11.2与三角形有关的角经典习题精选.docx
初中数学11.2与三角形有关的角典型例题

《与三角形有关的角》典型例题知识点1 三角形的内角例1 (基础题)在△ABC 中,∠A +∠B =100°,∠C =2∠B ,求∠A 、∠B 、∠C 的度数.精析与解答 解法一:设∠B =x °,则∠A =100°-x °,∠C =2x ° ∴ 100°—x °十x °十2x °=180°(三角形内角和定理)解方程,得x °=40°,即∠B =40°,∠A =60°,∠C =80°. 解法二:根据题意可列出方程⎪⎩⎪⎨⎧︒∠∠∠∠∠︒∠∠③=++②=①=+1802100C B A BC B A把①代入③,得∠C =④︒80把④代入②,得∠B =⑤︒40 把⑤代入①,得∠A =.说明:本题要求出△ABC 的三个内角,除了普遍成立的条件“∠A +∠B +∠C =180°”以外,只要给出两个独立条件,就可用解方程(组)的方法,得到惟一确定的解.例2 (能力题)如图7-18所示,△ABC 中,AD 平分∠BAC ,EF ⊥AD 交AB 于E ,交AC 于F ,交BC 的延长线于H .求证:∠H =21(∠ACB -∠B ).证明 如何把∠H 、∠B 、∠ACB 联系在一起是此题的关键.当注意到∠H 、∠B 是△EBH 的两个内角时,便会发现:∠3=∠B +∠H ,即∠H =∠3-∠B .而∠3=90°-∠1=90°-21∠BAC =21(180°-∠BAC ),然后把这个式子中的180°换成∠BAC +∠B +∠ACB ,就可以证出原结论了.∵ AD ⊥EF ,∴ ∠3=90°-∠1.∵ AD 平分∠BAC ,∴ ∠1=21∠BAC .又∵ ∠3是△HEB 的一个外角,∴ ∠H =∠3-∠B =90°-∠1-∠B=90°-21∠BAC -∠B =21(180°-∠BAC -B ∠2) =21(∠BAC +∠B +∠ACB -∠BAC -B ∠2) =21(∠ACB -∠B ).故∠H =21(∠ACB -∠B ).说明:①在此题的证明过程中,用△ABC 的三个内角的和去替换180°,是几何证明中的重要的转化思想,有时也可以用21(∠BAC +∠B +∠ACB )去替换90°,以达到证题的目的,初学者要注意体会;②上述的证明是借助于∠H =∠3-∠B ,本题还可以考虑∠H =90°-∠5,∠H =∠ACB -∠HFC ,∠H =∠ADB -90°等来证明.知识点2 三角形的外角例3 (基础题)一个三角形三个外角之比为2∶3∶4,求三个内角之比. 精析与解答 三角形的外角与相邻内角是互补的关系,只要能求出三个外角,自然三个内角也就容易得到,它们的比也就轻而易举了.由题意,设三角形的三个外角分别为(2x )°,(3x )°,(4x )°,则2x +3x +4x =360,解得x =40∴ 2x =80,3x =120,4x =160∴ 三角形的三个内角分别是100°、60°、20°∴ 它们的比为100∶60∶20=5∶3∶1故三个内角的比为5∶3∶1.说明:“三角形的三个外角和等于360°”是解此题的基础.例4 (能力题)如图7-19所示,在△ABC 中,AD 是BC 上的高,AE 平分∠BAC ,∠B =75°,∠C =45°,求∠DAE 与∠AEC 的度数.精析与解答 解法一:∵ ∠B +∠C +∠BAC =180°∠B =75°,∠C =45°∴ ∠BAC =60°,∵ AE 平分∠BAC∴ ∠BAE =∠CAE =21∠BAC =21×60°=30°∵ AD 是BC 上的高,∠B +∠BAD =90°∴ ∠BAD =90°-∠B =90°-75°=15°∴ ∠DAE =∠BAE -∠BAD =30°-15°=15°∵ ∠AEC 是△AEB 的外角∴ ∠AEC =∠B +∠BAE =75°+30°=105°解法二:同解法一,得出∠BAC =60°∵ AE 平分∠BAC∴ ∠EAC =21∠BAC =21×60°=30°∵ AD 是BC 上的高∴ ∠C +∠CAD =90°∴ ∠CAD =90°-45°=45°∴ ∠DAE =∠CAD -∠CAE =45°-30°=15°∵ ∠AEC +∠C +∠EAC =180°∴ ∠AEC +45°+30°=180°∴∠AEC=105°故∠DAE=15°,∠AEC=105°说明:求角的度数的关键是把已知角放在三角形中,利用三角形内角和定理求解,或转化为与已知角有互余关系或互补关系,有些题目还可以转化为已知角的和或差来求解.例5 (能力题)已知:CE为△ABC的外角∠ACD的平分线,CE交BA的延长线于点E.求证:∠BAC>∠B证明证角的不等关系,想到三角形内角和定理的推论3,从而想到看一看大角∠BAC是不是某个三角形外角.由图7-20知∠BAC是△ACE的外角,有∠BAC>∠1,而∠1=∠2,故只须证∠2>∠B,而∠2是△BCE的一个外角,∠B 是△BCE的一个和∠2不相邻的内角,所以有∠2>∠B,故∠BAC>∠B.∵CE平分∠ACD(已知),∴∠1=∠2(角平分线定义)∵∠BAC>∠1(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BAC>∠2,∵∠2>∠B(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BAC>∠B说明:此题证明过程中,除利用“三角形的一个外角大于任一和它不相邻的内角”这一结论外,还借助“∠2”来传递不等关系.在证明两角不等关系时,有时还可将两角放在同一三角形中,利用“大边对大角”来证明.。
八年级上册数学11.2与三角形有关的角练习题(含答案)

11.2与三角形有关的角练习题姓名:_______________班级:_______________考号:______________一、选择题1、在中,,则的度数为(???)A.?????B.??????C.??????D.2、如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=(??)A.70°?????B.80°??????C.90°?????D.100°3、如图8,AB=BC=CD,且∠A=15°,则∠ECD=(????)A.30°??????B.45°??????C.60°???????D.75°4、如图,在ΔABC中,AC=DC=DB,∠ACD=100°,则∠B等于(??)A.50°??????B.40°??????C.25°????D.20°第4题第5题5、如图,△ABC中,,点D、E分别在AB、AC上,则的大小为(????)??A、??????B、??????C、?????D、第6题第7题第9题6、如图,已知,∠1=130o,∠2=30o,则∠C=??????.7、如下图所示,已知:∠AEC的度数为110°,则∠A+∠B+∠C+∠D的度数为(??)A.110°?????B.130°?????C.220°???D.180°8、已知等腰三角形的一个角为75°,则其顶角为(?)A.30°???B.75°???C.105°????D.30°或75°9、如图,已知,若,,则C等于(???)A.20°????B.35°??????C.45°????D.55°10、如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()第10题第11题第12题11、如图,已知△ABC的两条高BE、CF相交于点O,,则的度数为(??)A.95o???B.130o??????C.140o???D.150o12、如图,已知与相交于点,,如果,,则的大小为(???)A.??????B.?????C.???????D.13、如图,在△ABC中,∠C=90o,∠B=40o,AD是角平分线,则∠ADC等于A.25o?????B.50o???????C.65o??????D.70o第13题第14题14、如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.?20°????B.40°??????C.30°????D.25°15、如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是(????)A.45°?????B.54°?????C.40°?????D.50°第15题第16题第18题16、如图7-7,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA 的度数为(?????).?A.50°??B.60°??C.70°??D.80°17、适合条件的三角形ABC是(????)A.