第15章《分式 》 说课标 说教材

合集下载

人教版八年级数学上册第十五章分式)+15.3.1(课时)优秀教学案例

人教版八年级数学上册第十五章分式)+15.3.1(课时)优秀教学案例
二、教学目标
(一)知识与技能
本节课旨在让学生掌握分式的基本概念、性质和运算方法。通过教学,学生应能理解分式的定义,熟练运用分式的性质进行化简和运算。具体包括:
1.理解分式的定义,认识分式的组成要素,理解分式与整数、实数之间的关系。
2.掌握分式的基本性质,如分式的分子、分母都乘(除以)同一个非零整式,分式的值不变。
人教版八年级数学上册第十五ቤተ መጻሕፍቲ ባይዱ分式)+15.3.1(课时)优秀教学案例
一、案例背景
本案例背景以人教版八年级数学上册第十五章分式+15.3.1(课时)为基础,旨在通过实际教学情境,帮助学生掌握分式的基本概念、性质和运算方法。在教学过程中,我以人性化的语言和贴切的生活实例,引导学生理解分式的内涵,提高他们在实际问题中运用分式解决问题的能力。
3.学会分式的化简,能将复杂分式通过基本性质进行化简。
4.掌握分式的运算方法,包括加减乘除,能解决实际问题中的分式运算。
(二)过程与方法
本节课通过启发式教学,引导学生主动探究、发现和总结分式的性质和运算规律。具体包括:
1.培养学生独立思考、合作交流的能力,使学生在探讨分式性质的过程中,发展逻辑思维和归纳总结能力。
2.教师对学生的学习情况进行评价,关注学生的知识掌握程度、思考问题的方式和方法。
3.鼓励学生相互评价,如在小组合作环节,让学生评价同伴在解决问题过程中的表现。
4.教师及时给予反馈,对学生的优点进行表扬,对需要改进的地方提出建设性意见。
四、教学内容与过程
(一)导入新课
本节课以一个生活实例导入新课,如“小明去超市购买苹果,每千克3元,他买了2.5千克的苹果,共花费了多少钱?”通过这个问题,引导学生思考如何用分式表示苹果的价格和数量的关系。接着,让学生尝试解答这个问题,从而引出分式的定义和基本性质。

八上第十五章《分式》教材分析用

八上第十五章《分式》教材分析用

人教版八年级上册第十五章《分式》教材分析与教学建议广州市第七中学尹双玲分式蕴含着双重身份:既是除法的表达式又表示除法的结果。

从这个观点出发,《分式》这章是继整式乘除之后对代数式进一步的研究。

数学里的数与式,其生命力在于运算,只有与运算联系起来,才能深化对数与式的认识,《分式》的基础是分数、整式的四则运算、正整数指数幂的运算、多项式的因式分解、一元一次方程等知识。

同时它是今后进一步学习反比例函数、一元二次方程的基础,分式变形也是在以后学习物理、化学中经常遇到的问题。

一、课标要求(1)以描述实际问题中的数量关系为背景,抽象出分式的概念,了解分式的概念,认识分式是一类应用广泛的重要代数式.(2)类比分数的基本性质,了解分式的基本性质,能利用分式的基本性质进行约分和通分,了解最简分式的概念.(3)类比分数的四则运算法则,探究分式的四则运算法则,能进行简单的分式加、减、乘、除运算.(4)结合分式的运算,将指数的范围从正整数扩大到全体整数,了解整数指数幂的运算性质;能用科学记数法表示小于1的正数.(5)掌握可化为一元一次方程的分式方程的解法,体会解分式方程过程中的化归思想.(6)结合利用分式方程解决实际问题的实例,进一步体会方程是刻画实际问题数量关系的一种重要数学模型.二、重点、难点重点:分式基本性质、分式运算、分式方程.难点:——它是整式运算、因式分解和分式运算的综合运用;2.分式方程的增根问题;——与列整式方程相比,尽管涉及的基本数量关系相同,但是由于含有未知数的式子可以是整式或分式,所以更具灵活性,学生会感到困难.关键:通过分式与分数类比,从具体到抽象、从特殊到一般地认识分式;教学中仔细分析数量关系,用分式来表示未知量。

三、教材分析(一)本章知识结构图(二)本章的课时安排本章共安排了三个小节以及两个选学内容,教学时间约需15课时,具体分配如下(仅供参考):15.1 分式3课时15.2 分式的运算6课时15.3 分式方程3课时数学活动 1课时小结 2课时(三)本章内容主要变化1.更加突出类比的思考方法与学习方法(引言、部分正文、小结)如:章引言:“像9030v +和6030v-这样分母中含有字母的式子都是分式.本章中,我们将类比分数学习分式,解一些分式方程,并利用分式的知识解决一些实际问题。

