7题;共64分)18. (10分)解方程①x2﹣3x+2=0②4x2﹣12x+7=0.19. (5分) (2016九上·夏津期中) 夏津某一企业2014年完成工业总产值100万元,如果要在2016年达到169万元,那么2014年到2016年的工业总产值年平均增长率是多少?计划2018年工业总产值要达到280万元,若继续保持上面的增长率,该目标是否可以完成?20. (4分) (2017九下·无锡期中) 葡萄在销售时,要求“葡萄”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍),如图(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.①按方案1(如图)做一个纸箱,需要矩形硬纸板A1B1C1D1的面积是多少平方米?②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A2B2C2D2 做一个纸箱比方案1更优,你认为呢?请说明理由.(2)拓展思维:水果商打算在产地购进一批“葡萄”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.21. (10分) (2019九上·沙坪坝期末) 如图,在平面直角坐标系中,抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l,点D(-4,n)在抛物线上.(1)求直线CD的解析式;(2) E为直线CD下方抛物线上的一点,连接EC,ED,当△ECD的面积最大时,在直线l上取一点M,过M作y轴的垂线,垂足为点N,连接EM,BN,若EM=BN时,求EM+MN+BN的值.(3)将抛物线y=x2+2x-3沿x轴正方向平移得到新抛物线y′,y′经过原点O,y′与x轴的另一个交点为F,设P是抛物线y′上任意一点,点Q在直线l上,△PFQ能否成为以点P为直角顶点的等腰直角三角形?若能,直接写出点P的坐标,若不能,请说明理由.22. (5分)(1)解方程:x2+2x=3;(2)解方程组:23. (15分) (2020七上·邛崃期末) 如图,两个形状,大小完全相同的含有30°,60°的三角板如图①放置,PA,PB与直线MN重合,且三角板PAC与三角板PBD均可绕点P逆时针旋转。

2014-2015学年九年级上期中数学试卷及答案

2014-2015学年九年级上期中数学试卷及答案

九年级数学期中学业水平检测试卷(满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效。

一、选择题(本大题共8小题,每小题3分,共24分。

每题所给的四个选项,只有一个符合题意,请将正确答案的序号填入答题纸的相应表格中) 1.下列方程为一元二次方程的是A .20-+=ax bx c (a 、b 、c 为常数) B .()231x x x +=-C .(2)3x x -=D .10x x+= 2.用配方法解方程2250x x --=时,原方程应变形为 A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -=3.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是A .k >14-B .k >14-且0k ≠ C .k <14- D .k ≥14-且0k ≠4.一位卖“运动鞋”的经销商抽样调查了9位七年级学生的鞋号,号码分别为(单位:cm ):24,22,21,24,23,25,24,23,24,经销商最感兴趣的是这组数据的 A .中位数B .众数C .平均数D .方差5.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周体育锻炼时间的众数、中位数分别是A .16、10.5B .8、9C .16、8.5D .8、8.56.如图,⊙O 的半径为5,弦AB =8, M 是线段AB 上一个动点,则OM 的取值范围是 A .3≤OM ≤5 B .3≤OM <5 C .4≤OM ≤5 D .4≤OM <5 7. 如图,△ABC 内接于⊙O ,OD ⊥BC 于D ,∠A =50°,则∠COD 的度数是A .40°B .45°C .50°D .60°(小时)(第5题图)(第5题)(第6题)(第7题)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题纸相应位置上)9.若关于x 的方程()2320k x x -+=是一元二次方程,则k 的取值范围是 ▲ . 11.若n (n ≠0)是关于x 的方程x 2+mx +2n =0的根,则m +n 的值为 ▲ .12.在一个不透明的口袋中,装有若干个颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为51,那么口袋中球的总个数为 ▲ . 13.小明等五位同学的年龄分别为:14、14、15、13、14,计算出这组数据的方差是0.4,则20年后小明等五位同学年龄的方差为 ▲ .14.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数为 ▲ . 15.如图,当半径为30cm 的传送带转动轮转过120︒角时,传送带上的物体A 平移的距离为 ▲ cm (结果保留π).16.如图,△ABC 内接于⊙O ,CB =a ,CA =b ,∠A -∠B =90°,则⊙O 的半径为 ▲ . 17.若圆锥的轴截面是一个边长为2的等边三角形,则这个圆锥的侧面积是 ▲. 18.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD =70°, AO ∥DC,则∠B的度数为 ▲ .(第14题) (第15题)(第16题)(第8题)(第18题)三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明或演算步骤) 19.(本题满分8分) 解方程:(1)(2)20x x x -+-= (2)263910x x +-=20.(本题满分8分)如图,学校打算用16 m 的篱笆围成一个长方形的生物园饲养小兔,生物园的一面靠墙(如下图),面积是30 m 2.求生物园的长和宽.21.(本题满分8分)一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、-2、3、-4,搅匀后先从中摸出一个球(不放回),再从余下的3个球中摸出1个球.(1)用树状图列出所有可能出现的结果;(2)求2次摸出的乒乓球球面上数字的积为偶数的概率.22.(本题满分8分)操作题: 如图,⊙O 是△ABC 的外接圆,AB =AC ,P 是⊙O 上一点.(1)请你只用无刻度的直尺........,分别画出图①和图②中∠P 的平分线; (2)结合图②,说明你这样画的理由.生物园23.(本题满分10分)如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB、CD的上方,求AB和CD间的距离.24.(本题满分10分)如图,已知P A、PB切⊙O于A、B两点,PO=4cm,∠APB=60°,求阴影部分的周长.25.(本题满分10分)某农户在山上种脐橙果树44株,现进入第三年收获。