锐角三角形??B.直角三角形C.钝角三角形?D.等边三角形???????????18、如图1,若∠1=110°,∠2=135°,则∠3等于A.55°????B.65°????C.75°????D.85°19、如图,在△AB C中,∠A=60°,∠ABC=50°,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的是(?)①∠ACB=70°;??????②∠BFC=115°;③∠BDF=130°;?④∠CFE=40°;A.①②?????B.③④?????C.①③????D.①②③第19题第20题20、如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠DBE=∠DCE.其中正确结论的个数为( )A.0??????B.1??????C.2??????D.3二、填空题21、如图,∠l=20°,∠2=25°,∠A=35°,则∠BDC=???????????.第21题第22题第23题22、如下图,?∠A=27°,?∠CBE=96°,?∠C=30°,?则∠ADE的度数是________度.?23、如图,∠1,∠2,∠3的大小关系是??????.24、如图,∠A=50°,∠ACD=38°,∠ABE=32°,则∠BFC= _________ .第24题第25题第26题25、如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=50°,则∠ACD的度数为.26、如图,已知△ABC中,AD是BC边上的高,AE是∠BAC的平分线,若∠B=42°,∠C=70°,则∠DAE=????°.27、△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC是??????三角形.28、如图,⊿ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=????????度。
八年级上册数学11.2与三角形有关的角练习题(含答案)

八年级上册数学11.2与三角形有关的角练习题(含答案)八年级上册数学11.2与三角形有关的角练习题(含答案)题1:已知三角形ABC,∠B=60°,BM⊥AC于M,且AM=2,MC=4,请计算AC的长度。
解:由于∠B=60°,且三角形ABC为直角三角形,可以计算出BM 的长度。
根据勾股定理,可得AB=√(AM^2+BM^2)=√(2^2+4^2)=√(4+16)=√20=2√5。
由此可知BC=2AB=2*2√5=4√5。
因此,AC=√(AM^2+MC^2)=√(2^2+4^2)=√(4+16)=√20=2√5。
题2:在三角形ABC中,∠B=90°,BD是BC的中线,且∠ADB=30°,请计算∠ACD的度数。
解:由于∠B=90°,且BD是BC的中线,可以得知∠DBC=90°/2=45°。
又∠ADB=30°,因此∠BDC=∠ADB+∠DBC=30°+45°=75°。
根据三角形内角和定理,得知∠ACD=180°-∠BDC=180°-75°=105°。
题3:已知∠A=60°,在三角形ABC中,以下哪两条边相等?A. AB=BCB. BC=ACC. AB=ACD. 无法确定解:由于∠A=60°,根据等角对应定理可得∠B=60°。
根据等角定理可知,∠A=∠B,故可以得出结论AB=BC。
题4:已知三角形ABC,∠A=45°,∠B=30°,请计算∠C的度数。
解:∠A=45°,∠B=30°,可计算出∠C的度数。
根据三角形内角和定理,得知∠C=180°-∠A-∠B=180°-45°-30°=105°。
题5:已知三角形ABC,AC=10,BC=6,且∠A=60°,求三角形ABC的面积。
八年级数学上册11-2《与三角形有关的角》基础同步练习题(含答案)

八年级数学上册11-2《与三角形有关的角》基础同步练习题(含答案)1、在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是().A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形2、若△ABC中,∠A:∠B:∠C=1:2:3,则△ABC一定是().A. 锐角三角形B. 钝角三角形C. 直角三角形D. 任意三角形3、在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是().A. 75°B. 65°C. 55°D. 45°4、△ABC中,∠A=35°,∠B=2∠A,则∠C的度数是().A. 55°B. 60°C. 70°D. 75°5、△ABC中,∠B=∠A+10°,∠C=∠B+10°,则∠A=().A. 30°B. 40°C. 50°D. 60°6、在下列条件中,①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=2∠B=3∠C,∠C中,能确定△ABC是直角三角形的条件有().④∠A=∠B=12A. 1个C. 3个D. 4个7、如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.8、如图,在△ABC中,高AD,BE交于点O.若∠C=75°,则∠AOE=度.9、如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是().A. 15°B. 25°D. 10°10、如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC等于().A. 110°B. 115°C. 120°D. 130°11、如图,在△ABC中,AD,AE分别是△ABC的角平分线和高线,用等式表示∠DAE、∠B、∠C的关系正确的是().A. 2∠DAE=∠B−∠CB. 2∠DAE=∠B+∠CC. ∠DAE=∠B−∠CD. 3∠DAE=∠B+∠C12、已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠C、∠DAE的度数.13、若直角三角形的一个锐角为50°,则另一个锐角的度数是°.14、若三角形三个内角度数比为2:3:5,则这个三角形一定是().A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定15、在Rt△ABC中,∠C=90°,∠A−∠B=70°,则∠A的度数为().A. 80°B. 70°C. 60°D. 50°16、下列条件中,不能确定△ABC是直角三角形的是().A. ∠A−∠B=90°∠AB. ∠B=∠C=12C. ∠A=90°−∠BD. ∠A+∠B=∠C17、如果将一副三角板按如图方式叠放,那么∠1=°.18、如图,AD、AE分别是△ABC的高和角平分线,∠B=30°,∠C=70°,则∠EAD=°.19、如图△ABC中,∠1=∠2,∠ABC=70°,则∠BDC的度数是().A. 110°B. 115°C. 120°D. 130°20、如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为().A. 65°B. 70°C. 75°D. 85°21、如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是().A. 30°B. 40°C. 50°D. 60°22、如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE//BC交AC于点E.