2024年人教版八年级上册教学设计第十五章15.1 分式

2024年人教版八年级上册教学设计第十五章15.1  分式

15.1.1从分数到分式课时目标1.以描述实际问题中的数量关系为背景,抽象出分式的概念,在了解分式概念的基础上发展学生的抽象能力.2.借助从特殊到一般的的研究思路,类比分数,讨论要使分式有意义时分母应满足的条件,发展学生的推理能力.3.通过经历类比分数学习分式的过程,培养学生与人合作的意识,进一步体会类比转化、合情推理、抽象概括等学习方式,发展学生的抽象能力和推理意识.学习重点理解分式的概念,分式有意义的条件.学习难点能熟练地求出分式有意义的条件及分式的值为零的条件.课时活动设计回顾引入根据问题,填空:(1)长方形的面积为10 cm2,长为7 cm,宽为107cm;长方形的面积为S,长为a,宽为Sa.(2)把体积为200 cm3的水倒入底面积为33 cm2的圆柱形容器中,水面高度为20033cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为VS. 设计意图:以学生学过的分数引入分式,有利于体现知识的必然联系和循序渐进的原则;通过类比让学生解决实际问题,为新知的构建奠定基础.探究新知探究1 分式的概念问题1:请同学们看一下这四个式子,它们有什么相同点和不同点?107,S a ,20033,V S.学生先思考,再小组交流,教师请两个学生分别说出相同点和不同点. 解:相同点:这些式子有同样的形式,都是AB (即A ÷B )的形式. 不同点:107,20033分子和分母为整数,S a ,VS 分子和分母为代数式. 追问:S a ,V S 和9030+v ,6030−v 有什么相同点和不同点? 学生小组交流、讨论得出结论.解:相同点为这些式子有同样的形式,都是AB (即A ÷B )的形式,且分母都含有字母.不同点为9030+v ,6030−v 分子不含字母,S a ,VS 分子含有字母.教师说明这四个式子均为分式,并引导学生类比分数得到分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式.分式AB 中,A 叫做分子,B 叫做分母.问题2:下列各式中,哪些是整式?哪些是分式? 5x -7,3x 2-1,b -32a+1,m(n+p)7,-5,x 2-xy+y 22x -1,27,45b+c ,a π,y x ,a 2+b 2a -b.解:整式:5x -7,3x 2-1,-5; 分式:b -32a+1,m(n+p)7,x 2-xy+y 22x -1,27,45b+c ,a π,y x ,a 2+b 2a -b.设计意图:通过分析问题加深学生对分式的概念的理解,从而揭示分式的概念的本质.让学生在众多的代数式中区分出整式与分式,意在加深学生对分式的概念的本质的理解,进一步巩固分式的概念.探究新知探究2 分式有意义和值为0的条件问题1:我们知道,要使分数有意义,分数中的分母不能为0,那么要使分式有意义,分式中的分母应满足什么条件?学生先思考,再小组交流,类比分数有意义的条件得到分式有意义的条件. 结论:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式AB 才有意义.问题2:计算:03,05,07. 解:0 0 0追问:通过上述计算,你发现了什么? 解:当分子为0,分母不为0时,分数的值为0. 问题3:计算:0x 2+1,0x+1(x ≠-1),0a (a ≠0). 解:0 0 0追问:通过上述计算,你发现了什么? 解:当分子为0,分母不为0时,分式的值为0. 结论:分子为0,分母不为0,分式值为0.设计意图:掌握使分式有意义和值为0的条件,有利于学生更好地了解分式的概念.典例精讲例 下列分式中的字母满足什么条件时,分式有意义? (1)23x ; (2)1x -1; (3)15−3b ; (4)x+yx -y . 解:(1)x ≠0. (2)x ≠1. (3)b ≠53. (4)x ≠y.设计意图:让学生通过类比分数有意义的条件是分母不能为0,得到分式有意义的条件,自己发现问题、解决问题并找到关键所在,既能激发学生的求知欲望,又能让学生有效地认识新知,消化新知.巩固训练1.当x 为何值时,下列分式的值为0? (1)2x2x -6;(2)x 2-16x -4.解:(1)x =0. (2)x =-4.2.当x 为何值时下列分式无意义? (1)x -5x+5;(2)x -3(x+3)(2x -2). 解:(1)x =-5. (2)x =-3或1.设计意图:通过巩固训练,加深学生对分式有意义的条件的理解,并能正确地求出分式有意义的条件;同时让学生明白分式的值为0、有意义、无意义时必须同时满足的条件,区别“或”与“且”的用法.