甘肃省张掖市九年级上学期数学期中试卷

甘肃省张掖市九年级上学期数学期中试卷

甘肃省张掖市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分) (2017七下·平谷期末) 小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8;③这个班同学一周参加体育锻炼时间的中位数是9;④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是()A . ①②B . ②③C . ③④D . ①④2. (2分)下列方程中,一定是关于x的一元二次方程的是()A . ax2+bx+c=0B . ﹣3(x+1)2=2(x+1)C . x2﹣x(x﹣3)=0D .3. (2分) (2017九上·海口期中) 下列各组线段的长度成比例的是()A . 1cm,2cm,3cm,4cmB . 2cm,3cm,4cm,5cmC . 0.3m,0.6m,0.5m,0.9mD . 30cm,20cm,90cm,60cm4. (2分)如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于()A .B .C .D .5. (2分)某品牌服装销售商对各种型号的市场占有率进行调查时,他最应该关注的是服装型号的()A . 平均数B . 众数C . 中位数D . 极差6. (2分)用配方法解一元二次方程,配方后得到的方程是()A .B .C .D .7. (2分)在正方形网格中,△ABC的位置如图所示,则sin∠BAC的值为()A .B .C .D .8. (2分) (2018九上·太原期中) 如图,一组互相平行的直线a,b,c分别与直线l1 , 12交于点A,B,C,D,E,F,直线11 , l2交于点O,则下列各式不正确的是()A .B .C .D .9. (2分)已知|a+1|与|b﹣4|互为相反数,则ab的值是()A . -1B . 1C . -4D . 410. (2分) (2015九上·宜昌期中) 一元二次方程x2﹣2x=0的一次项系数是()A . 2B . ﹣2C . 1D . 011. (2分) (2020八下·越城期中) 如果关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一个根为0,则m的值()A . ﹣1B . 3C . ﹣1或3D . 以上答案都不对12. (2分)(2020·毕节) 某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:投中次数356789人数132211则这10名队员投中次数组成的一组数据中,众数和中位数分别为()A . 5,6B . 2,6C . 5,5D . 6,513. (2分)如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A . 1对B . 2对C . 3对D . 4对14. (2分)如图,四边形ABCD中,AB与CD不平行,M,N分别是AD,BC的中点,AB=4,DC=2,则MN的长不可能是()A . 3B . 2.5C . 2D . 1.515. (2分)(2020·硚口模拟) 如图,点A、B、C、D都在上,,为上的一点,,的延长线交于,若,则的值为()A . 2B .C .D . 416. (2分) (2016九上·江夏期中) 若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A . k<5B . k<5,且k≠1C . k≤5,且k≠1D . k>5二、填空题 (共4题;共4分)17. (1分) (2019九上·中原月考) 已知,则 ________.18. (1分)(2018·秦皇岛模拟) 已知,则 =________19. (1分)(2019·丽水模拟) 在△ABC 中, , 的垂直平分线与AC 所在的直线相交所得锐角为 ,则∠B=________.20. (1分)(2019·南昌模拟) 如图,在矩形ABCD中,AD=2AB=2,E是BC边上的一个动点,连接AE ,过点D作DF⊥AE于F ,连接CF ,当△CDF为等腰三角形时,则BE的长是________.三、解答题 (共6题;共68分)21. (10分) (2019·宝山模拟) 计算: .22. (16分)(2020·椒江模拟) 某中学为了解学生每周在校体育锻炼时间,在本校随机抽取了40名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:时间(小时)频数(人数)频率2≤t<340.13≤t<4100.254≤t<5a0.155≤t<68b6≤t<7120.3合计401(1)表中的a=________,b=________;(2)请将频数分布直方图补全;(3)求这40名学生每周在校参加体育锻炼的平均时间;(4)若该校共有2400名学生,试估计全校每周在校参加体育锻炼时间至少有5小时的学生约为多少名?23. (15分)已知四边形ABCD,作出一个四边形A′B′C′D′,使新四边形A′B′C′D与原四边形ABCD 对应线段的比为1:2.(请以O点作为位似中心)24. (15分) (2019八下·江北期中) 在某校组织的“交通安全宣传教育月”活动中,八年级数学兴趣小组的同学进行了如下的课外实践活动.具体内容如下:在一段笔直的公路上选取两点A、B,在公路另一侧的开阔地带选取一观测点C,在C处测得点A位于C点的南偏西45°方向,且距离为100 米,又测得点B位于C点的南偏东60°方向.已知该路段为乡村公路,限速为60千米/时,兴趣小组在观察中测得一辆小轿车经过该路段用时13秒.(1)请你帮助他们算一算,这辆小车是否超速?(参考数据:≈1.41,≈1.73,计算结果保留两位小数).(2)请你以交通警察叔叔的身份对此小轿车的行为作出处理意见,并就乡村公路安全管理提出自己的建议。

甘肃初三初中数学期中考试带答案解析

甘肃初三初中数学期中考试带答案解析

甘肃初三初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、解答题1.(6分)(2014•云南)将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?2.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.3.已知:如图,在正方形ABCD中,P是BC上的点,Q是CD上的点,且∠AQP=900,求证:△ADQ∽△QCP.4.已知反比例函数y= (m为常数)的图象在第一、三象限(1)求m的取值范围;(2)如图,若该反比例函数的图象经过平行四边形ABOD的顶点D,点A、B的坐标分别为(0,3),(-2,0).求出函数解析式.5.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=-x2+bx+c与直线BC交于点D(3,-4)(1)求直线BD和抛物线对应的函数解析式;(2)在抛物线对称轴上求一点P的坐标,使△ABP的周长最小;(3)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N,使得以M,O,N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由.6.计算:.7.在Rt△ABC中,∠C=900,AB=13,BC=5,求sinA,cosA,tanA.8.如图,山顶有一铁塔AB的高度为20米,为测量山的高度BC,在山脚点D处测得塔顶A和塔基B的仰角分别为60°和45°.求山的高度BC.(结果保留根号)9.已知反比例函数的图象与一次函数的图象交于点A(1,4)和点B(m,).(1)求这两个函数的表达式;(2)观察图象,当>0时,直接写出时自变量x的取值范围.10.如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.二、填空题1.如图,在平面直角坐标系中,函数(,常数)的图象经过点A(1,2),B(m,n),,过点作轴的垂线,垂足为.若的面积为2,则点的坐标为.2.如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tanα=,则t 的值是 .3.一元二次方程x 2﹣5x =0的两根为_________.4.将抛物线y =2x 2先沿x 轴方向向左平移2个单位,再沿y 轴方向向下平移3个单位,所得抛物线的解析式是______________.5.如图,D 是△ABC 的边AB 上的点,请你添加一个条件,使△ACD ∽△ABC 。

