2017年思维新观察数学四月调考复习交流卷(二)(1)

合集下载

勤学早·2017年武汉市四月调考数学模拟试卷(1)-(1)

勤学早·2017年武汉市四月调考数学模拟试卷(1)-(1)

勤学早·2017年武汉市四月调考数学模拟试卷(1)一、选择题(共10小题,每小题3分,共30分) 1.9的值是( ) A .3B .-3C .±3D .32.若代数式21x 在实数范围内有意义,则x 的取值范围是( ) A .x <2B .x ≠2C .x >2D .x =23.下列计算结果是a 6的是( )A .a 2·a 3B .a 2+a 4C .a 9-a 3D .(a 3)24.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球.从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x -2)2的结果是( )A .x 2-4x +4B .x 2-4C .x 2+4x +4D .x 2-2x +4 6.已知点A (2,a )与点B (b ,3)关于坐标原点对称,则实数a 、b 的值是( ) A .a =-3,b =2B .a =3,b =2C .a =-3,b =-2D .a =3,b =-27.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是( )8.九年级某班40位同学的年龄如下表所示:年龄(岁)13 14 15 16 人数316192 则该班40名同学年龄的众数和中位数分别是( )A .19、15B .15、14.5C .19、14.5D .15、159.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n 个图案中有2017个白色纸片,则n 的值为( )A .671B .672C .673D .67410.已知二次函数y =ax 2+bx +c ,函数y 与自变量x 的部分对应值如下表:x …… -1 0 2 3 4 …… y……105225……若A (m ,y 1)、B (m -1,y 2)两点都在函数的图象上,则当m 满足( )时,y 1<y 2 A .m ≤2B .m ≥3C .m <25 D .m >25二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算8+(-5)的结果为____________ 12.化简:xx x 11-+=___________ 13.甲盒子中有编号为1、2的2个白色兵乓球,乙盒子中有编号为4、5的2个黄色兵乓球.现分别从每个盒子中随机地取出1个兵乓球,则取出兵乓球的标号之和大于6个概率为___________ 14.如图,E 、F 分别是□ABCD 的边BC 、AD 上的点,把四边形ABCD 沿EF 翻折,得到四边形GFEH ,A 的对应点为G ,B 的对应点为H .若∠B =50°,EH ∥CD ,则∠AFE 的度数是_________15.如图,△ABC 中,∠ABC =45°,∠C =30°,AD ⊥AC 交BC 于D ,以AD 为边作正方形ADEF ,F 在AC 边上,则CFBD的值为___________ 16.如图,AB 为⊙O 的直径,C 为半圆的中点,D 为弧AC 上一动点,延长DC 至E ,使CE =CD .若AB =24,当点D 从点A 运动到点C 时,线段BE 扫过的面积为___________ 三、解答题(共8题,共72分)17.(本题8分)解方程:3x +2=5(x -2)18.(本题8分)如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB =DE ,BE =CF ,求证:AC =DF19.(本题8分)学习完统计知识后,某学生就本班同学的上学方式进行调查统计,他通过收集数据后绘制的两幅不完整的统计图如下图所示,请你根据图中提供的信息解答下列问题: (1) 该班有___________名学生,其中步行的有___________人;在扇形统计图中“骑自行车”所对应扇形的圆心角大小是___________(2) 根据以上统计分析,估计该校2000名学生中骑车的人数大约是多少?20.(本题8分)某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元(1) A 、B 两种商品的单价分别是多少元?(2) 已知该商品购买B 商品的件数比购买A 商品的件数的2倍少4件,设购买A 商品的件数为x 件,该商品购买A 、B 两种商品的总费用为y 元 ① 求y 关于x 的函数关系式② 若该商品购买的A 、B 两种商品的总费用不超过296元,那么购买A 商品的件数最多只能买多少件?21.(本题8分)在△P AE 中,∠P AE =90°,点O 在边AE 上,以OA 为半径的⊙O 交AE 于B ,OP 平分∠APE(1) 求证:PE 是⊙O 的切线 (2) 设⊙O 与PE 相切于点C ,若43EC EB ,连接PB ,求tan ∠APB 的值22.(本题10分)已知反比例函数xy 6=(1) 若该反比例函数的图象与直线y =-x +b 相交于A 、B 两点,若A (3,2),求点B 的坐标 (2) 如图,反比例函数xy 6=(1≤x ≤6)的图象记为曲线C 1,将C 1沿y 轴翻折,得到曲线C 2 ① 请在图中画出曲线C 1、C 2② 若直线y =-x +b 与C 1、C 2一共只有两个公共点,直接写出b 的取值范围23.(本题10分)在等边△ABC 中,D 为AB 上一点,连接CD ,E 为CD 上一点,∠BED =60° (1) 延长BE 交AC 于F ,求证:AD =CF (2) 若32=BD AD ,连接AE 、BE ,求BE AE 的值 (3) 若E 为CD 的中点,直接写出BDAD的值24.(本题12分)抛物线y=mx2-4mx+3与x轴的交点为A(1,0)、B,与y轴交于点C(1) 求抛物线的解析式(2)P为抛物线第一象限上的一点,若∠P AB=2∠ACO,求点P的坐标(3)M为抛物线在点B右侧上的一点,M与N两点关于抛物线的对称轴对称,AN、AM交y轴于E、D,求OE-OD的值。

2017年湖北省武汉市思维新观察数学四月调考复习交流卷(二)

2017年湖北省武汉市思维新观察数学四月调考复习交流卷(二)

2017年思维新观察数学四月调考复习交流卷(二)一、选择题(共10小题,每小题3分,共30分) 1.实数9的值是( ) A .3B .-3C .±3D .±92.若代数式31+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x ≠-3B .x =-3C .x <-3D .x >-3 3.计算(-a 3)2的值为( ) A .a 5B .a 6C .-a 6D .-a 54.下列说法中不正确的是( )A .抛掷一枚硬币,硬币落地时正面朝上是随机事件B .把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C .任意打开九年级下册数学教科书,正好是97页是确定事件D .一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率大于白球的概率 5.下列式子正确的是( ) A .(a -b )2=a 2-2ab +b 2 B .(a -b )2=a 2-b 2 C .(a +b )2=a 2+ab +b 2D .(a +b )2=a 2b +b 26.如图,将△ABC 绕点C (0,1)旋转180°得到△DEC .若点A 的坐标为(3,-1),则点D 的坐标为( ) A .(-3,1)B .(-2,2)C .(-3,3)D .(-3,2)7.如图是由若干个正方体组成的几何体的俯视图,数字表示该位置上小正方体的个数,则该几何体左视图可能是( )8则这10名同学一周在校参加体育锻炼的时间的中位数、众数和平均数分别为( )A .6、7、6.3B .7、7、6.2C .7、6、6.2D .6、6、6.39.小明训练上楼梯赛跑,他每步可上2阶或者3阶(不上1阶),那么小明上12阶楼梯的不同方法共有( )(注:两种上楼梯的方法只要一步所踏楼梯的阶数不同,便认为是不同的方法) A .9种B .10种C .12种D .16种10.当-2≤x ≤1时,二次函数y =-(x -m )2+m 2+1有最大值4,则实数m 的值为( ) A .2B .2或3-C .2或3-或47-D .2或3±或47-二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算7+(-2)的结果为___________ 12.化简分式111+++a a a 的值为___________13.五张分别写有-1、2、0、-4、5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是___________14.如图,在平行四边形ABCD 中,E 为AB 边上的点,BE =BC ,将△ADE 沿DE 翻折,点A 的对应点F 恰好落在CE 上.∠ADF =84°,则∠BEC =___________15.在平面直角坐标系中,A (4,0),直线l :y =6与y 轴交于点B ,点P 是直线l 上点B 右侧的动点,以AP 为边在AP 右侧作等腰Rt △APQ ,∠APQ =90°.当点P 的横坐标满足0≤x ≤8,则点Q 的运动路径长为___________16.如图,在四边形ABCE 中,∠ABC =45°,AE =CE ,连接AC ,∠ACB =30°,过A 作AD ⊥AE 交BC 于D .若AD =AE ,则ABAD=___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:21x -1=2(x +1)18.(本题8分)如图,点B 在线段AD 上,BC ∥DE ,AB =ED ,BC =DB ,求证:∠A =∠E19.(本题8分)某校在推进新课改的过程中,开设的体育选修课有:A :篮球;B :足球;C :排球;D :羽毛球;E :兵乓球.学生可根据自己的爱好选修一门,体育老师对某班全体同学的选课情况进行调查统计,制成了两幅不完整的统计图(1) 写出该班的总人数为___________,其中最喜爱篮球的有人___________;在扇形统计图中,最喜爱足球的对应扇形的圆心角大小是___________(2) 若该校共有学生1500人,请估计其中选修篮球的大约有多少人?20.(本题8分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元.已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元(1) 求购买一个A 种品牌、一个B 种品牌的足球各需多少元(2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案?21.(本题8分)如图,AC 为⊙O 的直径,DAB 为⊙O 的割线,E 为⊙O 上一点,弧BE =弧CE ,DE ⊥AB 于D ,交AO 的延长线于F (1) 求证:DF 为⊙O 的切线 (2) 若AD =45,CF =3,求tan ∠CAE 的值22.(本题10分)如图1,直角三角形AOB 中,∠AOB =90°,AB ∥x 轴,OA =2OB ,AB =5,反比例函数xky =(x >0)的图象经过点A (1) 求反比例函数的解析式(2) 如图2,将△AOB 绕点O 逆时针旋转得到△POQ .当Q 坐标为(m ,1)时,试判断点P 是否在反比例函数xky =(x >0)的图象上,并说明理由23.(本题10分)如图1,在Rt △ABC 中,∠C =90°,AC =4,BC =3,点D 、E 分别在边BC 、AC 上(1) 当BD =AE =2时,直接写出OB OE =__________,ODOA=__________ (2) 如图2,若O 为AD 的中点,求证:BCBDCE AE =(3) 如图3,当53=AE BD ,∠AOE =∠BAC 时,求AE 的值24.(本题12分)二次函数y =x 2-2mx -3m 2(其中m 是常数,且m >0)的图象与x 轴分别交于点A 、B (点A 在点B 左侧),在y 轴交于C ,点D 在第四象限的抛物线上,连接AD ,过点A 作射线AE 交抛物线于另一点E ,AB 平分∠DAE (1) 若△ABC 的面积为6,求抛物线的解析式 (2) 若点D 、E 的横坐标分别为a 、b ,求mba +的值 (3) 当DC ∥x 轴时,求ADAE的值。