若∠A= 54°,∠B=48°,则∠CDE的大小为().A. 44°B. 40°C. 39°D. 38°23、如图,∠A+∠B+∠C+∠D+∠E=度.24、如图,把△ABC的一角折叠,若∠1+∠2=130°,则∠A的度数为.1 、【答案】 D;【解析】∵∠A=20°,∠B=60°,∴∠C=180°−∠A−∠B=180°−20°−60°=100°,∴△ABC是钝角三角形,故选D.2 、【答案】 C;【解析】∵△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x°,∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°,∴x+2x+3x=180,∴x=30,∴∠C=90°,∠A=30°,∠B=60°,即△ABC是直角三角形.3 、【答案】 C;【解析】90°−35°=55°.故选C.4 、【答案】 D;【解析】∵∠A=35°,∠B=2∠A=70°,∴∠C=180°−∠A−∠B=75°,故选D.5 、【答案】 C;【解析】∠B=∠A+10°,∠C=∠B+10°,得∠C=∠B+10°=∠A+20°,内角和定理,得∠A+∠B+∠C=180°,即∠A+(∠A+10°)+(∠A+20°)=180°,化简得:3∠A+30°=180°,解得∠A=50°.6 、【答案】 C;【解析】①∵∠A+∠B=∠C,∠A+∠B+∠C=180∘,∴2∠C=180∘,∴∠C=90∘,∴△ABC为直角三角形.②∵∠A:∠B:∠C=1:2:3,∴设∠A=α,∠B=2α,∠C=3α.∵∠A+∠B+∠C=180∘,∴α+2α+3α=180∘,∴α=30∘,∴∠C=90∘,∴△ABC为直角三角形.③∵∠A=2∠B=3∠C,∴设∠A=6x,则∠B=3x,∠C=2x,∵∠A+∠B+∠C=180∘,∴6x+3x+2x=180∘,∴x=180∘11,∴∠A=1080∘11,∠B=540∘11,∠C=360∘11.∴△ABC不为直角三角形.④∵∠A=∠B=12∠C,∴设∠A=∠B=y,∠C=2y.∵∠A+∠B+∠C=180∘,∴y+y+2y=180∘,∴y=45∘,∴∠C=90∘,∴△ABC为直角三角形.综上①②④可判定△ABC为直角三角形,故选C.7 、【答案】证明见解析.;【解析】在Rt △ABC中,∠ACB=90°,∴∠B+∠A=90°,又∵∠ACD=∠B,∴∠ACD+∠A=90°,∴∠ADC=90°,∴CD⊥AB.8 、【答案】75;【解析】∵AD,BE为高,∴∠ADC=AEO=90°,在Rt△ACD中,∠CAD=180°−90°−∠C=15°,在Rt△AOE中,∠AOE=180°−∠AEO−∠CAD=180°−90°−15°=75°.9 、【答案】 A;【解析】∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=90°+30°=120°,∠B=∠BAC=45°,在△BFD中,∠BFD=180°−∠B−∠BDF=180°−45°−120°=15°,故答案选A.10 、【答案】 B;【解析】∵∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12×130°=65°.∴∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115°.故选B.11 、【答案】 A;【解析】∵∠BAC=180∘−∠B−∠C,AD是∠BAC的平分线,∴∠CAD=12∠BAC=12(180∘−∠B−∠C).∵AE是高,∴∠CAE=90∘−∠C,∴∠DAE=∠CAE−∠CAD=(90∘−∠C)−12(180∘−∠B−∠C)=12(∠B−∠C),即2∠DAE=∠B−∠C.故选A.12 、【答案】∠C=40°,∠DAE=25°.;【解析】∵∠BAC=80°、∠B=60°,∴∠C=180°−∠BAC−∠B=180°−80°−60°=40°,∵AD⊥BC于D,∴∠DAC=50°,∵AE平分∠DAC,∠DAC=25°.∴∠DAE=1213 、【答案】 40;【解析】∵一个锐角为50°,∴另一个锐角的度数=90°−50°=40°.14 、【答案】 B;【解析】设三个内角度数一份为k°,则三个内角的度数分别为2k°、3k°、5k°,则2k°+3k°+5k°=180°,解得k°=18°,∴2k°=36°,3k°=54°,5k°=90°,∴这个三角形是直角三角形.15 、【答案】 A;【解析】∵∠C=90°,∴∠A+∠B=90°,又∠A−∠B=70°,(90°+70°)=80°.∴∠A=1216 、【答案】 A;【解析】 A选项 : ∠A−∠B=90°,∠A=90°+∠B,故∠A为钝角,△ABC不是直角三角形,A选项符合题意.故A正确;∠A,∠A+∠B+∠C=180°,B选项 : ∠B=∠C=12∴∠B=∠C=45°,∠A=90°.故△ABC为直角三角形,B选项不符合题意.故B错误;C选项 : ∠A=90°−∠B,∠A+∠B+∠C=180°,∴∠C=90°.故△ABC为直角三角形,C选项不符合题意.故C错误;D选项 : ∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°.故△ABC为直角三角形,D选项不符合题意.故D错误.17 、【答案】105;【解析】∠1=45°+60°=105°.18 、【答案】20;【解析】∵∠B=30°,∠C=70°,∴∠BAC=180°−30°−70°=80°,∵AE平分∠BAC,∴∠BAE=40°,∴∠AED=70°,∵AD⊥BC,∴∠ADE=90°,∴∠EAD=20°.19 、【答案】 A;【解析】∵∠ABC=70°,∴∠DBC=∠ABC−∠1,∵∠1=∠2,∴∠BDC=180°−∠DBC−∠2=180°−(70°−∠1)−∠2=110°.故选A.20 、【答案】 B;【解析】∵DE⊥AB,∠A=35°,∴∠AEF=90°,∴∠AFE=∠CFD=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选B.21 、【答案】 C;【解析】方法一 : 如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB//CD,∴∠2=∠BEF=50°,故选:C.方法二 : 由题得∠2=∠3,且∠3=∠1+30°,又∵∠1=20°,∴∠2=50°.22 、【答案】 C;【解析】∵∠A=54°,∠B=48°,∴∠ACB=180°−54°−48°=78°,∵CD平分∠ACB交AB于点D,×78°=39°,∴∠DCB=12∵DE//BC,∴∠CDE=∠DCB=39°.23 、【答案】180;【解析】连接BD,由“8”字模型可知,∠A+∠E=∠EDB+∠ABD,∵∠C+∠CDE+∠CBA+∠EDB+∠ABD=180°,∴∠A+∠ABC+∠C+∠CDE+∠E=180°.故答案为:180.24 、【答案】65°;【解析】如图,∵△ABC的一角折叠,∴∠3=∠5,∠4=∠6,而∠3+∠5+∠1+∠2+∠4+∠6=360°,∴2∠3+2∠4+∠1+∠2=360°,∵∠1+∠2=130°,∴∠3+∠4=115°,∴∠A=180°−∠3−∠4=65°.故答案为∶65°.。
【能力培优】与三角形有关的角(含答案)