甘肃省张掖市九年级上学期数学期中考试试卷

甘肃省张掖市九年级上学期数学期中考试试卷

甘肃省张掖市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2020九下·牡丹开学考) 在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分)已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m的值为()A . 1B . 1和-3C . -3D . 不等于1的任何数3. (2分)如图,☉O的圆心O到直线l的距离为3 cm,☉O的半径为1 cm,将直线l向右(垂直于l的方向)平移,使l与☉O相切,则平移的距离为()A . 1 cmB . 2 cmC . 4 cmD . 2 cm或4 cm4. (2分)(2018·阳信模拟) 已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 没有实数根D . 无法判断5. (2分)(2019·诸暨模拟) 将抛物线y=2x2﹣1沿直线y=2x方向向右上方平移2 个单位,得到新抛物线的解析式为()A . y=2(x+2)2+3B .C .D . y=2(x﹣2)2+36. (2分) (2017九上·邗江期末) 若x1 , x2是一元二次方程2x2﹣x﹣3=0的两根,则x1+x2的值是()A . ﹣1B . 2C .D . 37. (2分) (2015八下·嵊州期中) 把方程x2﹣4x﹣7=0化成(x﹣m)2=n的形式,则m、n的值是()A . 2,7B . ﹣2,11C . ﹣2,7D . 2,118. (2分) (2019·福州模拟) 如图,在平面直角坐标系网格中,点Q、R、S、T都在格点上,过点P(1,2)的抛物线y=ax2+2ax+c(a<0)可能还经过()A . 点QB . 点RC . 点SD . 点T9. (2分) (2019九上·宁波期末) 下列四条圆弧与直角三角板的位置关系中,可判断其中的圆弧为半圆的是()A .B .C .D .10. (2分)(2020·广州模拟) 如图, 在Rt△ABC中, ∠ACB = 90°, AB = 10, AC = 6, CE∥AB, ∠BAC 的平分线AE交BC于点D, 则DE的长为()A .B . 3C .D .11. (2分)(2017·湖州竞赛) 如图,四边形ABCD中,∠DAB=60°,∠B=∠D=90°, BC=1, CD=2,则对角线AC 的长为()A .B .C .D .12. (2分) (2015九上·盘锦期末) 已知k是不等于0的常数,反比例函数与二次函数在同一坐标系的大致图象如图,则它们的解析式可能分别是()A . y=﹣,y=﹣kx2+kB . y= ,y=﹣kx2+kC . y= ,y=kx2+kD . y=﹣,y=﹣kx2﹣k13. (2分) (2015八下·绍兴期中) 在连接A地与B地的线段上有四个不同的点D,G,K,Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A .B .C .D .14. (2分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A . 110°B . 80°C . 40°D . 30°15. (2分)若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A . (-2,-2)B . (-2,-1)C . (-1,-1)D . (2,1)二、填空题 (共4题;共4分)16. (1分)直线y=x+3上有一点P(m,2),则P点关于原点的对称点P′的坐标为________ .17. (1分)若a、b是一元二次方程x2+2x﹣1=0的两个根,则的值是________ .18. (1分) (2019·永康模拟) 如图,在菱形ABCD中,对角线AC=6,BD=8,则这个菱形的边长为________.19. (1分)在Rt△ABC中,∠C=90°,若a=40,b=9,则c=________;若c=25,b=15,则a=________.三、解答题 (共7题;共67分)20. (10分) (2020八下·微山期末) 知识经验我们知道,如果两个因式的积为0,那么这两个因式中至少有一个等于0;反之,如果两个因式中任何一个为0,那么它们的积也等于0.即:如果,那么或知识迁移Ⅰ.解方程:解:,或,∴ 或.Ⅱ.解方程:,解:,∴ ,∴ ,∴ ,∴ ,∴ ,∴ 或,∴ 或.理解应用(1)解方程:(2)拓展应用如图,有一块长宽分别为80 ,60 的矩形硬纸板,在它的四个角上分别剪去四个相同的小正方形,然后将四周突出的部分折起来,就可以做成底面积为1500 的无盖的长方体盒子,求所剪去的小正方形的边长.21. (5分)己知:正方形ABCD.(1)如图1,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.(2)如图2,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°<α<90°时,连接BE、DF,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.(3)如图3,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当a=90°时,连接BE、DF,猜想沟AE与AD满足什么数量关系时,直线DF垂直平分BE.请直接写出结论.(4)如图4,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当90°<α<180°时,连接BD、DE、EF、FB得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.22. (7.0分)已知关于x的方程x2﹣(2m﹣1)x+m2+1=0有两个不相等实数根x1 , x2(1)求实数m的取值范围;(2)若x12+x22=x1x2+3时,求实数m的值.23. (5分)(2020·松江模拟) 如图:在梯形ABCD中,AD∥BC ,∠C=90°,AD=AB=13,BD=24.求边DC的长.24. (10分) (2019九上·莲湖期中) 如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB 边向点B以1 cm/s的速度移动,同时点Q从点B开始沿BC向点C以2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,运动时间为x秒(x>0).(1)求几秒后,PQ的长度等于5 cm.(2)运动过程中,△PQB的面积能否等于8 cm2?并说明理由.25. (15分)(2019·甘肃) 如图,在正方形中,点是的中点,连接,过点作交于点,交于点 .(1)证明:;(2)连接,证明: .26. (15分)(2018·贵阳) 六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s0123…滑行距离y/cm041224…(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共4题;共4分)16-1、17-1、18-1、19-1、三、解答题 (共7题;共67分)20-1、答案:略20-2、21-1、答案:略22-1、答案:略22-2、答案:略23-1、答案:略24-1、24-2、答案:略25-1、答案:略25-2、答案:略26-1、答案:略26-2、答案:略。

2014-2015年九年级上数学期中考试试题及答案

2014-2015年九年级上数学期中考试试题及答案

2014—2015学年度第一学期阶段检测..九年级数学试题..注意事项: ..1.答卷前,请考生务必将自己的姓名、考号、考试科目及选择题答案涂写在答题卡上,并同时将学校、姓名、考号、座号填写在试卷的相应位置。