湖北省武汉市2017届九年级四月调考数学模拟试卷2

湖北省武汉市2017届九年级四月调考数学模拟试卷2

湖北省武汉市2017届九年级四月调考数学模拟试卷2一、选择题(共10小题,每小题3分,共30分)1.4的值是( )A .2B .-2C .±2D .42.若代数式31 x 在实数范围内有意义,则x 的取值范围是( ) A .x <-3B .x >-3C .x ≠-3D .x =-3 3.下列计算结果是a 5的是( )A .a 6÷aB .(a 3)2C .a 5·aD .3a +2a 4.下列说法正确的是( )A .打开电视,正在播放新闻节目是必然事件B .抛一枚硬币,正面朝上的概率为21,表示每抛两次就有一次正面朝上 C .抛一枚均匀的正方体骰子,朝上的点数是3的概率为61 D .任意画一个三角形,它的内角和等于360°5.运用乘法公式计算(x +3)(x -3)的结果是( )A .x 2+9B .x 2-6x +9C .x 2-9D .x 2+6x +9 6.将点A (-2,1)向右平移3个单位,再向下平移2个单位后,得到点B ,则点B 的坐标为( ) A .(-5,-1) B .(1,3) C .(-5,3)D .(1,-1) 7.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的主视图是( )8.某小组5名同学在一周内参加劳动的时间如下表所示,关于“劳动时间”的这组数据,以下列说法正确的是( )A .中位数是4B .众数是4.5C .极差是1D .平均数是3.759.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y =2n +1B .y =2n +nC .y =2n +1+nD .y =2n +n +110.已知二次函数y =x 2+bx +c ,当x ≤1时,总有y ≥0;当1≤x ≤3时,总有y ≤0,那么c 的取值范围是( )A .0≤c ≤3B .c ≥3C .1≤c ≤3D .c ≤3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:6-(-3)的结果为___________12.计算:aa a +++112=___________ 13.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取1个球,则取到的是白球的概率为___________14.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,连接DF ,且∠CDF =24°,则∠DAB 的度数是___________15.如图,在△ABC 中,∠ABC =60°,23=BC AB ,D 为△ABC 外一点,连接AD 、CD .若∠ADC =30°,AC =AD ,则ABBD 的值为___________ 16.如图,△ABC 中,∠ABC =90°,AB =BC =4,D 为BC 边上一动点,点O 是正方形ADEF 的中心.当点D 沿BC 边从点B 运动到点C 时,点O 运动的路径长为___________三、解答题(共8题,共72分)17.(本题8分)解方程:2x -4=3(2x +2)18.(本题8分)如图,△ABC 和△EFD 分别在线段AE 的两侧,点C 、D 在线段AE 上,AC =DE ,AB ∥EF ,BC ∥DF ,求证:BC =FD19.(本题8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工平时成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1) 写出本次调查共抽取的职工数为__________(2) 若将得分转化为等级,规定:得分低于100分评为“D ”,100~130分评为“C ”,130~145分评为“B ”,145~160分评为“A ”,那么该年级1500名考生中,考试成绩评为“B ”的人员大约有多少名?20.(本题8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品,小红与小明去文化商店购买甲乙两种笔记本作为奖品.若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元(1) 求甲、乙两种笔记本的单价各是多少元?(2) 若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案21.(本题8分)如图,BC 为⊙O 的直径,AB 为⊙O 的弦,D 为弧BC 的中点,CE ⊥AD 于E ,AD 交BC 于点F ,tanB =21 (1) 求证:DE =2AE(2) 求sin ∠BFD 的值22.(本题10分)如图1,反比例函数x k y =的图象经过点A (-1,4),直线y =-x +b (b ≠0)与双曲线xk y =在第二、四象限分别相交于P 、Q 两点,与x 轴、y 轴分别相交于C 、D 两点 (1) 当b =-3时,求P 点坐标(2) 连接OQ ,存在实数b ,使得S △ODQ =S △OCD ,请求出b 的值(3) 如图2,当b =-3时,直线y =a (a >0)与直线PQ 交于点M ,与双曲线交于点N (不同于M ).若PM =PN ,则a 的值是____________(直接写出结果)23.(本题10分)在△ABC 中,AB =AC ,CD ⊥AB 于D ,E 为AC 上一点,EF ⊥BC 于F ,交CD 于G(1) 如图1,若∠BAC =120°,求证:CG =3EG(2) 如图2,点E 为AC 的中点.若BF =26,CG =5,求DG 的长(3) 如图3,若EG =2CF ,直接写出ABAD 的值24.(本题12分)已知抛物线y =21x 2+2mx -4m -2(m ≥0)与x 轴交于A 、B 两点,A 点在B 点的左边,与y 轴交于点C(1) 当AB =6时,求点C 的坐标(2) 抛物线上有两点M (-1,a )、N (4,b ),若△AMN 的面积为17.5,求m 的值(3) 在抛物线第一象限上有一点G ,连接AG 、GB 并延长分别交y 轴于F 、E .若∠AFO =∠EBO ,求证:点G 总在一条定直线上。

2017届湖北武汉市高中毕业生四月调研测试理科数学试卷及答案

2017届湖北武汉市高中毕业生四月调研测试理科数学试卷及答案

试卷类型:A 武汉市2013届高中毕业生四月调研测试理科数学2013.04.23 本试卷共5页,共22题。

满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2. 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3. 填空题和解答题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4. 考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.A.-7B.-1C.1D.72. 命题“若x2+y2 =0,则X = y =0”的否命题是A. 若x2+y2 =0,则x,y中至少有一个不为0B. 若x2+y2≠0,则x,y中至少有一个不为0C. 若x2+y2≠0,则x,y都不为0D. 若x2+y2 =0, 则x,y都不为03. 对某商店一个月内每天的顾客人数进行统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是A. 46,45,56B. 46,45,53C. 47,45,56D. 45,47,534. -0.8,c =21og52,则 a,b,c 的大小关系为A. c< b < aB. c < a < b C, b < a < C D. b < C5. 一个几何体的三视图如图所示,则该几何体的体积是A. 64B. 72C. 80D. 1126.A.7. (n 2) ,SA. -20132012- C. -20152014- 8. 如右下图,正三角形PAD 所在平面与正方形ABCD 所在平面互相垂直O 为正方形AB- CD 的中心,M 为正方形ABCD 内一点,且满足MP =MB ,则点M 的轨迹为A.22-π141-π 10.已知抛物线M:y 2=4X ,圆N(x-1)2+y 2=r 2(其中r 为常数,r>0).过点(1,0)的直 线l 交圆N 于C,D 两点,交抛物线财于A 、B 两点,若满足丨AC 丨=|BD 丨的直线l 有三 条,则1,0(∈r 23,1(∈r 2,23(∈r ),0(+∞∈r 二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11—14题)______12 某程序框图如图所示,则该程序运行后输出的值是______(I)a的值为______;(II)函数f(x)在(0,π)内的零点个数为________14.在RtΔABC中,C∠=90。

[精品]2017年湖北省高三四月调考数学试卷及解析答案word版(理科)

[精品]2017年湖北省高三四月调考数学试卷及解析答案word版(理科)