另外,设计“分式有意义”的变式题,意在让学生在题目具有挑战性的情况下,通过小组研究、讨论得出答案,培养学生小组合作、探究的意识以及应用所学知识解决问题的能力,在获得正确结果的情况下,增强学生学习数学知识的信心.课堂小结1.分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.分式AB 中,A 叫做分子,B 叫做分母.2.分母不为0,分式有意义;分母为0,分式无意义.3.分子为0,分母不为0,分式值为0.4.谈谈今天的收获?设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第128,129页练习第1,2,3题.2.七彩作业.15.1.1从分数到分式一、分式的定义.二、分式有意义的条件:三、例题讲解.四、课堂评价.教学反思15.1.2分式的基本性质第1课时分式的基本性质与约分课时目标1.通过类比分数的基本性质归纳得出分式的基本性质,体验类比转化的思想方法,发展学生的推理能力.2.通过类比分数的约分得出分式的约分,从中体会“数式通性”和类比的思想方法,发展学生的抽象能力.3.经历运用分式的基本性质进行约分的过程,体会运算的原理以及最简分式的内涵,培养学生的运算意识,发展学生的运算能力.学习重点理解并掌握分式的基本性质.学习难点能运用分式的基本性质进行分式的约分. 课时活动设计情境引入有位老爷爷把一块地分给三个儿子,老大分到了这块地的13,老二分到了这块地的26,老三分到了这块地的412.老大、老二觉得自己很吃亏,于是他们就争吵起来.刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵.你知道阿凡提给他们讲的是什么吗?13,26,412这三个数相等吗?设计意图:创设故事情境导入新课,激发了学生学习本课的好奇心,同时运用分数的基本性质进行分数变形,复习分数的基本性质,为类比学习分式的基本性质作铺垫.探究新知探究1 分式的基本性质师生活动:以提问的方式回顾分数的基本性质,教师黑板上板书. 由分数的基本性质可知,如果数c ≠0,那么23=2c 3c ,4c 5c =45.一般地,对于任意一个分数ab ,有a b =a·c b·c ,a b =a÷cb÷c (c ≠0),其中a ,b ,c 是数. 问题1:类比分数的基本性质,你能猜想分式有什么性质吗? 学生独立思考,小组讨论,教师引导学生进行归纳总结:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变. 用式子表示为A B =A·C B·C ,A B =A÷C B÷C(C ≠0),其中A ,B ,C 是整式.探究2 分式的约分与最简分式问题2:联想分数的约分,你能想出如何对分式进行约分吗? 师生活动:教师在黑板上板书:4c 5c =45,让学生观察等式两边的特点.教师引导学生归纳出约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.教师在黑板上板书:4c 5bc =45b ,让学生观察这次约分有什么不同?教师引导学生得出结论:这次约分后是分式的形式,且分子与分母没有公因式.教师归纳出最简分式的概念:分子与分母没有公因式的分式,叫做最简分式. 设计意图:给学生独立思考、自主探究的机会,并在研究思路上加以引导,同时渗透类比的思想方法.这样做一方面可以提高学生对分式基本性质的认识,另一方面可通过师生归纳,进一步加深学生对分式基本性质的理解.典例精讲 例 约分:(1)-25a 2bc 315ab 2c ; (2)x 2-9x 2+6x+9; (3)6x 2-12xy+6y 23x -3y.解:(1)原式=-25a 2bc 3÷(5abc)15ab 2c÷(5abc)=-5ac 23b.(2)原式=(x+3)(x -3)(x+3)2=x -3x+3.(3)原式=6(x -y)23(x -y)=2x -2y.设计意图:通过例题,进一步巩固分式的基本性质的应用条件、基本方法和需要注意的问题,使学生明确:1.找出分子和分母的公因式是约分的第一步,同时公因式应找全,约分要彻底;2.分子与分母没有公因式的分式是最简分式,使学生加深对最简分式的理解.巩固训练1.下列各式中哪一个是最简分式( D ) A.x 2-y 2x 2+y 2 B.a -bb -a C.x 2-1x+1 D.a 2+b 2a+b2.填空: (1)x -yx+y =(x 2-2xy+y 2)x 2-y 2;(2)c -b a =(c 2-bc)ac (c ≠0); (3)x 3xy =( x 2 )y,3x 2+3xy6x 2=x+y( 2x );(4)1ab =( a )a 2b,2a -b a 2=( 2ab -b 2 )a 2b(b ≠0).3.