2.本试卷分为卷I (选择题)和卷II (非选择题)两部分,共120分。

考试时间为90分钟。

第Ⅰ卷(选择题 共45分).一、选择题(本大题共15小题,每小题3分,满分45分) 1.方程x (x +1)=0的解是A. x =0B. x =1C. x 1=0,x 2=1D. x 1=0,x 2=-1 2.图中三视图所对应的直观图是3.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是 A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=16..4.如果反比例函数xky 的图像经过点(-3,-4),那么函数的图象应在 A .第一、三象限 B .第一、二象限C .第二、四象限D .第三、四象限..B.5.若函数xmy =的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是 A .m >1B . m >0C . m <1D .m <06.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是7.如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 A .2:1B.C . 1:4D .1:28.一元二次方程2x 2 + 3x +5=0的根的情况是 A .有两个不相等的实数 B .有两个相等的实数 C .没有实数根D .无法判断9.如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是A .(1)(2)(3)(4)B .(4)(3)(1)(2)C .(4)(3)(2)(1)D .(2)(3)(4)(1)10. 下列各点中,不在反比例函数xy 6-=图象上的点是 A .(-1,6) B .(-3,2) C .)12,21(- D .(-2,5)11.如右图,在△ABC 中,看DE ∥BC ,21=AB AD ,DE =4 cm ,则BC 的长为A .8 cmB .12 cmC .11 cmD .10 cmA .B .C .D .AB12.下列结论不正确的是A .所有的矩形都相似B .所有的正方形都相似11题图C .所有的等腰直角三角形都相似D .所有的正八边形都相似 13.在函数y=xk(k<0)的图像上有A(1,y 1)、B(-1,y 2)、C(-2,y 3)三个点,则下列各式中正确的是A . y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 1 14.如图所示的两个圆盘中,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是A.525 B.625C.1025D.192514题图15.如图,正方形OABC 和正方形ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1(0)y x x =>的图象上,则点E 的坐标是A .1122⎛⎫⎪ ⎪⎝⎭; B .3322⎛+ ⎝⎭C .11,22⎛⎫ ⎪ ⎪⎝⎭;D .3322⎛ ⎝⎭15题图第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6小题,每小题3分,满分18分,把答案填在题中的横线上。

甘肃省张掖市九年级上学期数学期中考试试卷

甘肃省张掖市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2015九上·宜昌期中) 二次函数y=x2+4x﹣5的图象的对称轴为()A . x=4B . x=﹣4C . x=2D . x=﹣22. (2分) (2018九上·天台月考) 在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A . (3,﹣5)B . (﹣3,5)C . (3,5)D . (﹣3,﹣5)3. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4ac>0;②abc>0;③8a+c >0;④9a+3b+c<0其中,正确结论的个数是()A . 1B . 2C . 3D . 44. (2分) (2019九上·江山期中) 如图,四边形ABCD内接于⊙O,∠BOD=140°,则∠BCD等于()A . 140°B . 110°C . 70°D . 20°5. (2分)已知⊙P的半径为2,圆心在函数y=﹣的图象上运动,当⊙P与坐标轴相切于点D时,则符合条件的点D的个数为()A . 0B . 1C . 2D . 46. (2分)(2017·温州模拟) 如图1,菱形纸片ABCD的边长为2,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P(如图2),则六边形AEFCHG面积的最大值是()A .B .C . 2﹣D . 1+7. (2分)(2018·黑龙江模拟) 如图是二次函数y=+bx+c图像的一部分,图像过点A(-3,0),对称轴是直线x=-1,给出四个结论,其中正确结论的个数为()①c>0;②2a-b=0;③ <0. ④若点B(-,)、C(-,)在图像上,则<A . 1B . 2C . 3D . 48. (2分)如图,△ABO的顶点坐标分别为A(1,4)、B(2,1)、O(0,0),如果将△ABO绕点O按逆时针方向旋转90°,得到△A′B′O′,那么点A′、B′的对应点的坐标是()A . A′(-4,2),B′(-1,1)B . A′(-4,1),B′(-1,2)C . A′(-4,1),B′(-1,1)D . A′(-4,2),B′(-1,2)9. (2分)如图,将△ABC绕点A逆时针旋转80°得到△AB′C′.若∠BAC=50°,则∠CAB′的度数为()A . 30°B . 40°C . 50°D . 80°10. (2分)(2017·广水模拟) 已知二次函数y=ax2+bx+c(a≠0)的图象如图,其对称轴为直线x=﹣1,给出下列结果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.则正确的结论是()A . (1)(2)(3)(4)B . (2)(4)(5)C . (2)(3)(4)D . (1)(4)(5)二、填空题 (共6题;共6分)11. (1分) (2016九上·兖州期中) 若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是________.12. (1分) (2017八下·海安期中) 已知函数y=,则x的取值范围是________13. (1分)如图,在中,,现将绕点A逆时针旋转得到,则阴影部分的面积为________.14. (1分)(2016·张家界模拟) 如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8cm,OC=3cm,则⊙O的半径为________ cm.15. (1分) (2016九下·澧县开学考) 如图,PA,PB是⊙O的两条切线,切点分别是A、B,PA=10,CD是⊙O 的切线,交PA于点C,交PB于点D,则△PCD的周长是________.16. (1分)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为________ 度.三、解答题 (共9题;共86分)17. (5分) (2016九上·北京期中) 若二次函数的图像过(﹣3,0)、(1,0)、(0,﹣3)三点,求这个二次函数的解析式.18. (6分) (2018九上·华安期末) 在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).①将△AB C沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;②将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;③直接写出点B2 , C2的坐标.19. (5分) (2016九上·杭州期中) 某地欲搭建一桥,桥的底部两端间的距离AB=L,称跨度,桥面最高点到AB的距离CD=h称拱高,当L和h确定时,有两种设计方案可供选择:①抛物线型,②圆弧型.已知这座桥的跨度L=32米,拱高h=8米.(1)如果设计成抛物线型,以AB所在直线为x轴,AB的垂直平分线为y轴建立坐标系,求桥拱的函数解析式;(2)如果设计成圆弧型,求该圆弧所在圆的半径;(3)在距离桥的一端4米处欲立一桥墩EF支撑,在两种方案中分别求桥墩的高度.20. (10分) (2018九上·台州开学考) 关于x的方程,(1)求证:无论k为何值,方程总有实数根;(2)设是该方程的两个根,记 ,S的值能为2吗?若能求出此时k的值.21. (10分) (2017九下·东台期中) 本市新建一座圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A,B,C三根木柱,使得A,B之间的距离与A,C之间的距离相等,并测得BC长为120米,A到BC的距离为4米,如图所示.(1)请你帮他们求出该湖的半径;(2)如果在圆周上再另取一点P,建造一座连接B,C,P三点的三角形艺术桥,且△BCP为直角三角形,问:这样的P点可以有几处?如何找到?22. (10分) (2017九上·宝坻月考) 某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量箱与销售价元/箱之间的函数关系式.(2)当每箱苹果的销售价为多少元时,可以使获得的销售利润w最大?最大利润是多少?23. (15分) (2019九上·慈溪期中) 已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时:①请判断四边形BDCE的形状,并证明你的结论②当∠ABC为多少度时,点E在圆D上?请说明理由.24. (10分) (2017九上·越城期中) 如图,在两个全等的等腰直角三角形ABC和EDC中,∠ACB=∠ECD=90°,点A与点E重合,点D与点B重合.现△ABC不动,把△EDC绕点C按顺时针方向旋转,旋转角为α(0°<α<90°).(1)如图②,AB与CE交于点F,ED与AB,BC分别交于点M,H.求证:CF=CH;(2)如图③,当α=45°时,试判断四边形ACDM的形状,并说明理由;(3)如图②,在△EDC绕点C旋转的过程中,连结BD,当旋转角α的度数为多少时,△BDH是等腰三角形?25. (15分)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF 的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共86分)17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-3、。