2017年湖北省高三四月调考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)若复数z=1+i,为z的共轭复数,则z•=()A.0 B.2 C.D.2i2.(5分)设集合A={(x,y)|y=x+1},B={(x,y)||x|+|y|=1},则A∩B中的元素个数为()A.0个 B.1个 C.2个 D.无数个3.(5分)设等差数列{a n}的前n项和为S n,若a1=4,a2+a4+a6=30,则S6=()A.54 B.44 C.34 D.244.(5分)已知点A(﹣1,0),B(1,0)为双曲线﹣=1(a>0,b>0)的左右顶点,点M在双曲线上,△ABM为等腰三角形,且顶角为120°,则该双曲线的标准方程为()A.x2﹣=1 B.x2﹣=1 C.x2﹣y2=1 D.x2﹣=15.(5分)(x2﹣)6的展开式,x6的系数为()A.15 B.6 C.﹣6 D.﹣156.(5分)已知随机变量η满足E(1﹣η)=5,D(1﹣η)=5,则下列说法正确的是()A.E(η)=﹣5,D(η)=5 B.E(η)=﹣4,D(η)=﹣4 C.E(η)=﹣5,D (η)=﹣5 D.E(η)=﹣4,D(η)=57.(5分)设,,均为非零向量,已知命题p:=是•=•的必要不充分条件,命题q:x>1是|x|>1成立的充分不必要条件,则下列命题是真命题的是()A.p∧q B.p∨q C.(¬p)∧(¬q)D.p∨(¬q)8.(5分)已知函数f(x)=(ω>0,|φ|<,a∈R)在区间[﹣3,3]上的图象如图所示,则可取()A.4πB.2πC.πD.9.(5分)执行如图所示的程序框图,若输出的值为y=5,则满足条件的实数x的个数为()A.4 B.3 C.2 D.110.(5分)网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.2 B.4 C.D.1+11.(5分)已知实数x,y满足x2+(y﹣2)2=1,则的取值范围是()A.(,2]B.[1,2]C.(0,2]D.(,1]12.(5分)过圆x2+y2=25内一点P(,0)作倾斜角互补的直线AC和BD,分别与圆交于A、C和B、D,则四边形ABCD面积的最大值为()A.40B.C.40D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知正六棱锥S﹣ABCDEF的底面边长和高均为1,则异面直线SC与DE所成角的大小为.14.(5分)已知数列{a n}为等差数列,{b n}为等比数列,且a n>0,b n>0,记数列{a n•b n}的前n项和为S n,若a1=b1=1,S n=(n﹣1)•3n+1(n∈N*),则数列{}的最大项为第项.15.(5分)某单位植树节计划种杨树x棵,柳树y棵,若实数x,y满足约束条件,则该单位集合栽种这两种树的棵树最多为.16.(5分)函数f(x)=|sinx|+|sin(x+)|的值域为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且cosC=.(1)求B;(2)设CM是角C的平分线,且CM=1,b=6,求cos∠BCM.18.(12分)如图,长方体ABCD﹣A1B1C1D1中,点M在棱BB1上,两条直线MA,MC与平面ABCD所成角均为θ,AC与BD交于点O.(1)求证:AC⊥OM;(2)当M为BB1的中点,且θ=时,求二面角A﹣D1M﹣B1的余弦值.19.(12分)在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求x,y 的值;(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X,求X的分布列和数学期望E(X).20.(12分)已知平面内动点P与点A(﹣3,0)和点B(3,0)的连线的斜率之积为﹣.(1)求动点P的轨迹方程;(2)设点P的轨迹且曲线C,过点(1,0)的直线与曲线C交于M,N两点,记△AMB的面积为S1,△ANB的面积为S2,当S1﹣S2取得最大值时,求的值.21.(12分)已知函数f(x)=xlnx,g(x)=.(1)证明方程f(x)=g(x)在区间(1,2)内有且仅有唯一实根;(2)记max{a,b}表示a,b两个数中的较大者,方程f(x)=g(x)在区间(1,2)内的实数根为x0,m(x)=max{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)内有两个不等的实根x1,x2(x1<x2),判断x1+x2与2x0的大小,并说明理由.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.[选修4-4:参数方程与极坐标系]22.(10分)以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=2sinθ,正方形ABCD的顶点都在C1上,且依次按逆时针方向排列,点A的极坐标为(,).(1)求点C的直角坐标;(2)若点P在曲线C2:x2+y2=4上运动,求|PB|2+|PC|2的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|.(1)若f(x)的最小值为4,求实数a的值;(2)若﹣1≤x≤0时,不等式f(x)≤|x﹣3|恒成立,求实数a的取值范围.2017年湖北省高三四月调考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)若复数z=1+i,为z的共轭复数,则z•=()A.0 B.2 C.D.2i【解答】解:复数z=1+i,=1﹣i,则z•=12+12=2.故选:B.2.(5分)设集合A={(x,y)|y=x+1},B={(x,y)||x|+|y|=1},则A∩B中的元素个数为()A.0个 B.1个 C.2个 D.无数个【解答】解:∵A={(x,y)|y=x+1},B={(x,y)||x|+|y|=1},联立,当y>0时,可得的|x|+x+1=1,即|x|+x=0,此时x有无数个解,即y=x+1,与|x|+|y|=1有无数个交点,即A∩B中的元素个数为无数个.故选:D3.(5分)设等差数列{a n}的前n项和为S n,若a1=4,a2+a4+a6=30,则S6=()A.54 B.44 C.34 D.24【解答】解:设等差数列{a n}的公差为d,∵a1=4,a2+a4+a6=30,∴4×3+9d=30,解得d=2.则S6=6×4+×2=54.故选:A.4.(5分)已知点A(﹣1,0),B(1,0)为双曲线﹣=1(a>0,b>0)的左右顶点,点M在双曲线上,△ABM为等腰三角形,且顶角为120°,则该双曲线的标准方程为()A.x2﹣=1 B.x2﹣=1 C.x2﹣y2=1 D.x2﹣=1【解答】解:双曲线﹣=1(a>0,b>0),如图所示,|AB|=|BM|,∠ABM=120°,过点M作MN⊥x轴,垂足为N,则∠MBN=60°,在Rt△BMN中,|BM|=|AB|=2a,∠MBN=60°,即有|BN|=2acos60°=a,|MN|=2asin60°=a,故点M的坐标为M(2a,a),代入双曲线方程得﹣=1,即为a2=b2,由A(﹣1,0),B(1,0)为双曲线的双曲线左右顶点,则a=b=1,∴双曲线的标准方程:x2﹣y2=1,故选:C.5.(5分)(x2﹣)6的展开式,x6的系数为()A.15 B.6 C.﹣6 D.﹣15【解答】解:(x2﹣)6的展开式中,通项公式为:T r+1=•(x2)6﹣r•=(﹣1)r••x12﹣3r,令12﹣3r=6,解得r=2;∴展开式中x6的系数为(﹣1)2•=15.故选:A.6.(5分)已知随机变量η满足E(1﹣η)=5,D(1﹣η)=5,则下列说法正确的是()A.E(η)=﹣5,D(η)=5 B.E(η)=﹣4,D(η)=﹣4 C.E(η)=﹣5,D (η)=﹣5 D.E(η)=﹣4,D(η)=5【解答】解:∵随机变量η满足E(1﹣η)=5,D(1﹣η)=5,∴1﹣Eη=5,Dη=5,解得Eη=﹣4,Dη=5,故选:D.7.(5分)设,,均为非零向量,已知命题p:=是•=•的必要不充分条件,命题q:x>1是|x|>1成立的充分不必要条件,则下列命题是真命题的是()A.p∧q B.p∨q C.(¬p)∧(¬q)D.p∨(¬q)【解答】解:若=时,则•=•一定成立,则充分性成立,若•=•,当=时,则=不一定成立,必要性不成立.∴为充分不必要条件,故p为假命题;|x|>1等价于x>1或x<﹣1,所以充分性成立,必要性不成立,故q为真命题.故选B.8.(5分)已知函数f(x)=(ω>0,|φ|<,a∈R)在区间[﹣3,3]上的图象如图所示,则可取()A.4πB.2πC.πD.【解答】解:由图象可知f(x)是偶函数,∴φ=kπ,又|φ|<,∴φ=0.令f(x)=0得cosωx=0,∴ωx=+kπ,解得x=+,k∈Z.∵ω>0,∴f(x)的最小正零点为,由图象可知f(x)的最小正零点为1,故=1,解得ω=,∴f(x)=,由图象f(0)=2,故=2,∴a=,∴=π.故选C.9.(5分)执行如图所示的程序框图,若输出的值为y=5,则满足条件的实数x 的个数为()A.4 B.3 C.2 D.1【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出分段函数y=的值,若输出的值为y=5,则:①,或②,或③,由于①有2解,②有1解,③无解,则满足条件的实数x的个数为3.故选:B.10.(5分)网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.2 B.4 C.D.1+【解答】解:几何体为两个大小相同的三棱柱的组合体,直观图如图所示:三棱柱的底面为直角边为1的直角三角形,高为2,∴几何体的体积V=2×=2.故选:A.11.(5分)已知实数x,y满足x2+(y﹣2)2=1,则的取值范围是()A.(,2]B.[1,2]C.(0,2]D.(,1]【解答】解:设P(x,y)为圆x2+(y﹣2)2=1上的任意一点,则P到直线x+y=0的距离PM=,P到原点的距离OP=,∴==2sin∠POM.设圆x2+(y﹣2)2=1与直线y=kx相切,则,解得k=±,∴∠POM的最小值为30°,最大值为90°,∴≤sin∠POM≤1,∴1≤2sin∠POM≤2.故选:B.12.(5分)过圆x2+y2=25内一点P(,0)作倾斜角互补的直线AC和BD,分别与圆交于A、C和B、D,则四边形ABCD面积的最大值为()A.40B.C.40D.