11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15° B.20° C.25° D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. 若AP平分∠BAC且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)专题二利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20° C.25° D.30°5.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.(1)求∠DCE的度数;(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)6.如图:(1)求证:∠BDC=∠A+∠B+∠C;(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角.参考答案:1.C解析:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠1=12∠ACE,∠2=12∠ABC.又∵∠D=∠1-∠2,∠A=∠ACE-∠ABC,∴∠D=12∠A=25°.故选C.2.解:(法1)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC ,∠BAP=12∠BAC,∠ABP=12∠ABC ,即∠BAP+∠ABP=45°,所以∠APB=180°-45°=135°.(法2)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°,因为BD平分∠ABC,AP平分∠BAC,∠DBC=12∠ABC,∠PAC=12∠BAC ,所以∠DBC+∠PAD=45°.所以∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C =45°+90°=135°.3.解:(1)∠A+∠D=∠B+∠C;(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,又∵AP、CP分别平分∠DAB和∠BCD,∴∠1=∠2,∠3=∠4,∴∠P-∠D=∠B-∠P,即2∠P=∠B+∠D,∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.4.B 解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于点O,则∠AOB=∠POC,∴∠P+12∠ACD=∠A+12∠ABD,即∠P=50°-12(∠ACD-∠ABD)=20°.故选B.5.解:(1)∵∠A=40°,∠B=72°,∴∠ACB=68°.∵CD平分∠ACB,6.(1)证明:延长BD交AC于点E,∵∠BEC是△ABE的外角,∴∠BEC=∠A+∠B.∵∠BDC是△CED的外角,∴∠BDC=∠C+∠DEC=∠C+∠A+∠B.(2)猜想:∠BDC+∠ACD+∠A+∠ABD=360°.祝福语祝你考试成功!。
与三角形有关的角练习题(含答案)

第十一章三角形11.2 与三角形有关的角1.关于三角形内角的叙述错误的是A.三角形三个内角的和是180°B.三角形两个内角的和一定大于60°C.三角形中至少有一个角不小于60°D.一个三角形中最大的角所对的边最长2.下列叙述正确的是A.钝角三角形的内角和大于锐角三角形的内角和B.三角形两个内角的和一定大于第三个内角C.三角形中至少有两个锐角D.三角形中至少有一个锐角3.在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是A.150°B.135°C.120°D.100°4.已知△ABC中,∠A=20°,∠B=∠C,那么△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.在不等边三角形中,最小的角可以是A.80°B.65°C.60°D.59°6.等腰三角形底角的外角比顶角的外角大30°,则这个三角形各内角度数是__________.7.等腰三角形一腰上的高与另一腰的夹角为50°,则这个等腰三角形的底角度数为__________.8.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=__________.9.若直角三角形的一个锐角为50°,则另一个锐角的度数是___________.10.求直角三角形两锐角平分线所夹的锐角的度数.11.一个零件的形状如图所示,按规定A∠、C∠应等于90︒,B∠应分别是21︒、32︒,检验工人量得∠=︒,就断定这个零件不合格,这是为什么呢?148BDC12.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是A.3 B.4 C.6 D.513.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC 边上的B′处,则∠ADB′等于A.25°B.30°C.35°D.40°14.一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形15.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC= ___________.16.如图,将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A=___________.17.如图,△ABC中,AD是高,AE是∠BAC的平分线,∠B=70°,∠DAE=18°,则∠C的度数是___________.18.如图,∠BCD为△ABC的外角,已知∠A=70°,∠B=35°,则∠BCD=___________.19.如图,AD是△ABC边BC上的高,BE平分∠△ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC 和∠BAC的度数.20.如图,△ABC中,∠A=40°,∠B=76°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,求∠CDF 的度数.21.如图,在△ABC中,D为AB边上一点,E为BC边上一点,∠BCD=∠BDC.(1)若∠BCD=70°,求∠ABC的度数;(2)求证:∠EAB+∠AEB=2∠BDC.22.如图,在ABC∠=∠,△中,AD是BC边上的高,E是AB上一点,CE交AD于点M,且DCM MAE 求证:AEM△是直角三角形.23.(2018•黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=A.75°B.80°C.85°D.90°24.(2018•宿迁)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是A.24°B.59°C.60°D.69°25.(2018•眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45°B.60°C.75°D.85°26.(2018•滨州)在△ABC中,若∠A=30°,∠B=50°,则∠C=__________.27.(2018•淄博)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.28.(2018•宜昌)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC 的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.1.【答案】B【解析】A正确,根据三角形内角和定理可知,三角形三个内角的和是180°;C正确,三角形中至少有一个角不小于60°,否则三角形内角之和将小于180°;D正确,一个三角形中最大的角所对的边最长,不符合题意;B错误,三角形两个内角的和可能小于60°,如三角形的三个内角可以依次为20°,20°,140°,故B错误,故选B.4.