甘肃省张掖市九年级上学期数学期中考试试卷

甘肃省张掖市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·平顶山期中) 下列方程是一元二次方程的是()A . 2(x﹣1)=4B .C .D . x+y=02. (2分) (2019八下·马山期末) 如图,矩形的对角线,交于点,,,则的长为()A . 4cmB . 4cmC . 2cmD . 2cm3. (2分)方程x2﹣2x﹣1=0的两实根为x1、x2 ,则x1•x2的值为()A . ﹣1B . 1C . ﹣2D . 24. (2分)(2015·泗洪) 如图,正方形ABCD中,对角线AC=10,M是AB上任意一点,由M点作ME⊥OA,MF⊥OB,垂足分别为E、F点,则ME+MF的值为()A . 20B . 10C . 15D . 55. (2分) (2016九上·黔西南期中) 用配方法解方程3x2﹣6x+1=0,则方程可变形为()A . (x﹣3)2=B . 3(x﹣1)2=C . (3x﹣1)2=1D . (x﹣1)2=6. (2分) (2019九上·金水月考) 小兰和小潭分别用掷A、B两枚骰子的方法来确定的位置,她们规定:小兰掷得的点数为x,小谭掷得的点数为y,那么,她们各掷一次所确定的点落在已知直线上的概率为A .B .C .D .7. (2分)以2、-3为根的一元二次方程是()A .B .C .D .8. (2分) (2020八下·房山期末) 某家快递公司今年一月份完成投递的快递总件数为30万件,三月份完成投递的快递总件数为36.3万件,若每月投递的快递总件数的增长率x相同,则根据题意列出方程为()A . 30(2x+1)=36.3B . 30(x+1)2=36.3C . 30(2x﹣1)=36.3D . 30(x﹣1)2=36.39. (2分)(2020·邯郸模拟) 将一条宽度为2cm的彩带按如图所示的方法折叠,折痕为AB,重叠部分为(图中阴影部分),若,则重叠部分的面积为()A .B .C .D .10. (2分)如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A . (1,1)B . (, 1)C . (1,)D . (, 2)二、填空题 (共4题;共4分)11. (1分)(2017·成都) 已知x1 , x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=________.12. (1分) (2019九上·长沙期中) 从某鱼塘捕鱼 200 条后做好标记放回,隔一段时间再捕 30 条鱼,发现其中带标记的有 3 条,那么鱼塘中约有________条鱼.13. (1分) (2019七上·南浔月考) 如果定义一种新的运算为,那么 =________.14. (1分) (2019九上·闵行期末) 在Rt△ABC中,∠C = 90°,,,那么BC = ________.三、解答题 (共9题;共63分)15. (2分)(2020·新泰模拟) 先化简,再求值:,其中x的值是方程x²-2x-3=0的解。

九年级第一学期期中考试数学试卷分析

2015年秋期中联考数学试卷分析一、试题分析:试题的基本结构3、重视对数学思想方法和应用能力的考查。

4、对阅读理解的要求较高。

5、能照顾到后进生,也能选拔出优秀学生。

值得商讨的地方:1、知识点在题目中重复出现,比如三角形的三边关系,及关于原点对称的点的坐标的特点等。

2、部分重要的知识点没有考查到、比如、根与方程的关系、根与系数的关系、二次函数应用题。

3、对学生阅读能力的要求过高、(在现在这个时候出现此题有些偏颇、意思表达过于复杂),比如第24题对于学生来说,理解很难,涉及到生活中的很多数学概念,学生难以读懂题意,从学生答题的效果来看,这道题得分率很低二、从学生得分情况上分析我所任教九(6)班学生中是通过筛选的40人、整体成绩在整个九年级相比较而言还算优秀、但单从数学学科来说并不是每位都很冒尖的。

人数40总分3950人平分98.75及格人38及格率95红分人28红分率70低分人0低分率0四率101.75单从数学的高分层110分以上人数只有4人、有些偏少;100分至110分人数20人。