【解答】解:如图,设AC的倾斜角为θ(0<θ<),则AC:y=tanθ(x﹣).设A(x1,y1),C(x2,y2),由对称性可得:==.联立,得.∴,.则S ABCD==.令tanθ=k(k>0),则S=,∴S′=.∴当k∈(0,)时,S′>0,当k∈()时,S′<0,∴当k=时,.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知正六棱锥S﹣ABCDEF的底面边长和高均为1,则异面直线SC与DE所成角的大小为450..【解答】解:解:P﹣ABCDEF为正六棱锥,O是底面正六边形ABCDEF的中心.连接FC、OB、OS,∵ABCDEF为正六边形,∴△AOC为等边三角形.∴OA=OB=AB=1,又∵DE∥FC,∴∠SCO就是异面直线SC与DE所成角.∴SO=OC=1,∴∠SCO=45°.则异面直线SC与DE所成角的大小为450.故答案为:450.14.(5分)已知数列{a n}为等差数列,{b n}为等比数列,且a n>0,b n>0,记数列{a n•b n}的前n项和为S n,若a1=b1=1,S n=(n﹣1)•3n+1(n∈N*),则数列{}的最大项为第14项.【解答】解:设等差数列{a n}的公差为d(d>0),等比数列{b n}的公比为q(q >0),由S n=(n﹣1)•3n+1,得,即,解得d=2,q=3.∴a n=1+2(n﹣1)=2n﹣1,.∴=,令,由,得,由①得,由②得n.∴n=14.即数列{}的最大项为第14项.故答案为:14.15.(5分)某单位植树节计划种杨树x棵,柳树y棵,若实数x,y满足约束条件,则该单位集合栽种这两种树的棵树最多为12.【解答】解:由于某单位植树节计划种杨树x棵,柳树y棵,且实数x,y满足约束条件,则画出可行域为:对于栽种这两种树的棵树最多,令z=x+y⇔y=﹣x+z 则题意转化为,在可行域内任意去x,y且为整数使得目标函数代表的斜率为定值﹣1,截距最大时的直线为过⇒(6,6)时使得目标函数取得最大值为:z=12.故答案为:12.16.(5分)函数f(x)=|sinx|+|sin(x+)|的值域为[,] .【解答】解:令sinx=0和sin(x+)=0,x∈[0,2π),解得x=0,π和x=,;∴①当x∈[0,]时,sinx≥0,sin(x+)≥0,∴f(x)=sinx+sin(x+)=2sin(x+)cos=sin(x+);此时x+∈[,],≤sin(x+)≤1,∴≤f(x)≤;②当x∈(π,)时,sinx<0,sin(x+)<0,∴f(x)=﹣sinx﹣sin(x+)=﹣sin(x+);此时x+∈(,),﹣1≤sin(x+)≤﹣,∴≤f(x)≤;③当x∈(,π)时,sinx>0,sin(x+)<0,∴f(x)=sinx﹣sin(x+)=2sin(﹣)cos(x+)=﹣cos(x+);此时x+∈(,),﹣1≤cos(x+)<﹣,∴≤f(x)≤;④当x∈(,2π]时,sinx≤0,sin(x+)>0,∴f(x)=﹣sinx+sin(x+)=2sin cos(x+)=cos(x+);此时x+∈(,],≤sin(x+)≤1,∴<f(x)≤1;综上,函数f(x)的值域为[,].故答案为:[,].三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且cosC=.(1)求B;(2)设CM是角C的平分线,且CM=1,b=6,求cos∠BCM.【解答】(本题满分为12分)解:(1)∵cosC==…2分∴a2+b2﹣c2=2a2,∴a2+c2=b2,故B=90°…4分(2)cos∠BCM==a,cos∠BCA=,∠BCA=2∠BCM,∴=2a2﹣1,即12a2﹣a﹣6=0,解得a=或﹣(舍)…9分∴cos∠BCM=…12分18.(12分)如图,长方体ABCD﹣A1B1C1D1中,点M在棱BB1上,两条直线MA,MC与平面ABCD所成角均为θ,AC与BD交于点O.(1)求证:AC⊥OM;(2)当M为BB1的中点,且θ=时,求二面角A﹣D1M﹣B1的余弦值.【解答】解:(Ⅰ)证明:∵MB⊥面ABCD,直线MA,MC与平面ABCD所成角均为θ,∴∠MAB=∠MCB=θ.故△MBA≌MBC,BA=BC.∴四边形ABCD为正方形,AC⊥DB,又AC⊥MB,DB∩MB=B∴AC⊥面BDM,即AC⊥OM.(Ⅱ)θ=时,则有AB=BC=MB,延长D1M,DB交于点点H,过点O作ON⊥D1H于点N,连接AN,则∠ANO为二面角A﹣D1M﹣B的平面角.设AB=1,由△D1DH∽△ONH易得ON=,AO=,tan∠ANO=,∴∠ANO=30°二面角A﹣D1M﹣B1的余弦值为.19.(12分)在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求x,y的值;(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X,求X的分布列和数学期望E(X).【解答】解:(1)∵120+=125,解得x=3.∵=124,解得y=4.(2)因为一分钟内跳绳次数不低于115且不超过125的学生中,男生只有1人,女生只有4人,所以男生被选上的概率为,女生被选上的概率为,X可能取值为0,1,2,∴P(X=0)==,P(X=1)==,P(X=2)==.∴X的分布列为:∴数学期望E(X)=0×+1×+2×=.20.(12分)已知平面内动点P与点A(﹣3,0)和点B(3,0)的连线的斜率之积为﹣.(1)求动点P的轨迹方程;(2)设点P的轨迹且曲线C,过点(1,0)的直线与曲线C交于M,N两点,记△AMB的面积为S1,△ANB的面积为S2,当S1﹣S2取得最大值时,求的值.【解答】解:(1)由题意可知:2a=6,则a=3,离心率e==,则c=1,b2=a2﹣c2=8,∴椭圆的标准方程:;(2)设A(x1,y1),B(x2,y2),直线MN的方程:l MN:x=my+1,,整理得:(8m2+9)y2+16my﹣64=0,显然△>0,则y1+y2=﹣,y1y2=﹣,S1=丨AB丨×丨y1丨=3丨y1丨,同理S2=3丨y2丨,不妨设,丨y1丨>丨y2丨,于是S1﹣S2=3丨y1丨﹣3丨y2丨=3丨y1+y2丨=,当S1﹣S2最大时,m≠0,则S1﹣S2=≤=2,当且仅当8丨m丨=,即m2=,即m=±,则S1﹣S2取最大值,若m=,则18y2+12y﹣64=0,解得:y=,y1=,y2=,则=丨丨=丨丨=,若m=﹣,则18y2﹣12y﹣64=0,解得:y=,则y1=,y2=,此时=丨丨=丨丨=,综上可知:的值.21.(12分)已知函数f(x)=xlnx,g(x)=.(1)证明方程f(x)=g(x)在区间(1,2)内有且仅有唯一实根;(2)记max{a,b}表示a,b两个数中的较大者,方程f(x)=g(x)在区间(1,2)内的实数根为x0,m(x)=max{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)内有两个不等的实根x1,x2(x1<x2),判断x1+x2与2x0的大小,并说明理由.【解答】证明:(1)令F(x)=f(x)﹣g(x),则F(x)=xlnx﹣,定义域是(0,+∞),F′(x)=1+lnx+,x>1时,F′(x)>0,∴F(x)在(1,2)递增,又F(1)=﹣<0,F(2)=2ln2﹣>0,而F(x)在(1,+∞)上连续,根据零点存在定理可得:F(x)=0在区间(1,2)有且只有1个实根,即方程f(x)=g(x)在区间(1,2)内有且仅有唯一实根;(2)x1+x2<2x0,证明过程如下:显然:m(x)=,当1<x<x0时,m(x)=,m′(x)=<0,故m(x)单调递减;当x>x0时,m(x)=xlnx,m′(x)=1+lnx>0,m(x)递增,要证x1+x2<2x0,即证x2<2x0﹣x1,由(1)知x1<x0<x2,g(x1)=f(x2)=n,故即证f(x2)<f(2x0﹣x1),即证g(x1)<f(2x0﹣x1),即证<(2x0﹣x1)ln(2x0﹣x1),(1<x1<x0<2),(*),设H(x)=﹣(2x0﹣x)ln(2x0﹣x),(1<x<x0<2),H′(x)=+ln(2x0﹣x)+1,∵1<x<x 0<2,∴+1>0,ln(2x0﹣x)>0,∴H′(x)>0,∴H(x)在(1,x0)递增,即H(x)<H(x0)=0,故(*)成立,故x1+x2<2x0成立.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.[选修4-4:参数方程与极坐标系]22.(10分)以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=2sinθ,正方形ABCD的顶点都在C1上,且依次按逆时针方向排列,点A的极坐标为(,).(1)求点C的直角坐标;(2)若点P在曲线C2:x2+y2=4上运动,求|PB|2+|PC|2的取值范围.【解答】解:(1)∵点A的极坐标为(,),∴点A的直角坐标是(1,1),由A,C关于y轴对称,则C(﹣1,1);(2)易得B(0,2),C(﹣1,1),曲线C1:ρ=2sinθ的直角坐标方程是:x2+(y﹣1)2=1,设P(x,y),x=2cosθ,y=2sinθ,则|PB|2+|PC|2=x2+(y﹣2)2+(x+1)2+(y﹣1)2=2x2+2y2﹣6y+2x+6=14+2(x﹣3y)=14+2(2cosθ﹣6sinθ)=14+4(cosθ﹣3sinθ)=14+4cos(θ+φ),故|PB|2+|PC|2∈[14﹣4,14+4].[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|.(1)若f(x)的最小值为4,求实数a的值;(2)若﹣1≤x≤0时,不等式f(x)≤|x﹣3|恒成立,求实数a的取值范围.【解答】解:(1)∵f(x)=|x﹣2|+|x+a|≥|(x﹣2)﹣(x+a)|=|a+2|,当且仅当(x﹣2)(x+a)≤0时取等号,∴f(x)min=|a+2|,由|a+2|=4,解得:a=2或a=﹣6;(2)原命题等价于|x+a|+2﹣x≤3﹣x在[﹣1,0]恒成立,即|x+a|≤1在[﹣1,0]恒成立,即﹣1﹣x≤a≤1﹣x在[﹣1,0]恒成立,即(﹣1﹣x)max≤a≤(1﹣x)min,故a∈[0,1].赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