【答案】A【解析】因为三角形内角和为180°,根据题意可得:∠B=∠C=80°,所以△ABC是锐角三角形.故选A.5.【答案】D【解析】在不等边三角形中,最小的角要小于60°,否则三内角的和大于180°.故选D.6.【答案】80°,50°,50°【解析】如图所示,AB=AC,∠1=∠2+30°.∵AB=AC,∴∠B=∠ACB,∵∠1、∠2分别是△ABC的外角,∴∠1=∠B+∠BAC,∠2=∠B+∠ACB,∵∠1=∠2+30°,∴∠1–∠2=∠B+∠BAC–∠B–∠ACB=∠BAC–∠ACB=30°①,∵∠B=∠ACB,∴∠B+ ∠ACB+∠A=180°,∴2∠ACB+∠BAC=180°,∴∠BAC=180°–2∠ACB,代入①得,180°–2∠ACB–∠ACB= 30°,解得,∠ACB=50°,∴∠B=50°,∠BAC=180°–∠B–∠ACB=180°–50°–50°=80°,∴这个三角形各个内角的度数分别是80°,50°,50°.故答案为:80°,50°,50°.7.【答案】70°或20°【解析】如图①,∵AB=AC,∠ABD=50°,BD⊥AC,∴∠A=40°,∴∠ABC=∠C=(180°–40°)÷2=70°;如图②:∵AB=AC,∠ABD=50°,BD⊥AC,∴∠BAC=50°+90°=140°,∴∠ABC=∠C=(180°–140°)÷2=20°,故答案为:70°或20°.9.【答案】40°【解析】因为三角形内角和为180°,一个直角为90°,一个锐角为50°,所以另一个锐角的度数为180°–90°–50°=40°.故答案为:40°.10.【解析】如图,△ACB 为直角三角形,C 为直角,AD ,BE 分别是∠CAB 和∠ABC 的角平分线,AD ,BE 相交于点F , ∵∠ACB =90°,∴∠CAB +∠ABC =90°, ∵AD ,BE 分别是∠CAB 和∠ABC 的角平分线, ∴∠FAB +∠FBA =21∠CAB +21∠ABC =45°, ∴∠DFB =∠FAB +∠FBA =45°,即直角三角形两锐角平分线所夹的锐角为45°.11.【解析】如图,延长CD 交AB 于点E .因为CDB∠是BDE△的一个外角,∴CDB B BED∠=∠+∠.因为BED∠是AEC△的一个外角,所以BED C A∠=∠+∠.所以902132143148CDB A B C∠=∠+∠+∠=︒+︒+︒=︒≠︒.所以可以判定这个零件不合格.12.【答案】A【解析】如图,过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD,可得12×4×2+12×AC×2=7.解得AC=3.故选A.13.【答案】D【解析】∵在△ACB中,∠ACB=100°,∠A=20°,∴∠B=180°–100°–20°=60°,∵△CDB′由△CDB翻折而成,∴∠CB′D=∠B=60°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D–∠A=60°–20°=40°.故选D.15.【答案】120°【解析】∵∠ABC=42°,∠A=60°,∠ABC+∠A+∠ACB=180°.∴∠ACB=180°–42°–60°=78°.又∵∠ABC、∠ACB的平分线分别为BE、CD,∴∠FBC=12∠ABC=21°,∠FCB=12∠ACB=39°.又∵∠FBC+∠FCB+∠BFC=180°,∴∠BFC=180°–21°–39°=120°.故答案为:120°.18.【答案】105°【解析】∠BCD=∠A+∠B=70°+35°=105°.故答案为:105°.19.【解析】∵AD是△ABC的高,∴∠ADB=90°,又∵180∠+∠+∠=︒,∠BED=70°,DBE ADB BED∴18020DBE ADB BED∠=︒-∠-∠=︒.∵BE平分∠ABC,∴∠ABC=2∠DBE=40°.又∵∠BAC+∠ABC+∠C=180°,∠C=60°,∴∠BAC=180°–∠ABC–∠C=80°.20.【解析】∵∠A=40°,∠B=76°,∴∠ACB=180°–40°–76°=64°,∵CE平分∠ACB,∴∠ACE=∠BCE=32°,∴∠CED=∠A+∠ACE=72°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=72°.21.【解析】(1)∵∠BCD=70°,∴∠BCD=∠BDC=70°,∴∠ABC=180°–70°–70°=40°.(2)∵∠EAB+∠AEB=180°–∠ABC,∠BCD+∠BDC=180°–∠ABC,即2∠BCD=180°–∠ABC,∴∠EAB+∠AEB=2∠BDC.22.【解析】∵AD是BC边上的高,∴90∠+∠=︒.DMC DCM又∵DMC AMEAME MAE∠+∠=︒,∠=∠,∴90∠=∠,DCM MAE即AEM△是直角三角形.23.【答案】A【解析】∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°-25°=5°,∵△ABC中,∠C=180°-∠ABC-∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.24.【答案】B【解析】∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=59°,∵DE∥BC,∴∠D=∠DBC=59°,故选B.25.【答案】C【解析】如图,∵∠ACD=90°,∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选C.26.【答案】100°【解析】∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°-30°-50°=100°.故答案为:100°.27.【解析】如图,过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.28.【解析】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=65°.(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.。
(word完整版)八年级上册数学11.2与三角形有关的角练习题(含答案),推荐文档

11.2与三角形有关的角练习题姓名: _______________ 级:__________________ 号: _________________一、选择题1、在二一中,一-…,则匚上的度数为()A.汀B. C •汕 D.2、如图,已知直线AB// CD /C=115,/ A=25,则/ E=()A. 70 °B. 80 °C. 90 °D. 1003、如图8, AB=BC=CDJ/ A=15 ,贝U/ECD=( )A.30 °B.45°C.60°D.754、如图,在△ ABC中, AC=DODB / ACI=100°,贝U / B等于( )A. 50°B. 40°C. 25°D. 20°5、如图,△ ABC中,一1 「」,点D E分别在AB AC上,则一[—二】的大小为()C、-打如图,已知匸丘丿匸二,Z 仁13C o ,Z 2=30^,则Z C=如下图所示,已知:/ AEC 的度数为110°,则/ A +Z B +Z C +Z D 的度数为(已知等腰三角形的一个角为75°,则其顶角为(9、如图,已知-上…匚,若一二’,一三一尤’,已知」打与石二相交于点匸,I '「J ,如果—三二,—二二Y ,则二的大小为6、 7、 A.110°B . 130°C . 220°D . 180°A . 30°B . 75°C . 105°D . 30° 或 75A. 20°B . 35°C . 45°D . 