占总人数的50%、还算过的去。

90至95分人数仅有四人、这些学生都是计算粗心导致失分、不及格2人、已经单独进行了谈话、查找原因。

三、从学生的失分情况上分析学情与教情从答卷情况来看,部分学生基础知识掌握得比较好,但也部分学生答题中也存在不少问题。

1、选择题8题:总体失分较少,大多数同学是通过猜测而得到的结论、没有真正的懂得做题的方法、补讲例题、探究规律、培养方法。

2、填空题12题(吴珂)理由是看错了、要求审题要仔细;填空题13题错误的学生32人之多、原因考虑问题不全面也就是没有考虑到二次根式的定义、实际上我在平时测验中已经多次体现了该题型、学生普遍认为紧张所致。

3、解答题:第23题旋转性质的应用(吴双、付婷婷、饶明洋、郭琪睿、、姚溪子、付航)这些同学都知道用旋转解决问题、但是他们都犯了严重错误、偷换条件证明全等以致失分;第24题此题的综合性强、学生失分严重、同时书写也很不规范;3位学生的0分、13位学生只得3分、20位学生得6分、仅有位4位同学(洪新怡、付航、吴昊、付文卓)得满分;第25题(1)第1小问求二次函数解析式,38位同学做得很好。

甘肃省张掖市甘州区2024-2025学年上学期九年级数学期中考试卷

甘肃省张掖市甘州区2024-2025学年上学期九年级数学期中考试卷一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A .平行四边形B .矩形C .正三角形D .等腰梯形2.下列方程中是一元二次方程的是()A .2530x x +-=B .2310x x+-=C .2250x xy y +-=D .410x -=3.下列说法中,不正确的是()A .两组对边分别平行的四边形是平行四边形B .对角线互相平分且垂直的四边形是菱形C .一组对边平行另外一组对边相等的四边形是平行四边形D .有一组邻边相等的矩形是正方形4.已知三角形的两边长分别是3和4,第三边是方程x 2﹣12x +35=0的一个根,则此三角形的周长是()A .12B .14C .15D .12或145.掷一个骰子时,点数小于2的概率是()A .16B .13C .12D .06.若25x y =(0x ≠),则下列各式成立的是()A .25x y =B .25x y=C .23x x y =-D .72x y y +=7.下列四组线段中,能构成比例线段的一组是()A .1cm ,3cm ,3cm ,6cmB .2cm ,3cm ,4cm ,6cmC .1cm ,2cm ,3cm D .1cm ,1.5cm ,3cm ,4cm8.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是()A .x 2+130x ﹣1400=0B .x 2+65x ﹣350=0C .x 2﹣130x ﹣1400=0D .x 2﹣65x ﹣350=09.如图,1l ∥2l ∥3l ,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F .已知32AB BC =,则DEDF的值为()A .32B .23C .25D .3510.如图,菱形ABCD 中,AB =2,∠BAD =60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE +PB 的最小值是().A .1B .2C D二、填空题11.一元二次方程3221x x -=的一次项系数、常数项分别、.12.关于x 的方程()2735mm x x ---=是一元二次方程,则m 的值为.13.已知0234a b c==≠,则a b c -的值为.14.已知点C 是线段AB 的黄金分割点,且AC BC >,若2AB =,则AC =.15.已知1x ,2x 是方程2630x x ++=的两实数根,则1211x x +的值为.16.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x 人,则根据题意可列方程为.17.如图,DE BC ∥,DF AC ∥,4cm AD =,12cm AB =,5cm DE =,则线段BF 长为cm.18.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 在OC 上一点(不与点O 、C 重合),AF ⊥BE 于点F ,AF 交BD 于点G ,则下述结论:①△ABG ≌△BCE 、②AG =BE 、③∠DAG =∠BGF 、④AE =DG 中,一定成立的有.三、解答题19.解下列方程.(1)22530x x +-=;(2)()()3242x x x -=-.20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC 的顶点均在格点上,建立平面直角坐标系后,点A 的坐标为(-4,1),点B 的坐标为(-2,1).(1)画出△ABC绕C点顺时针旋转90°后得到的△A1B1C1并写出A1点的坐标;(2)以原点O为位似中心,位似比为2,在第二象限内作△ABC的位似图形△A2B2C2,并写出C2的坐标.21.如图,在△ABC中,点D,E分别是AB,AC边上的两点,且AB=8,AC=6,AD=3,AE=4,DE=6,求BC的长.22.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.23.2020年某县投入100万元用于农村“扶贫工程”,计划以后每年以相同的增长率投入,2022年该县计划投入“扶贫工程”144万元.(1)求该县投入“扶贫工程”的年平均增长率;(2)若2023年保持从2020年到2022年的年平均增长率不变,求2023年该县将投入“扶贫工程”多少万元.24.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.25.如图,矩形ABCD 中,8AB =,4BC =,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形.(2)当四边形BEDF 是菱形时,求EF 的长.26.如图,在ABC 中,10cm,16cm AB BC ==,点P 从点A 开始,沿A 边向点B 以2cm/s 的速度移动;点Q 从点B 开始,沿BC 边向点C 以3cm/s 的速度移动,如果P 、Q 同时出发,经过几秒钟,BPQ 与ABC 相似?27.如图,强强同学为了测量学校一座高楼OE 的高度,在操场上点A 处放一面平面镜,从点A 处后退1m 到达点B 处,恰好在平面镜中看到高楼的顶部点E 的像.再将平面镜向后移动4m (即4m AC =)放在点C 处,从点C 处后退1.5m 到达点D 处,恰好再次在平面镜中看到高楼的顶部点E 的像,测得强强同学的眼睛距地面的高度FB ,GD 为1.5m.已知点O ,A ,B ,C ,D 在同一水平线上,且GD ,FB ,EO 均与OD 垂直.求高楼OE 的高度(平面镜的厚度忽略不计)28.如图,在ABC 中,A 是BC 边上的高,120cm,80cm BC AD ==.(1)当四边形EFMN 为正方形时,求正方形的边长?(2)当四边形EFMN 为长方形,并且长是宽的2倍时,求长方形的长与宽.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年甘肃省张掖市甘州区安阳乡中学九年级(上)期中数学试卷一、精心选一选,想信你一定能选对!(每题3分,共30分)1.(3分)三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定2.(3分)方程x2﹣3x=0的解为()A.x=0 B.x=3 C.x1=0,x2=﹣3 D.x1=0,x2=33.(3分)下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形4.