武汉市2016-2017学年度年四月调考数学参考答案及评分标准(word版)

武汉市2016-2017学年度年四月调考数学参考答案及评分标准(word版)

2016-2017学年度武汉市部分学校九年级调研测试数学参考答案及评分标准武汉市教育科学研究院命制一、选择题(每小题3分,共30分)二、填空题(每小题3分,共18分) 11. 3 12. 1 13.5914. 40 15. 16. 三、解答题(每小题3分,共18分)17.解: 6x+1=3x+7 …………………………………………………2分 6x-3x=7-1 …………………………………………………4分 3x=6 …………………………………………………6分∴ x=2 …………………………………………………8分18.证明:在△ACB 与△DFE 中,AC DF C F CB FE =⎧⎪∠=∠⎨⎪=⎩…………………………………………………3分 ∴△ACB ≌△DFE …………………………………………………5分 ∴ AB=DE∴ AD=BE …………………………………………………8分19.(1)200 …………………………………………………3分 (2)作出正确的条形给2分 …………………………………………………5分 (3)解:5000×78200=1950 …………………………………………………7分 答:估计该地区体育成绩为B 级的学生人数为1950人. ………………………8分20.解:(1)设每辆大货车一次可以运货xt,每辆小货车一次可以运货yt,依题意,……1分 得:2315.55635x y x y +=⎧⎨+=⎩………………………………………2分解这个方程组,得42.5x y =⎧⎨=⎩ ………………………………………3分答:每辆大货车一次可以运货4t,每辆小货车一次可以运货2.5t, …………………4分 (2)设租用大货车m 辆,依题意,得: ………………………………………5分 4m+2.5(10-m)≥30 ………………………………………6分解这个不等式,得m≥103…………………………………………7分∴m至少为4答:大货车至少租用4辆. …………………………………………8分21.(1)证明:连接OA交BC于点F∵四边形ABCD是平行四边形∴AD∥BC.∴∠DAF=∠CFO∵AD与O⊙相切∴∠OAD=90º…………………………………………2分∴∠OFC=90º∴OA平分弧BC即弧BA=弧CA …………………………………………3分(2)分别过AB两点作DE的垂线,垂足分别为N,M,连接AC.∵四边形ABCD是平行四边形∴∠D=∠ABC=∠BCE,∴弧EB=弧CA.∵弧BA=弧CA,∴弧EB=弧CA =弧BA,∴BE=AB=AC,弧EA=弧CB ,∴∠E=∠ACE.在Rt△BEM中,sin∠E=BMBE=1213,设BE=13m,则BM=12m,EM=5m.……………5分在Rt△ANC中,sin∠ANC=ANAC=sin∠E=1213,AC=BE=13m,则AN=12m,CN=5m.∵BM∥AN且BM=AN∴四边形BMNA是平行四边形∴MN=AB=13m,∴CM=18m∴tan∠BCE=122183BM mCM m==,∴tan∠D=23………………………………8分22. 解:(1)∵点A在直线32y x=上,且A点的横坐标为2,∴3232y=⨯=,即点A的坐标为A(2,3)∵A(2,3)在双曲线kyx=上∴k=6 ………………………………………3分F(2)①12或0 (12与0各1分) ………………………………………5分 ②∵PM 垂直于x 轴,点P 的坐标为(m ,3) ∴N 3(,)2m m ,M 6(,)m m∴PN=332m -,PM=63m-. ………………………………………6分 当m=2时,P 、M 、N 三点重合,PM=PN=0; …………………………………7分 当0<m <2时,PM=6633m m -=-.PN=333322m m -=-, PM-PN=633(3)2mm ---=6362m m -+=2>0. ∴PM >PN ; ………………………………………9分 当m >2时,PM=6633m m -=-.PN=333322m m -=-, PM-PN=633(3)2m m---=6362m m -+-=2--<0. ∴PM <PN.综上,当m=2时,PM=PN ;当0<m <2时,PM >PN ;当m >2时,PM <PN. ………………………………………10分23. (1)证明:在正六边形ABCDEF 中, AB=BC ,∠ABC=∠BCD=120°,∵BN=CM ,∴△ABN ≌△BCM ………………………………………2分 ∴∠ANB=∠BCM ∵∠PBN=∠CBM ∴△BPN ∽△BCM∴BP BNBC BM= ∴BP BM BN BC ⋅=⋅ ………………………………………4分(2)延长BC ,ED 交于点H ,延长BN 交DH 于G ,取BG 得中点K ,连接KC. 在正六边形ABCDEF 中,∠BCD=∠CDE=120°,∴∠HCD=∠CDH=60°,∴∠H=60°,∴DC=DH=CH.∵DC=BC ,∴CH=BC.∵BK=GK ,∴2KC=GH ,KC ∥DH. ∴∠GDN=∠KCN.∵CN=DN ,∠DNG=∠CNK ,∴△DNG ≌△CNK. ∴KC=DG ,∴DG=13DH=13DE ∵MG ∥AB ,AM ∥BG ,∴四边形MABG 是平行四边形 ∴MG=AB=DE. ∴ME=DG=13DE. 即13ME DE =………………………………………8分 (3)5………………………………………10分 24. 解:(1)∵1x ,2x 是方程2280x x --=的两根,且1x <2x , ∴1x = -2,2x =4,∴A (-2,2)C (4,8) ………………………………………3分 (2)①若直线y 轴,则直线l 的解析式为x=-2; ………………………………4分 ②若直线l 不平行于y 轴,设其解析式为y=kx+b. ∵直线l 经过点A (-2,2),∴-2k+b=2,∴直线l 解析式为y=kx+2k+2.∵直线l 与抛物线只有一个公共点,解析式为y=kx+2k+2. ∴方程21(22)02x kx k -++=有两个相等的实数根. ∴2420k k ++=,k= -2.∴直线l 的解析式为y= -2x-2.综上,直线l 的解析式为x= -2或y= -2x-2. ………………………………………7分 (3)直线AC 的解析式为y= x+4. 设点B(t ,t+4),则D(t ,212t ),E(t ,-2t-2), ∴DB=2142t t +-=1(4)(2)2t t -+, EB=t+4-(-2t-2)=3t+6 ………………………9分过点C作直线CH ∥y 轴,过点B 作直线BH ∥x 轴, 两平行线相交于H(4,t+4) ∴BH=CH=4-t ∴∵EF ∥DC,∴BD BC BE BF =.∴1(4)6BC t BF =-. ∴BF = ………………………………………12分。

【调研】九年级数学4月调研试题第二次联合调考扫描版

【关键字】调研湖北省安陆市2017届九年级数学4月调研试题(第二次联合调考)提示:阅卷前先核对此参照答案2017年九年级4月调考数学试题参照答案与评分标准评分说明:1.若有与参照答案不同的解法而解答过程正确者,请参照评分标准分步给分;2.学生在答题过程中省略某些非关键性步骤,可不扣分;学生在答题过程中省略了关键性步骤,后面解答正确者,可只扣省略关键性步骤分,不影响后面得分.二、填空题11.12.2017 13.14.15.16.①②④三、解答题17.解:原式= ……2分= ……4分=1 ……5分18.(1)解:由题意:……1分……2分又,(舍)……3分……4分(2)解:由……5分∴……6分……7分19.(1)m=10,n=60, 15% ……3分(2)……5分(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”。

倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放。

……7分20.(1)作图略.(提示:点P是∠AOB平分线和线段MN垂直平分线的交点)……4分(2)作图略.(提示:如图,分别作M、N关于OA、OB的对称点)……9分21.解:(1)∵D(3,4)∴OD=5 ……1分由菱形性质,OB=OD∴OB=5∴B(5,0) ……2分又由菱形性质有:A是BD的中点∴A(4,2) ……3分∵函数的图像经过点∴∴反比例函数的解析式: ……4分 (2)由菱形性质,是OC 的中点∴C(8,4) ……5分 设直线BC 的解析式为将B(5,0) ,C(8,4)代入得 解得∴直线BC 的解析式为 ……6分 由 得经检验及,得 ……8分 ∴ ……9分22.解:(1)设种植A 种花木x 棵,B 种花木y 棵,由题意可得:………2分 将②代入①得, 解得∴⎩⎨⎧==4001600y x ………4分故种植A 种花木1600棵,B 种花木400棵 ………5分(2)设安排z 人种植A 种花木,则有(12-z )人种植B 种花木由题意可得方程)12(30400401600z z -=………7分 化简,得)12(311z z -=解得9=z ………8分检验:012,0≠-≠z z ,故9=z 是方程的解 ………9分 故安排9人种植A 种花木,安排3人种植B 种花木. ………10分 23.解:(1)25 25………4分 (2) 如图,由旋转性质∠ACE =∠BCD =θ ………5分又∵21==BC CD AC CE ∴ACE ∆~BCD ∆ ………7分 ∴25==CDCE BDAE ………8分 (3)有两种情况:2554212E D C BA如左图,当AB =2时,AE =5,因25=BD AE 故BD =52 ………10分 如右图,当AB =2时,322=--=-=DE CD AC DE AD AE ,因25=BD AE 故BD =556 ………12分 24.解:(1)∵ 当y =0时,a ax ax 4502+-= 解得 4,121==x x∴A (1,0) B (4,0) ………………1分∴AB =3 ………………2分由ABC S ∆=6,可得OC =4∴1-=a , ………………3分 ∴解析式为452-+-=x x y ………………4分 (2)过点C 作CD ∥x 轴,过点P 作PD ⊥CD 于点D ,∴∠ABC =∠BCD ,∵∠BCP =2∠ABC ∴∠PCD =∠ABC∴ tan∠ABC =tan∠DCP (或证明BOC ∆∽CDP ∆) ∴CDDPOB OC = ………………5分 设点P (t, a at at 452+-)DP =4a-(a at at 452+-)=at at 52+-∴tatat a 5442+-=- ………………7分 ∴t=6∴点P 的横坐标为6 ………………8分 (法2:过P 作PD 垂直于y 轴于点D ,方法类比给分) (3)① ∵AK =FK∴∠KAF =∠KFA 又∵∠KAH =∠FKP ∴∠HAP =∠HPA ∴HP =HA由(2)知P 的横坐标为6, ∴ P (6,10a ) ∴HP =-10a又∵HA =HO -AO =6-1=5 ∴-10a =51252AB C D E∴ a=21-∴抛物线的解析式为 225212-+-=x x y ………10分 ②过点F 作FG ⊥PK 于点G ,则Rt △PFG 是等腰直角三角形∵PF =a 24-=22∴FG =2由AK =KF ∠KAH =∠FKP 得△AKH ≌ △KFG ∴HK =FG =2∴点K (6,2) ∵BH =KH=2 ∴∠BKH =45°过点Q 作QN ⊥PK 于点N ,则KN =QN 设点Q (t, 2-2521-2t t +),则N (6,2-2521-2t t +) , ∴QN=6-tNK=2225212+-+t t =425212+-t t 由KN =QN 得6-t=425212+-t t ,解的舍)(4,121=-=t t ∴Q (-1,-5) ………12分∵P (6,-5) ∴PQ ∥x 轴∴QP =7 ………13分 (其他求方法参照相应给分)此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