55°10、如图,AD 是Z EAC 的平分线,AD// BC Z B=30° ,则Z C 为(A. 30°B. 60°C. 80°D. 120°第11题 11、如图, 已知△ ABC 的两条高 BE CF 相交于点O, -1—〔「, A. 95o B . 130o C . 140o D . 150o第12题则一I--的度数为( 12、如图,A. 60"70° 80B 120'BBB13、如图,在△ ABC 中,/ C = 90o ,/ B = 40o , AD 是角平分线,则/ ADC 等于第13题 14、如图,直线a / b,直角三角形如图放置,/ DCB=90 .若/ 1+Z B=70° ,则/2的度数为( )17、适合条件一 -一「一「的三角形ABC >( A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形A. 25oB. 50oC . 65oD . 70o A.20B . 40°C . 30°D . 2515、如图,在△ ABC 中,/ B = 46则/ ADE 的大小是( / C = 54° ,AD 平分/ BAC 交 BC 于 D, DE// AB 交 AC 于 E , A.45B.54C.40D.50第15题 第16题 第18题16、如图7-7 , C 在AB 的延长线上,CE 丄AF 于E ,交FB 于D, 的度数为( ). 若/ F=40°,Z C=20O ,则/ FBA A. 50° B. 60° C. 70°D. 80°第14题o18、如图1,若/ 1=110°,/ 2=135°,则/ 3 等于A. 55°B. 65°C. 75°D. 85°19、如图,在△ ABC中,/ A=60°,/ ABC=50 , / B、/ C的平分线相交于F,过点F作DE// BC, 交AB于D,交AC于E,那么下列结论正确的是()20、如图,△ ABC 中,/ BA(=60°,Z ABC / ACB 的平分线交于E , D 是AE 延长线上一点,且/ BD(=120°.下列结论:①/BE(=120°;②DB=DE ③/ DB 匡/ DCE 其中正确结论的个数为( )A. 0、填空题③/ BDF=130 ; A.①②④/CFI40 ° ; B •③④C.①③D.①②③第19题21、如图,/1=2,/ 2=25°,/ A=35°C第21题第22题第23题/ C= 30° , 则/ ADE的度数是22、如下图, / A= 27° , / CBE= 96° ,第24题第25题25、如图,已知DABC边BC延长线上一点,DF丄AB于F交AC于E,/ A=35°,Z D=50°,则/ ACM 度数为_________________ .26、如图,已知△ ABC中,AD是BC边上的高,AE是/ BAC勺平分线,若/ B=42°,Z 0=70°, 则/DAW _________ °.27、厶ABC中,/ A:Z B :Z C=1 : 2 : 3,则厶ABC是 ______ 三角形.28、如图,/ ABC中,/ A = 40 °,/ B = 72 °,CE平分/ ACB CDLAB于D, DF丄CE 则/CDF = ________________ 度。
人教版八年级上册:11.2 与三角形有关的角 同步练习 (word版,含解析)

11.2 与三角形有关的角同步练习一.选择题1.已知∠A、∠B、∠C是△ABC的三个内角,下列条件不能确定△ABC是直角三角形的是()A.∠A=40°,∠B=50°B.∠A=90°C.∠A+∠B=∠C D.∠A+∠B=2∠C2.若△ABC的三个内角的比为3:5:2,则△ABC是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形3.如图,在△ABC中,∠A=50°,则∠1+∠2的度数是()A.180°B.230°C.280°D.无法确定4.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°,则∠BAC的度数是()A.89°B.79°C.69°D.90°5.如图,在△ABC中,∠B=60°,∠C=50°,如果AD平分∠BAC,那么∠ADB的度数是()A.35°B.70°C.85°D.95°6.如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°7.如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∠AOB=125°,则∠CAD的度数为()A.20°B.30°C.45°D.50°8.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠E=90°,则∠BDC 的度数为()A.120°B.125°C.130°D.135°二.填空题9.在△ABC中,∠A=35°,∠B=45°,则∠C为.10.如图,在Rt△ABC中,∠ACB=90°,∠A=48°,点D是AB延长线上的一点,则∠CBD的度数是°.11.如图,AD平分∠BAC,其中∠B=35°,∠ADC=82°,则∠C=度.12.如图,AD平分∠EAC,∠B=70°,∠C=60°,求∠CAD=.13.一副三角板如图摆放,其中一块三角板的直角边EF落在另一块三角板的斜边AC上,边BC与DF交于点O,则∠BOD的度数是.14.如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2021为.三.解答题15.如图,在△ABC中,∠B=80°,∠C=30°,AD⊥BC于点D,AE平分∠BAC,求∠EAD的度数.16.如图,F A⊥EC,垂足为E,∠F=40°,∠C=20°,求∠FBC的度数.17.已知:如图,在△ABC中,∠ACB=90°,CE⊥AB,F为边BC上一点,连接AF交CE于点G,∠CGF=∠CFG.求证:AF平分∠BAC.18.互动学生课堂上,某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC,点D是三角形ABC内一点,连接BD,CD,试探究∠BDC与∠A、∠1、∠2之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵∠BDC+∠DBC+∠BCD=180°,()∴∠BDC=180°﹣∠DBC﹣∠BCD,(等式性质)∵∠A+∠1++∠DBC+∠BCD=180°,∴∠A+∠1+∠2=180°﹣﹣∠BCD,∴∠BDC=∠A+∠1+∠2.()(2)请你按照小丽的思路完成探究过程.19.(1)已知:如图①的图形我们把它称为“8字形”,试说明:∠A+∠B=∠C+∠D.(2)如图②,AP,CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是;(4)如图(4),直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是.20.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.参考答案一.选择题1.解:选项A:∵∠A=40°,∠B=50°,∴∠C=180°﹣∠A﹣∠B=90°.∴△ABC是直角三角形.选项B:∵∠A=90°,∴△ABC是直角三角形.选项C:∵∠A+B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°.∴∠C=90°.∴△ABC是直角三角形.选项D:∵∠A+∠B=2∠C,∠A+∠B+∠C=180°,∴3∠C=180°.∴∠C=60°.∴∠A+∠B=120°.∴无法确定△ABC是直角三角形.故选:D.2.解:∵△ABC的三个内角的比为3:5:2可设此三角形的三个内角分别为2x,3x,5x,∴2x+3x+5x=180°,解得x=18°,∴5x=5×18°=90°.∴此三角形是直角三角形.故选:C.3.