(3分)正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等5.(3分)若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A.20 B.16 C.12 D.106.(3分)如果x:(x+y)=3:5,那么x:y=()A.B.C.D.7.(3分)已知,则的值是()A.B.C.D.8.(3分)如图,在△ABC中,DE∥BC,=,DE=4cm,则BC的长为()A.8cm B.12cm C.11cm D.10cm9.(3分)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD10.(3分)2012年张掖市政府投资2亿元人民币建设了廉租房8万平方米,预计2014年投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为()A.2(1+x)2=9.5 B.2(1+x)+2(1+x)2=9.5C.2+2(1+x)+2(1+x)2=9.5 D.2(1+x)=9.5二、填空题(每空4分,共32分)11.(4分)已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC=cm.12.(4分)已知E、F、G、H是四边形ABCD各边上的中点,则四边形EFGH的形状是.13.(4分)方程5x2=4x的根是.14.(4分)已知正方形的面积为4,则正方形的边长为,对角线长为.15.(4分)若关于x的方程3x2+mx+m﹣6=0有一根是0,则m=.16.(4分)关于x的方程kx2﹣4x+3=0有实数根,k的取值范围.17.(4分)已知a=4,b=9,c是a,b的比例中项,则c=.18.(4分)如图,要使△ABC∽△ACD,需补充的条件是.(只要写出一种)三、解答题(88分)19.(16分)解方程(1)2(x﹣3)2=8;(2)3x2﹣6x=﹣3;(3)x(x﹣2)=x﹣2;(4)(x+8)(x+1)=﹣12.20.(6分)小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.21.(8分)如图,菱形ABCD的周长为40cm,它的一条对角线BD长10cm.(1)求菱形的每一个内角的度数.(2)求菱形另一条对角线AC的长.22.(8分)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?23.(8分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.24.(8分)某商场将进货单价为18元的商品,按每件20元售出时,每天可销售100件,如果每件提高1元,日销售量就要减少10件,那么该商品的售出价格定为多少元时,才能使每天获得最大利润?每天最大利润是多少?25.(8分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.26.(8分)如图,在△ABC中,AD⊥BC于D,点D,E,F分别是BC,AB,AC 的中点.求证:四边形AEDF是菱形.27.(8分)如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O 点开始沿OA边向点A以1cm/s的速度移动,点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q同时出发,用t(单位:秒)表示移动的时间(0≤t≤6),那么:(1)当t为何值时,△POQ与△AOB相似?(2)设△POQ的面积为y,求y关于t的函数解析式.2014-2015学年甘肃省张掖市甘州区安阳乡中学九年级(上)期中数学试卷参考答案与试题解析一、精心选一选,想信你一定能选对!(每题3分,共30分)1.(3分)三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定【解答】解:x2﹣10x+21=0,因式分解得:(x﹣3)(x﹣7)=0,解得:x1=3,x2=7,∵三角形的第三边是x2﹣10x+21=0的解,∴三角形的第三边为3或7,当三角形第三边为3时,2+3<6,不能构成三角形,舍去;当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形,则第三边的长为7.故选:A.2.(3分)方程x2﹣3x=0的解为()A.x=0 B.x=3 C.x1=0,x2=﹣3 D.x1=0,x2=3【解答】解:方程x2﹣3x=0,因式分解得:x(x﹣3)=0,可化为x=0或x﹣3=0,解得:x1=0,x2=3.故选:D.3.(3分)下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形【解答】解:A、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如等腰梯形,一组对边平行,另一组对边相等,不是平行四边形,故本选项为假命题;B、对角线相等的四边形不一定是矩形,例如等腰梯形对角线相等,但不是矩形,故本选项为假命题;C、两条对角线互相垂直的四边形不一定是菱形,如图所示:AC⊥BD,但四边形ABCD不是菱形,本选项为假命题;D、两条对角线相等且互相垂直平分的四边形是正方形,已知:四边形ABCD,AC=BD,AC⊥BD,OA=OC,OB=OD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形为平行四边形,又AC=BD,∴四边形ABCD为矩形,∵AC⊥BD,∴四边形ABCD为正方形,则本选项为真命题,故选:D.4.(3分)正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等【解答】解:正方形的边:四边都相等,菱形的边四边都相等;正方形的角:四角都相等,都是直角,菱形的角:对角相等;正方形的对角线:相等,互相平分,且互相垂直,菱形的对角线:互相平分,互相垂直.则:正方形具有而菱形不具有的性质是:对角线相等.故选:B.5.(3分)若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A.20 B.16 C.12 D.10【解答】解:如图,在菱形ABCD中,AC=8,BD=6.∵ABCD为菱形,∴AC⊥BD,BO=3,AO=4.∴AB=5.∴周长=4×5=20.故选:A.6.(3分)如果x:(x+y)=3:5,那么x:y=()A.B.C.D.【解答】解:∵x:(x+y)=3:5,∴5x=3x+3y,2x=3y,∴x:y=3:2=,故选:D.7.(3分)已知,则的值是()A.B.C.D.【解答】解:令a,b分别等于13和5,∵,∴a=13,b=5∴==;故选:D.8.(3分)如图,在△ABC中,DE∥BC,=,DE=4cm,则BC的长为()A.8cm B.12cm C.11cm D.10cm【解答】解:∵DE∥BC,∴=,∵=,∴=,∴=,且DE=4cm,∴=,解得BC=12cm,故选:B.9.(3分)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选:B.10.(3分)2012年张掖市政府投资2亿元人民币建设了廉租房8万平方米,预计2014年投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为()A.2(1+x)2=9.5 B.2(1+x)+2(1+x)2=9.5C.2+2(1+x)+2(1+x)2=9.5 D.2(1+x)=9.5【解答】解:设每年的增长率为x,根据题意得2(1+x)2=9.5,故选:A.二、填空题(每空4分,共32分)11.(4分)已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC=6cm.