2017年武汉市四调数学答案解析


( 11. 12. 13. , 14. , 8+( 5)
6

3

18
)
x 1 − x −1 x −1
, 1 , 2 ,
5 9
.
ABCD BCF
,E
AB
, △CBE
CE
△CFE,
AF.
EAF 70 ,
15. 16. )
60
8 3,
D 90 ,
30 ( P
3
30 ) , ,
ABCD, ABC 45 , C
)
5000 ×
78 × 100%=1950( ) 200
20.(
8
) 35 t
,2
3
15.5 t;5
6
(1) (2) 10 , 30 t,
(1)
x
y
.
2 x + 3 y = 15.5 5x + 6 y = 35
x = 4, y = 2.5
4t 2 .5 t
(2)
a

(10 − a)

4a + (10 − a) × 2.5 ≥ 30 ,
E
D M
E
M
D
N
F P N
C
F
C
A E
B D
A
G
B
H
K
M J F C
P
K
N
G
A
B
H
(1) ΔABN ≌ ΔBCM ⇒ ∠PNB = ∠BMC ⇒ ΔBPN (2)
ΔBCM ⇒ BP ⋅ BM = BN ⋅ BC
MG ⊥ AB , NH ⊥ AB , CK ⊥ AB ,

初中四月调考数学试卷答案

一、选择题(每题4分,共20分)1. 下列数中,有理数是()A. √2B. πC. 1/2D. 无理数答案:C解析:有理数是可以表示为两个整数之比的数,因此1/2是有理数。

2. 已知a=3,b=-2,则a^2-b^2的值为()A. 1B. 5C. 7D. 9答案:B解析:a^2-b^2=(a+b)(a-b),代入a=3,b=-2,得(3-2)(3+2)=5。

3. 下列方程中,无解的是()A. 2x+1=0B. 3x-5=0C. 5x+2=0D. 4x-3=0答案:C解析:无解的方程是方程的系数和常数项同时为0,因此5x+2=0无解。

4. 下列图形中,是圆的是()A. 矩形B. 正方形C. 三角形D. 圆形答案:D解析:圆形是一种特殊的几何图形,由一条闭合的曲线组成,因此选D。

5. 下列函数中,是正比例函数的是()A. y=2x+3B. y=3x^2C. y=xD. y=-2x+1答案:C解析:正比例函数的特点是函数的图像是一条直线,且斜率为常数,因此选C。

二、填空题(每题5分,共25分)6. (3/4)÷(2/3)=_______答案:9/8解析:分数除法,分子乘以分母的倒数,即(3/4)÷(2/3)=(3/4)×(3/2)=9/8。

7. (-2)^3×(-3)^2=_______答案:-36解析:负数的幂次运算,先计算幂次,再进行乘法,即(-2)^3×(-3)^2=(-8)×9=-72。

8. 下列数中,是等差数列的是()A. 1, 2, 3, 4, 5B. 1, 3, 5, 7, 9C. 2, 4, 6, 8, 10D. 3, 5, 7, 9, 11答案:B解析:等差数列的特点是相邻两项之差相等,因此选B。

9. 已知x+y=10,x-y=2,则x=_______,y=_______答案:6,4解析:联立方程求解,将两个方程相加得2x=12,解得x=6,代入第一个方程得y=4。

【真卷】2017年湖北省高三四月调考数学试卷(理科)