解:∵∠1=∠A+∠ACB,∠2=∠A+∠ABC,∴∠1+∠2=∠A+∠ACB+∠A+∠ABC=(∠A+∠ACB+∠ABC)+∠A.又∵∠A+∠ABC+∠ACB=180°,∠A=50°,∴∠1+∠2=180°+50°=230°.故选:B.4.解:∵∠B=44°,∠C=57°,∴∠BAC=180°﹣∠B﹣∠C=79°.故选:B.5.解:∵在△ABC中,∠B=60°,∠C=50°,∴∠BAC=180°﹣60°﹣50°=70°.∵AD平分∠BAC,∴∠BAD=∠BAC=35°.∵在△ABD中,∠BDA=180°﹣∠B﹣∠BAD.∴∠BDA=180°﹣60°﹣35°=85°故选:C.6.解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵CD和BE是△ABC的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°,故选:C.7.解:∵∠AOB=125°,∴∠OAB+∠OBA=55°,∵AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∴∠BAC+∠ABC=2(∠OAB+∠OBA)=110°,∴∠C=70°,∵AD是BC边上的高,∴∠ADC=90°,∴∠CAD=20°,即∠CAD的度数是20°.故选:A.8.解:在△BEC中,∵∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ABC、∠ACB的三等分线交于点E、D,∴∠DBC=∠EBC,∠DCB=∠ECB,∴∠DBC+∠DCB=×90°=45°,∴∠BDC=180°﹣(∠DBC+∠DCB)=135°,故选:D.二.填空题9.解:∵∠A+∠B+∠C=180°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣45°=100°.故答案为:100°.10.解:∵∠ACB=90°,∠A=48°,∴∠CBD=∠ACB+∠A=90°+48°=138°,故答案为138.11.解:∵∠ADC是△ABD的一个外角,∴∠BAD=∠ADC﹣∠B=82°﹣35°=47°,∵AD平分∠BAC,∴∠BAC=2∠BAD=94°,∴∠C=180°﹣∠B﹣∠BAC=51°,故答案为:51.12.解:∵∠EAC=∠B+∠C,∠B=70°,∠C=60°,∴∠EAC=70°+60°=130°,∵AD是∠EAC的平分线,∴∠CAD=∠EAC=65°,故答案是:65°.13.解:△COF中,∵∠CFO=45°,∠FCO=30°,∴∠COF=180°﹣∠CFO﹣∠FCO=180°﹣45°﹣30°=105°,∵∠COF=∠BOD,∴∠BOD=105°,故答案为:105°.14.解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,同理理可得∠A2=∠A1,∠A3=∠A2,……则∠A2021=∠A1=.故答案为:.三.解答题15.解:∵∠B+∠BAC+∠C=180°,∠B=80°,∠C=30°,∴∠BAC=180°﹣30°﹣80°=70°;∵AD⊥BC,∴∠ADC=90°,∵∠DAC=180°﹣∠ADC﹣∠C,∠C=30°,∴∠DAC=180°﹣90°﹣30°=60°,∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC,∴∠BAE=∠CAE=35°,∵∠EAD=∠DAC﹣∠EAC,∴∠EAD=25°.16.解:在△AEC中,F A⊥EC,∴∠AEC=90°,∴∠A=90°﹣∠C=70°.∴∠FBC=∠A+∠F=70°+40°=110°.17.解:∵∠ACB=90°,∠CAF+∠ACB+∠CFG=180°,∴∠CAF+∠CFG=90°,∵CE⊥AB,∴∠AEC=90°,∵∠AEC+∠AGE+∠F AE=180°,∴∠AGE+∠F AE=90°,∵∠AGE=∠CGF=∠CFG,∴∠CAF=∠F AE,∴AF平分∠BAC.18.解:(1)∵∠BDC+∠DBC+∠BCD=180°,(三角形内角和定理)∴∠BDC=180°﹣∠DBC﹣∠BCD,(等式性质)∵∠A+∠1+∠2+∠DBC+∠BCD=180°,∴∠A+∠1+∠2=180°﹣∠DBC﹣∠BCD,∴∠BDC=∠A+∠1+∠2 (等量代换),故答案为:三角形内角和定理;∠2;∠DBC;等量代换;(2)如图,延长BD交AC于E,由三角形的外角性质可知,∠BEC=∠A+∠1,∠BDC=∠BEC+∠2,∴∠BDC=∠A+∠1+∠2.19.解:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)∵AP,CP分别平分∠BAD,∠BCD,∴∠BAP=∠P AD,∠BCP=∠PCD,由(1)的结论得,∠P+∠BCP=∠ABC+∠BAP,①,∠P+∠P AD=∠ADC+∠PCD②,①+②得,2∠P+∠BCP+∠P AD=∠BAP+∠PCD+∠ABC+∠ADC,∴2∠P=∠ABC+∠ADC,∵∠ABC=36°,∠ADC=16°,∴∠P=26°.(3)∵直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠P AB=∠P AD,∠PCB=∠PCE,∴2∠P AB+∠B=180°﹣2∠PCB+∠D,∴180°﹣2(∠P AB+∠PCB)+∠D=∠B,∵∠P+∠P AD=∠PCB+∠AOC=∠PCB+∠B+2∠P AD,∴∠P=∠P AD+∠B+∠PCB=∠P AB+∠B+∠PCB,∴∠P AB+∠PCB=∠P﹣∠B,∴180°﹣2(∠P﹣∠B)+∠D=∠B,即∠P=90°+(∠B+∠D).故答案为:∠P=90°+(∠B+∠D).(4)∵直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∴∠F AP=∠P AO,∠PCE=∠PCB,在四边形APCB中,(180°﹣∠F AP)+∠P+∠PCB+∠B=360°①,在四边形APCD中,∠P AD+∠P+(180°﹣∠PCE)+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,∴∠P=180°﹣(∠B+∠D).故答案为:∠P=180°﹣(∠B+∠D).20.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.2与三角形有关的角经典习题
(1) _________________________________________________ 在△4BC 中,若乙4 = 78 36', ZB = 57 24z ,贝ij ZC = ____________________________________ ・
⑵ 在AABC 中,BC 边不动,点A 竖直向上运动,越来越小,ZB, ZC 越来越大.若ZA 减 少&度,ZB 增加0度,ZC 增加了度,则© 0, 丫三者之间的等量关系是.
(
A.10 B 20 C.30 D40 例题1・已知△ /\BC 中,
(1) ZA=20° —040。
,则ZB 二 (2) Z2120。
, 2ZB+ZC=80°,则ZB 二
(3) ZB 二ZA+40。
, ZC=ZB-50°,则ZB 二
(4) ZA:ZB:ZC=1:3:5,则ZB 二
例题2如图所示,则△A3C 的形状是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰三角形
练习:下列选项中,能确定三角形是直角三角形的是()
A. ZA+ZB 二90°
B. ZA=ZB=0. 5ZC
C. ZA~ZB=ZC
D. ZA-ZB=90°
例题3如图,一个顶角为40的等腰三角形纸片,剪去顶角后,得到一个四边 例题4.如图,已知△ ABC 中,ZA 二40。
, ZABC 与ZACB 的平分线交于点0,求Z0的度数.