【解答】解:∵BD是斜边AC上的中线,∴AC=2BD=2×3=6cm.故答案为:6.12.(4分)已知E、F、G、H是四边形ABCD各边上的中点,则四边形EFGH的形状是平行四边形.【解答】解:四边形EFGH的形状是平行四边形.理由如下:如图,连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=BD,同理FG∥BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形;故答案为:平行四边形.13.(4分)方程5x2=4x的根是x1=0,x2=0.8.【解答】解:方程移项得:5x2﹣4x=0,分解因式得:x(5x﹣4)=0,解得:x1=0,x2=0.8.故答案为:x1=0,x2=0.8.14.(4分)已知正方形的面积为4,则正方形的边长为2,对角线长为.【解答】解:设正方形的边长为x,则对角线长为=x;由正方形的面积为4,即x2=4;解可得x=2,故对角线长为2;故正方形的边长为2,对角线长为2.故答案为2,2.15.(4分)若关于x的方程3x2+mx+m﹣6=0有一根是0,则m=6.【解答】解:∵x=0是方程的根,由一元二次方程的根的定义,可得m﹣6=0,解此方程得到m=6.16.(4分)关于x的方程kx2﹣4x+3=0有实数根,k的取值范围k≤.【解答】解:当k=0,方程变形为﹣4x+3=0,此一元一次方程的解为x=;当k≠0,△=16﹣4k×3≥0,解得k≤,且k≠0时,方程有两个实数根,综上所述实数k的取值范围为k≤.故答案为:k≤.17.(4分)已知a=4,b=9,c是a,b的比例中项,则c=±6.【解答】解:∵c是a,b的比例中项,∴c2=ab,又∵a=4,b=9,∴c2=ab=36,解得c=±6.18.(4分)如图,要使△ABC∽△ACD,需补充的条件是∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.(只要写出一种)【解答】解:∵∠DAC=∠CAB∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.三、解答题(88分)19.(16分)解方程(1)2(x﹣3)2=8;(2)3x2﹣6x=﹣3;(3)x(x﹣2)=x﹣2;(4)(x+8)(x+1)=﹣12.【解答】解:(1)2(x﹣3)2=8;两边同时除以2得(x﹣3)2=4,开方得x﹣3=±2,解得x1=5,x2=1.(2)3x2﹣6x=﹣3;移项得3x2﹣6x+3=0,两边同时除以3得,x2﹣2x+1=0,即(x﹣1)2=0,开方得x﹣1=0,x1=x2=1;(3)x(x﹣2)=x﹣2;移项得x(x﹣2)﹣(x﹣2)=0,提公因式得(x﹣2)(x﹣1)=0,解得x1=2,x2=1;(4)(x+8)(x+1)=﹣12,原式可化为x2+9x+20=0,因式分解得(x+4)(x+5)=0,解得x1=﹣4,x2=﹣5.20.(6分)小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.【解答】解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.(2)上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是=,即小明获胜的概率是;故小芳获胜的概率是.而<,故小芳获胜的可能性大,这个“配色”游戏对双方是不公平的.21.(8分)如图,菱形ABCD的周长为40cm,它的一条对角线BD长10cm.(1)求菱形的每一个内角的度数.(2)求菱形另一条对角线AC的长.【解答】解:(1)∵菱形ABCD的边长AB=AD==10(cm),又∵BD=10cm,∴AB=AD=BD,∴△ABD是等边三角形.∴∠DAB=60°,∴∠DAB=∠DCB=60°,∠ABC=∠ADC=120°;(2)∵∠DAC=∠DAB=30°,∴AO=AD•cos∠DAC=10×=5(cm),∴AC=2AO=10cm.22.(8分)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?【解答】解:设修建的路宽为x米.则列方程为20×30﹣(30x+20x﹣x2)=551,解得x1=49(舍去),x2=1.答:修建的道路宽为1米.23.(8分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.【解答】证明:(1)∵ABCD是菱形,∴AB=AD∠B=∠D.又∵BE=DF,∴△ABE≌△ADF.(2)∵△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.24.(8分)某商场将进货单价为18元的商品,按每件20元售出时,每天可销售100件,如果每件提高1元,日销售量就要减少10件,那么该商品的售出价格定为多少元时,才能使每天获得最大利润?每天最大利润是多少?【解答】解:设利润为y,售价定为每件x元,由题意得,y=(x﹣18)×[100﹣10(x﹣20)],整理得:y=﹣10x2+480x﹣5400=﹣10(x﹣24)2+360,∵﹣10<0,∴开口向下,故当x=24元时,y有最大值为360元.25.(8分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.【解答】解:∵对角线相等且互相平分,∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=AD,BD=2DO,AB=AD,∴AD=2,∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1,答:OE的长度为1.26.(8分)如图,在△ABC中,AD⊥BC于D,点D,E,F分别是BC,AB,AC 的中点.求证:四边形AEDF是菱形.【解答】证明:∵点D,E,F分别是BC,AB,AC的中点,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又∵AD⊥BC,BD=CD,∴AB=AC,∴AE=AF,∴平行四边形AEDF是菱形.27.(8分)如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O 点开始沿OA边向点A以1cm/s的速度移动,点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q同时出发,用t(单位:秒)表示移动的时间(0≤t≤6),那么:(1)当t为何值时,△POQ与△AOB相似?(2)设△POQ的面积为y,求y关于t的函数解析式.【解答】解:(1)∵OB=6cm,点P从O点开始沿OA边向点A以1cm/s的速度移动,∴OQ=(6﹣t)cm,∵点Q从点B开始沿BO边向点O以1cm/s的速度移动,∴OP=t(cm),若△POQ∽△AOB时,=,即=,整理得:12﹣2t=t,解得:t=4,则当t=4时,△POQ与△AOB相似;若△POQ∽△BOA时,=,即=,解得:t=2,则当t=2时,△POQ与△BOA相似;综上所述:当t=4s或2s时,△POQ与△AOB相似;=•PO•OQ=•t•(6﹣t)=﹣t2+3t,(2)∵S△POQ∴y=﹣t2+3t (0≤t≤6).赠送初中数学几何模型【模型三】双垂型:图形特征:运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC.(1)如图,当∠APB=90°时,若AC=5,PC=,求BC的长;(2)当∠APB=90°时,若AB=APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

相关文档
最新文档