2017年湖北省高三四月调考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)若复数z=1+i,为z的共轭复数,则z•=()A.0 B.2 C.D.2i2.(5分)设集合A={(x,y)|y=x+1},B={(x,y)||x|+|y|=1},则A∩B中的元素个数为()A.0个 B.1个 C.2个 D.无数个3.(5分)设等差数列{a n}的前n项和为S n,若a1=4,a2+a4+a6=30,则S6=()A.54 B.44 C.34 D.244.(5分)已知点A(﹣1,0),B(1,0)为双曲线﹣=1(a>0,b>0)的左右顶点,点M在双曲线上,△ABM为等腰三角形,且顶角为120°,则该双曲线的标准方程为()A.x2﹣=1 B.x2﹣=1 C.x2﹣y2=1 D.x2﹣=15.(5分)(x2﹣)6的展开式,x6的系数为()A.15 B.6 C.﹣6 D.﹣156.(5分)已知随机变量η满足E(1﹣η)=5,D(1﹣η)=5,则下列说法正确的是()A.E(η)=﹣5,D(η)=5 B.E(η)=﹣4,D(η)=﹣4 C.E(η)=﹣5,D (η)=﹣5 D.E(η)=﹣4,D(η)=57.(5分)设,,均为非零向量,已知命题p:=是•=•的必要不充分条件,命题q:x>1是|x|>1成立的充分不必要条件,则下列命题是真命题的是()A.p∧q B.p∨q C.(¬p)∧(¬q)D.p∨(¬q)8.(5分)已知函数f(x)=(ω>0,|φ|<,a∈R)在区间[﹣3,3]上的图象如图所示,则可取()A.4πB.2πC.πD.9.(5分)执行如图所示的程序框图,若输出的值为y=5,则满足条件的实数x的个数为()A.4 B.3 C.2 D.110.(5分)网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.2 B.4 C.D.1+11.(5分)已知实数x,y满足x2+(y﹣2)2=1,则的取值范围是()A.(,2]B.[1,2]C.(0,2]D.(,1]12.(5分)过圆x2+y2=25内一点P(,0)作倾斜角互补的直线AC和BD,分别与圆交于A、C和B、D,则四边形ABCD面积的最大值为()A.40B.C.40D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知正六棱锥S﹣ABCDEF的底面边长和高均为1,则异面直线SC与DE所成角的大小为.14.(5分)已知数列{a n}为等差数列,{b n}为等比数列,且a n>0,b n>0,记数列{a n•b n}的前n项和为S n,若a1=b1=1,S n=(n﹣1)•3n+1(n∈N*),则数列{}的最大项为第项.15.(5分)某单位植树节计划种杨树x棵,柳树y棵,若实数x,y满足约束条件,则该单位集合栽种这两种树的棵树最多为.16.(5分)函数f(x)=|sinx|+|sin(x+)|的值域为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且cosC=.(1)求B;(2)设CM是角C的平分线,且CM=1,b=6,求cos∠BCM.18.(12分)如图,长方体ABCD﹣A1B1C1D1中,点M在棱BB1上,两条直线MA,MC与平面ABCD所成角均为θ,AC与BD交于点O.(1)求证:AC⊥OM;(2)当M为BB1的中点,且θ=时,求二面角A﹣D1M﹣B1的余弦值.19.(12分)在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求x,y的值;(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X,求X的分布列和数学期望E(X).20.(12分)已知平面内动点P与点A(﹣3,0)和点B(3,0)的连线的斜率之积为﹣.(1)求动点P的轨迹方程;(2)设点P的轨迹且曲线C,过点(1,0)的直线与曲线C交于M,N两点,记△AMB的面积为S1,△ANB的面积为S2,当S1﹣S2取得最大值时,求的值.21.(12分)已知函数f(x)=xlnx,g(x)=.(1)证明方程f(x)=g(x)在区间(1,2)内有且仅有唯一实根;(2)记max{a,b}表示a,b两个数中的较大者,方程f(x)=g(x)在区间(1,2)内的实数根为x0,m(x)=max{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)内有两个不等的实根x1,x2(x1<x2),判断x1+x2与2x0的大小,并说明理由.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.[选修4-4:参数方程与极坐标系]22.(10分)以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=2sinθ,正方形ABCD的顶点都在C1上,且依次按逆时针方向排列,点A的极坐标为(,).(1)求点C的直角坐标;(2)若点P在曲线C2:x2+y2=4上运动,求|PB|2+|PC|2的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|.(1)若f(x)的最小值为4,求实数a的值;(2)若﹣1≤x≤0时,不等式f(x)≤|x﹣3|恒成立,求实数a的取值范围.2017年湖北省高三四月调考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)若复数z=1+i,为z的共轭复数,则z•=()A.0 B.2 C.D.2i【解答】解:复数z=1+i,=1﹣i,则z•=12+12=2.故选:B.2.(5分)设集合A={(x,y)|y=x+1},B={(x,y)||x|+|y|=1},则A∩B中的元素个数为()A.0个 B.1个 C.2个 D.无数个【解答】解:∵A={(x,y)|y=x+1},B={(x,y)||x|+|y|=1},联立,当y>0时,可得的|x|+x+1=1,即|x|+x=0,此时x有无数个解,即y=x+1,与|x|+|y|=1有无数个交点,即A∩B中的元素个数为无数个.故选:D3.(5分)设等差数列{a n}的前n项和为S n,若a1=4,a2+a4+a6=30,则S6=()A.54 B.44 C.34 D.24【解答】解:设等差数列{a n}的公差为d,∵a1=4,a2+a4+a6=30,∴4×3+9d=30,解得d=2.则S6=6×4+×2=54.故选:A.4.(5分)已知点A(﹣1,0),B(1,0)为双曲线﹣=1(a>0,b>0)的左右顶点,点M在双曲线上,△ABM为等腰三角形,且顶角为120°,则该双曲线的标准方程为()A.x2﹣=1 B.x2﹣=1 C.x2﹣y2=1 D.x2﹣=1【解答】解:双曲线﹣=1(a>0,b>0),如图所示,|AB|=|BM|,∠ABM=120°,过点M作MN⊥x轴,垂足为N,则∠MBN=60°,在Rt△BMN中,|BM|=|AB|=2a,∠MBN=60°,即有|BN|=2acos60°=a,|MN|=2asin60°=a,故点M的坐标为M(2a,a),代入双曲线方程得﹣=1,即为a2=b2,由A(﹣1,0),B(1,0)为双曲线的双曲线左右顶点,则a=b=1,∴双曲线的标准方程:x2﹣y2=1,故选:C.5.(5分)(x2﹣)6的展开式,x6的系数为()A.15 B.6 C.﹣6 D.﹣15【解答】解:(x2﹣)6的展开式中,通项公式为:T r+1=•(x2)6﹣r•=(﹣1)r••x12﹣3r,令12﹣3r=6,解得r=2;∴展开式中x6的系数为(﹣1)2•=15.故选:A.6.(5分)已知随机变量η满足E(1﹣η)=5,D(1﹣η)=5,则下列说法正确的是()A.E(η)=﹣5,D(η)=5 B.E(η)=﹣4,D(η)=﹣4 C.E(η)=﹣5,D (η)=﹣5 D.E(η)=﹣4,D(η)=5【解答】解:∵随机变量η满足E(1﹣η)=5,D(1﹣η)=5,∴1﹣Eη=5,Dη=5,解得Eη=﹣4,Dη=5,故选:D.7.(5分)设,,均为非零向量,已知命题p:=是•=•的必要不充分条件,命题q:x>1是|x|>1成立的充分不必要条件,则下列命题是真命题的是()A.p∧q B.p∨q C.(¬p)∧(¬q)D.p∨(¬q)【解答】解:若=时,则•=•一定成立,则充分性成立,若•=•,当=时,则=不一定成立,必要性不成立.∴为充分不必要条件,故p为假命题;|x|>1等价于x>1或x<﹣1,所以充分性成立,必要性不成立,故q为真命题.故选B.8.(5分)已知函数f(x)=(ω>0,|φ|<,a∈R)在区间[﹣3,3]上的图象如图所示,则可取()A.4πB.2πC.πD.【解答】解:由图象可知f(x)是偶函数,∴φ=kπ,又|φ|<,∴φ=0.令f(x)=0得cosωx=0,∴ωx=+kπ,解得x=+,k∈Z.∵ω>0,∴f(x)的最小正零点为,由图象可知f(x)的最小正零点为1,故=1,解得ω=,∴f(x)=,由图象f(0)=2,故=2,∴a=,∴=π.故选C.9.(5分)执行如图所示的程序框图,若输出的值为y=5,则满足条件的实数x的个数为()A.4 B.3 C.2 D.1【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出分段函数y=的值,若输出的值为y=5,则:①,或②,或③,由于①有2解,②有1解,③无解,则满足条件的实数x的个数为3.故选:B.10.(5分)网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.2 B.4 C.D.1+【解答】解:几何体为两个大小相同的三棱柱的组合体,直观图如图所示:三棱柱的底面为直角边为1的直角三角形,高为2,∴几何体的体积V=2×=2.故选:A.11.(5分)已知实数x,y满足x2+(y﹣2)2=1,则的取值范围是()A.(,2]B.[1,2]C.(0,2]D.(,1]【解答】解:设P(x,y)为圆x2+(y﹣2)2=1上的任意一点,则P到直线x+y=0的距离PM=,P到原点的距离OP=,∴==2sin∠POM.设圆x2+(y﹣2)2=1与直线y=kx相切,则,解得k=±,∴∠POM的最小值为30°,最大值为90°,∴≤sin∠POM≤1,∴1≤2sin∠POM≤2.故选:B.12.(5分)过圆x2+y2=25内一点P(,0)作倾斜角互补的直线AC和BD,分别与圆交于A、C和B、D,则四边形ABCD面积的最大值为()A.40B.C.40D.【解答】解:如图,设AC的倾斜角为θ(0<θ<),则AC:y=tanθ(x﹣).设A(x1,y1),C(x2,y2),由对称性可得:==.联立,得.∴,.则S ABCD==.令tanθ=k(k>0),则S=,∴S′=.∴当k∈(0,)时,S′>0,当k∈()时,S′<0,∴当k=时,.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知正六棱锥S﹣ABCDEF的底面边长和高均为1,则异面直线SC与DE所成角的大小为450..【解答】解:解:P﹣ABCDEF为正六棱锥,O是底面正六边形ABCDEF的中心.连接FC、OB、OS,∵ABCDEF为正六边形,∴△AOC为等边三角形.∴OA=OB=AB=1,又∵DE∥FC,∴∠SCO就是异面直线SC与DE所成角.∴SO=OC=1,∴∠SCO=45°.则异面直线SC与DE所成角的大小为450.故答案为:450.14.(5分)已知数列{a n}为等差数列,{b n}为等比数列,且a n>0,b n>0,记数列{a n•b n}的前n项和为S n,若a1=b1=1,S n=(n﹣1)•3n+1(n∈N*),则数列{}的最大项为第14项.【解答】解:设等差数列{a n}的公差为d(d>0),等比数列{b n}的公比为q(q >0),由S n=(n﹣1)•3n+1,得,即,解得d=2,q=3.∴a n=1+2(n﹣1)=2n﹣1,.∴=,令,由,得,由①得,由②得n.∴n=14.即数列{}的最大项为第14项.故答案为:14.15.(5分)某单位植树节计划种杨树x棵,柳树y棵,若实数x,y满足约束条件,则该单位集合栽种这两种树的棵树最多为12.【解答】解:由于某单位植树节计划种杨树x棵,柳树y棵,且实数x,y满足约束条件,则画出可行域为:对于栽种这两种树的棵树最多,令z=x+y⇔y=﹣x+z 则题意转化为,在可行域内任意去x,y且为整数使得目标函数代表的斜率为定值﹣1,截距最大时的直线为过⇒(6,6)时使得目标函数取得最大值为:z=12.故答案为:12.16.(5分)函数f(x)=|sinx|+|sin(x+)|的值域为[,] .【解答】解:令sinx=0和sin(x+)=0,x∈[0,2π),解得x=0,π和x=,;∴①当x∈[0,]时,sinx≥0,sin(x+)≥0,∴f(x)=sinx+sin(x+)=2sin(x+)cos=sin(x+);此时x+∈[,],≤sin(x+)≤1,∴≤f(x)≤;②当x∈(π,)时,sinx<0,sin(x+)<0,∴f(x)=﹣sinx﹣sin(x+)=﹣sin(x+);此时x+∈(,),﹣1≤sin(x+)≤﹣,∴≤f(x)≤;③当x∈(,π)时,sinx>0,sin(x+)<0,∴f(x)=sinx﹣sin(x+)=2sin(﹣)cos(x+)=﹣cos(x+);此时x+∈(,),﹣1≤cos(x+)<﹣,∴≤f(x)≤;④当x∈(,2π]时,sinx≤0,sin(x+)>0,∴f(x)=﹣sinx+sin(x+)=2sin cos(x+)=cos(x+);此时x+∈(,],≤sin(x+)≤1,∴<f(x)≤1;综上,函数f(x)的值域为[,].故答案为:[,].三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且cosC=.