(3妆口图,在Rt/\ADB 中,Z£> = 90 , C 为AD ±一点,则兀可能是
(4)如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 上的高, 且
CD 、 若ZA 二50。
,则ZBPC 的度数是(
BE 交于一点P, (A) 150° (B) 130° (C) 120° (D) 100°
(5)四边形ABCD 中,如果ZA+ZC+ZD=280° ,则ZB 的度数是 (A) 80° (B) 90° (C) 170° (D) 20°
(6)若一个多边形的内角和等于
第⑶题 1080°,则这个多边形的边数是 (A) 9 (B) 8 (C) 7
(D) 6
形,则 Zl + Z2 =
练习:如图,AABC,ZA=40°,则
(1)Z1+Z2+ZB+ZC=. (2)Z3+Z4=.
6x Q. D A
变式:已知△ ABC,
① 如图1,若P 点是利Z4C3的角平分线的交点,请说明ZP = 90 +丄乙4; 2
② 如图2 ,若P 点是ZABC 和外角Z ACE 的角平分线的交点,你能说明ZP 二ZA 吗? ③ 如图3,若P 点是外角ZCmnZBCE 的角平分线的交点,你能说明ZP = 90 -丄厶吗? 2
练习:(1)直角三角形两锐角的角平分线所成的角为 ______ 度;
(2) 如图,已知AABC 屮,ZA=50° , ZABC 与ZACB 的平分线交于点0,求ZD0E 的度数;
(3) 如上图,已知ZSABC 中,ZA=80° , ZABC 与ZACB 的平分线交于点0,求ZB0D 的度数
练习:(1)如上左图中,Zl=40° , Z2=45° , ZC=50°,则ZB 二
⑵如上右图屮,ZA 二40。
, ZB=45° , ZC=50°,则ZD 二
例题7 (1)如图1,五角形的顶点分别为A 、B 、C 、D 、E.求ZA+ZB+ZC+ZD+ZE 的度数;
例题5 (1)—个三角形的最大的外角是钝角,则这个三角形是 _____ 三角形;
(2)—个三角形的不共顶点的三个外角中,最多可以有 ____ 个锐角;最多可以有 ______ 个直角;最多有 _____ 个钝角;
例题 6(1)如图 1, ZA4-ZB + ZC + ZD + ZE = ________ ・
(2) .女II 图 2, Zl + Z2 + Z3 + Z4 + Z5 + Z6= _____
(3) .如图 3,Z1 + Z24-Z3 + Z4 = _____ ・
D.熟悉几个基本图形
B
(2) 如图 2,求ZA+ZB+ZC+ZD+ZE+ZF 的度数.
(3) 如图 3、4 中,求Z1+Z2+Z3+Z4+Z5+Z6 的度数.
第1题.三角形的一个外角小于与它相邻的内角,这个三角形一定是( )
A.直角三角形
B.锐角三角形 C •钝角三角形 D.等腰三角形
第2题.如图,Zl, Z2, Z3的大小关系为( )
A. Z2 > Zl > Z3 B . Zl > Z3 > Z2 c. Z3>Z2>Z1 D . Z1>Z2>Z3
第3题.如图,已知AB//CD f 则()
A. Z1 = Z2 + Z3 B . Z1 = 2Z2 + Z3C . Z1 = 2Z2-Z3 D . Z1 = 18O -Z2-Z3
第 4 题.在△ABC 屮,ZA = 8O, ZB = 60 ,则ZC = ------------ .
第6题•如图,P 为厶A3C 屮B C 边的延长线上一点,ZA = 5O , ZB = 7 0,则 ZACP= 第7题.如图,将一等边三角形剪去一个角后,Z1 + Z2等于( A. 120 B. 240 c. 300 D. 360
第8题.如右图,已知ZAB£ = 142 , ZC = 72 ,则ZA =
例题8已知,如图5,在△ABC 中,0是高AD 和BE 的交点,观察图形, 试猜
想ZC 和ZDOE 之间具有怎样的数量关系,并论证你的猜想.
例题9 (2006吉林课改)把一副三角板按如图方式放置,则两条斜边所形成的钝角 ____________
)
ZABC = 图
B
C
第10题.如图12,三角形纸片4BC 中,将纸片的一角折叠,使点C 落在AABC 内, (1) ___________________________________________________ 若ZA=65° , ZB=15° , Zl = 20° ,则Z2 的度数为 _________________________________________ ・
(2) Z1, Z2, ZC 有何关系?
课后练习 1. ____________________________________________________ 在△ABC 屮,ZA=55° ,高 BE 、CF 交于点 O,则 ZBOC= _______________________________ .
2. 如图所示,已知点D 是AB±的一点,点E 是AC 上的一点,BE, CD 相交于点F,
,ZACD=40°
, ZABE=28° ,则 ZCFE 的度数为
5. 上午9时,一艘船从A 处出发以每小时20海里的速度向正北航行,11时到
达3处,若在A 处测得灯塔C 在北偏西34。
, fiZACB=-ZBAC,则在3处 2
测得灯塔C 应为( ).
A.北偏西68°
B.南偏西85°
C.北偏西85°
D.南偏西68。
6. 如图,AC.LBC, CD 丄AB, DE 丄BC,分别交 BC, AB, BC 于点 C, D, E,
则下列说法中不正确的是( ). A. AC 是△ABC 和ZVIBE 的高 B. DE, DC 都是 △BCD 的高
C. DE 是ADBE 和△ABE 的高 D ・AD, CD 都是ZVICD 的高
7. 如图所示,在绿茵场上,足球队员带球进攻时,总是尽力向球门冲进,你能说明这是为什
ZA=50° 3.如图, AM 是ZVIBC 的屮线,△ABC 的面积为4cm 2,则△ABM 的面积为(
).
A. 8cm 2 4cm 2 C. 2cm 2 D.以上答案都不对 4.现有两根木棒,
它们的长分别为40cm 和50cm,若要钉成一个三角形木架, 则在下列四根
木棒屮应选取( ). A- 10cm 的木棒 B. 50cm 的木棒C- 100cm 的木棒 D- 110cm 的木棒 A
(图⑵
B. C
么吗?
& 已知在斜AABC中,ZA=45°,高BD和CE所在直线交于II,求ZBHC的度数.
9.(综合题)如图,在Z\ABC中,ZB=66° , ZC=54° , AD是ZBAC的平分线,DE平分ZADC交AC于E,则ZBDE二 _________ ・。