(1)求B;(2)设CM是角C的平分线,且CM=1,b=6,求cos∠BCM.【解答】(本题满分为12分)解:(1)∵cosC==…2分∴a2+b2﹣c2=2a2,∴a2+c2=b2,故B=90°…4分(2)cos∠BCM==a,cos∠BCA=,∠BCA=2∠BCM,∴=2a2﹣1,即12a2﹣a﹣6=0,解得a=或﹣(舍)…9分∴cos∠BCM=…12分18.(12分)如图,长方体ABCD﹣A1B1C1D1中,点M在棱BB1上,两条直线MA,MC与平面ABCD所成角均为θ,AC与BD交于点O.(1)求证:AC⊥OM;(2)当M为BB1的中点,且θ=时,求二面角A﹣D1M﹣B1的余弦值.【解答】解:(Ⅰ)证明:∵MB⊥面ABCD,直线MA,MC与平面ABCD所成角均为θ,∴∠MAB=∠MCB=θ.故△MBA≌MBC,BA=BC.∴四边形ABCD为正方形,AC⊥DB,又AC⊥MB,DB∩MB=B∴AC⊥面BDM,即AC⊥OM.(Ⅱ)θ=时,则有AB=BC=MB,延长D1M,DB交于点点H,过点O作ON⊥D1H于点N,连接AN,则∠ANO为二面角A﹣D1M﹣B的平面角.设AB=1,由△D1DH∽△ONH易得ON=,AO=,tan∠ANO=,∴∠ANO=30°二面角A﹣D1M﹣B1的余弦值为.19.(12分)在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求x,y 的值;(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X,求X的分布列和数学期望E(X).【解答】解:(1)∵120+=125,解得x=3.∵=124,解得y=4.(2)因为一分钟内跳绳次数不低于115且不超过125的学生中,男生只有1人,女生只有4人,所以男生被选上的概率为,女生被选上的概率为,X可能取值为0,1,2,∴P(X=0)==,P(X=1)==,P(X=2)==.∴X的分布列为:∴数学期望E(X)=0×+1×+2×=.20.(12分)已知平面内动点P与点A(﹣3,0)和点B(3,0)的连线的斜率之积为﹣.(1)求动点P的轨迹方程;(2)设点P的轨迹且曲线C,过点(1,0)的直线与曲线C交于M,N两点,记△AMB的面积为S1,△ANB的面积为S2,当S1﹣S2取得最大值时,求的值.【解答】解:(1)由题意可知:2a=6,则a=3,离心率e==,则c=1,b2=a2﹣c2=8,∴椭圆的标准方程:;(2)设A(x1,y1),B(x2,y2),直线MN的方程:l MN:x=my+1,,整理得:(8m2+9)y2+16my﹣64=0,显然△>0,则y1+y2=﹣,y1y2=﹣,S1=丨AB丨×丨y1丨=3丨y1丨,同理S2=3丨y2丨,不妨设,丨y1丨>丨y2丨,于是S1﹣S2=3丨y1丨﹣3丨y2丨=3丨y1+y2丨=,当S1﹣S2最大时,m≠0,则S1﹣S2=≤=2,当且仅当8丨m丨=,即m2=,即m=±,则S1﹣S2取最大值,若m=,则18y2+12y﹣64=0,解得:y=,y1=,y2=,则=丨丨=丨丨=,若m=﹣,则18y2﹣12y﹣64=0,解得:y=,则y1=,y2=,此时=丨丨=丨丨=,综上可知:的值.21.(12分)已知函数f(x)=xlnx,g(x)=.(1)证明方程f(x)=g(x)在区间(1,2)内有且仅有唯一实根;(2)记max{a,b}表示a,b两个数中的较大者,方程f(x)=g(x)在区间(1,2)内的实数根为x0,m(x)=max{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)内有两个不等的实根x1,x2(x1<x2),判断x1+x2与2x0的大小,并说明理由.【解答】证明:(1)令F(x)=f(x)﹣g(x),则F(x)=xlnx﹣,定义域是(0,+∞),F′(x)=1+lnx+,x>1时,F′(x)>0,∴F(x)在(1,2)递增,又F(1)=﹣<0,F(2)=2ln2﹣>0,而F(x)在(1,+∞)上连续,根据零点存在定理可得:F(x)=0在区间(1,2)有且只有1个实根,即方程f(x)=g(x)在区间(1,2)内有且仅有唯一实根;(2)x1+x2<2x0,证明过程如下:显然:m(x)=,当1<x<x0时,m(x)=,m′(x)=<0,故m(x)单调递减;当x>x0时,m(x)=xlnx,m′(x)=1+lnx>0,m(x)递增,要证x1+x2<2x0,即证x2<2x0﹣x1,由(1)知x1<x0<x2,g(x1)=f(x2)=n,故即证f(x2)<f(2x0﹣x1),即证g(x1)<f(2x0﹣x1),即证<(2x0﹣x1)ln(2x0﹣x1),(1<x1<x0<2),(*),设H(x)=﹣(2x0﹣x)ln(2x0﹣x),(1<x<x0<2),H′(x)=+ln(2x0﹣x)+1,∵1<x<x0<2,∴+1>0,ln(2x0﹣x)>0,∴H′(x)>0,∴H(x)在(1,x0)递增,即H(x)<H(x0)=0,故(*)成立,故x1+x2<2x0成立.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.[选修4-4:参数方程与极坐标系]22.(10分)以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=2sinθ,正方形ABCD的顶点都在C1上,且依次按逆时针方向排列,点A的极坐标为(,).(1)求点C的直角坐标;(2)若点P在曲线C2:x2+y2=4上运动,求|PB|2+|PC|2的取值范围.【解答】解:(1)∵点A的极坐标为(,),∴点A的直角坐标是(1,1),由A,C关于y轴对称,则C(﹣1,1);(2)易得B(0,2),C(﹣1,1),曲线C1:ρ=2sinθ的直角坐标方程是:x2+(y﹣1)2=1,设P(x,y),x=2cosθ,y=2sinθ,则|PB|2+|PC|2=x2+(y﹣2)2+(x+1)2+(y﹣1)2=2x2+2y2﹣6y+2x+6=14+2(x﹣3y)=14+2(2cosθ﹣6sinθ)=14+4(cosθ﹣3sinθ)=14+4cos(θ+φ),故|PB|2+|PC|2∈[14﹣4,14+4].[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|.(1)若f(x)的最小值为4,求实数a的值;(2)若﹣1≤x≤0时,不等式f(x)≤|x﹣3|恒成立,求实数a的取值范围.【解答】解:(1)∵f(x)=|x﹣2|+|x+a|≥|(x﹣2)﹣(x+a)|=|a+2|,当且仅当(x﹣2)(x+a)≤0时取等号,∴f(x)min=|a+2|,由|a+2|=4,解得:a=2或a=﹣6;(2)原命题等价于|x+a|+2﹣x≤3﹣x在[﹣1,0]恒成立,即|x+a|≤1在[﹣1,0]恒成立,即﹣1﹣x≤a≤1﹣x在[﹣1,0]恒成立,即(﹣1﹣x)max≤a≤(1﹣x)min,故a∈[0,1].赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC.(1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年思维新观察数学四月调考复习交流卷(二)
一、选择题(共10小题,每小题3分,共30分) 1.实数9的值是( ) A .3
B .-3
C .±3
D .±9
2.若代数式3
1
+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x ≠-3
B .x =-3
C .x <-3
D .x >-3 3.计算(-a 3)2的值为( ) A .a 5
B .a 6
C .-a 6
D .-a 5
4.下列说法中不正确的是( )
A .抛掷一枚硬币,硬币落地时正面朝上是随机事件
B .把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件
C .任意打开九年级下册数学教科书,正好是97页是确定事件
D .一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率大于白球的概率 5.下列式子正确的是( ) A .(a -b )2=a 2-2ab +b 2 B .(a -b )2=a 2-b 2 C .(a +b )2=a 2+ab +b 2
D .(a +b )2=a 2b +b 2
6.如图,将△ABC 绕点C (0,1)旋转180°得到△DEC .若点A 的坐标为(3,-1),则点D 的坐
标为( ) A .(-3,1)
B .(-2,2)
C .(-3,3)
D .(-3,2)
7.如图是由若干个正方体组成的几何体的俯视图,数字表示该位置上小正方体的个数,则该几
何体左视图可能是( )
8.某中学随机调查了10名学生,了解他们一周在校参加体育锻炼的时间,列表如下:
锻炼时间(小时)
5 6 7 8 人数
2
4
3 1 则这10名同学一周在校参加体育锻炼的时间的中位数、众数和平均数分别为( )
A .6、7、6.3
B .7、7、6.2
C .7、6、6.2
D .6、6、6.3
9.小明训练上楼梯赛跑,他每步可上2阶或者3阶(不上1阶),那么小明上12阶楼梯的不同方法共有( )(注:两种上楼梯的方法只要一步所踏楼梯的阶数不同,便认为是不同的方法) A .9种
B .10种
C .12种
D .16种
10.当-2≤x ≤1时,二次函数y =-(x -m )2+m 2+1有最大值4,则实数m 的值为( ) A .2
B .2或3-
C .2或3-或4
7
-
D .2或3±或4
7-
二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算7+(-2)的结果为___________ 12.化简分式
1
1
1++
+a a a 的值为___________
13.五张分别写有-1、2、0、-4、5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是___________
14.如图,在平行四边形ABCD 中,E 为AB 边上的点,BE =BC ,将△ADE 沿DE 翻折,点A 的对应点F 恰好落在CE 上.∠ADF =84°,则∠BEC =___________
15.在平面直角坐标系中,A (4,0),直线l :y =6与y 轴交于点B ,点P 是直线l 上点B 右侧的动点,以AP 为边在AP 右侧作等腰Rt △APQ ,∠APQ =90°.当点P 的横坐标满足0≤x ≤8,则点Q 的运动路径长为___________
16.如图,在四边形ABCE 中,∠ABC =45°,AE =CE ,连接AC ,∠ACB =30°,过A 作AD ⊥AE 交BC 于D .若AD =AE ,则
AB
AD
=___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:2
1
x -1=2(x +1)
18.(本题8分)如图,点B 在线段AD 上,BC ∥DE ,AB =ED ,BC =DB ,求证:∠A =∠E
19.(本题8分)某校在推进新课改的过程中,开设的体育选修课有:A :篮球;B :足球;C :排球;D :羽毛球;E :兵乓球.学生可根据自己的爱好选修一门,体育老师对某班全体同学的选课情况进行调查统计,制成了两幅不完整的统计图
(1) 写出该班的总人数为___________,其中最喜爱篮球的有人___________;在扇形统计图中,最喜爱足球的对应扇形的圆心角大小是___________
(2) 若该校共有学生1500人,请估计其中选修篮球的大约有多少人?
20.(本题8分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元.已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元
(1) 求购买一个A 种品牌、一个B 种品牌的足球各需多少元
(2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案?
21.(本题8分)如图,AC 为⊙O 的直径,DAB 为⊙O 的割线,E 为⊙O 上一点,弧BE =弧CE ,DE ⊥AB 于D ,交AO 的延长线于F (1) 求证:DF 为⊙O 的切线 (2) 若AD =
4
5
,CF =3,求tan ∠CAE 的值
22.(本题10分)如图1,直角三角形AOB 中,∠AOB =90°,AB ∥x 轴,OA =2OB ,AB =5,反比例函数x
k
y =
(x >0)的图象经过点A (1) 求反比例函数的解析式
(2) 如图2,将△AOB 绕点O 逆时针旋转得到△POQ .当Q 坐标为(m ,1)时,试判断点P 是否在反比例函数x
k
y =
(x >0)的图象上,并说明理由
23.(本题10分)如图1,在Rt △ABC 中,∠C =90°,AC =4,BC =3,点D 、E 分别在边BC 、AC 上
(1) 当BD =AE =2时,直接写出
OB OE =__________,OD
OA
=__________ (2) 如图2,若O 为AD 的中点,求证:BC
BD
CE AE =
(3) 如图3,当
5
3
=AE BD ,∠AOE =∠BAC 时,求AE 的值
24.(本题12分)二次函数y =x 2-2mx -3m 2(其中m 是常数,且m >0)的图象与x 轴分别交于点A 、B (点A 在点B 左侧),在y 轴交于C ,点D 在第四象限的抛物线上,连接AD ,过点A 作射线AE 交抛物线于另一点E ,AB 平分∠DAE (1) 若△ABC 的面积为6,求抛物线的解析式 (2) 若点D 、E 的横坐标分别为a 、b ,求m
b
a +的值 (3) 当DC ∥x 轴时,求
AD
AE
的值。

相关文档
最新文档