约分:(1)a 2bab 2; (2)x 2-16x 2+8x+16; (3)5x 2-10xy+5y 2x -y.解:(1)原式=a 2b÷(ab)ab 2÷(ab)=ab . (2)原式=(x+4)(x -4)(x+4)2=x -4x+4.(3)原式=5(x -y)2x -y=5x -5y.设计意图:通过巩固训练,及时巩固本节课所学知识,进一步加深学生对分式基本性质的理解.课堂小结1.本节课探究了分式的哪些问题?2.分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变. 3.把一个分式的分子与分母的公因式约去,叫做分式的约分. 4.分子与分母没有公因式的分式,叫做最简分式.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第132页练习第1题,第133页习题15.1第3,5,6题.2.七彩作业.第1课时分式的基本性质与约分一、分式的基本性质.二、分式的变号法则.三、分式的约分→最简分式.四、例题讲解.五、课堂评价.教学反思第2课时分式的通分课时目标1.通过类比分数的通分得出分式的通分,从中体会“数式通性”和类比的思想方法,发展学生的抽象能力.2.经历用观察、类比、联想的方法探索分式通分方法的过程,体会分式通分运算的原理,培养学生的运算意识.3.理解最简公分母的内涵,能准确确定分式的最简公分母,熟练进行分式的通分.学习重点能运用分式的基本性质进行分式的通分.学习难点分式通分时最简公分母的确定.课时活动设计回顾引入问题:1.把分数78和512通分:78=2124,512=1024.2.利用分式的基本性质,把12ab 和2−b3a2化成分母都是6a2b的分式.解:12ab =1·(3a)2ab·(3a)=(3a)6a2b,2−b3a2=(2-b)·(2b)3a2·(2b)=(4b-2b2)6a2b.设计意图:让学生回忆分数的通分和分式的基本性质,并利用它解决问题,唤醒学生的知识储备,为分式通分的概念的自然引入作好铺垫.同时教学中要贯彻以学生为本的指导思想,通过具体问题,引导学生采用类比推理、合作探究等方法来探究分式通分的概念.探究新知问题:联想分数的通分,由此你能想出如何对分式进行通分吗?师生活动:通过教学活动1中具体的例子,教师引导学生回忆前面学过的分数的通分,再利用类比的方法得出分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.为通分,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.在教学过程中,教师要引导学生通过观察、思考、类比等方法来总结归纳确定最简公分母的一般步骤:(1)找系数:如果各分母的系数都是整数,那么取它们的最小公倍数;(2)找字母:凡各分母因式中出现的所有字母或含字母的多项式都要选取;(3)找指数:取分母因式中出现的所有字母或含字母的多项式中指数最大的,这样取出的因式的积,就是最简公分母.设计意图:以此活动激活学生原有的知识体系,充分体现学生的学习是在原有知识的基础上自我生成的一个过程,有利于让学生更好地掌握类比的学习方法.典例精讲例 找出下列各组分式的最简公分母并通分:(1)32a 2b 与a -b ab 2c ; (2)2x x -5与3x x+5.解:(1)最简公分母是2a 2b 2c ,32a 2b =3·bc 2a 2b·bc =3bc 2a 2b 2c, a -bab 2c =(a -b)·2a ab 2c·2a =2a 2-2ab 2a 2b 2c .(2)最简公分母是(x -5)(x +5), 2x x -5=2x(x+5)(x -5)(x+5)=2x 2+10xx 2-25, 3x x+5=3x(x -5)(x+5)(x -5)=3x 2-15xx 2-25. 设计意图:通过例题,使学生能够准确确定分式的最简公分母,熟练进行分式的通分,提高学生的教学应用能力.巩固训练指出下列分式的最简公分母并通分:(1)26a 3bc 与a -215a 2b 2d ; (2)x -2x 2+2x 与x -1(x+2)2; (3)a -1a 2+2a+1与6a 2-1.解:(1)最简公分母:15a 3b 2cd ,26a 3bc = 13a 3bc= 1·5bd 3a 3bc·5bd = 5bd 15a 3b 2-cd , a -215a 2b 2d= (a -2)·ac 15a 2b 2d·ac = a c -2ac 15a 3b 2cd . (2)最简公分母:x (x +2)2,x -2x 2+2x= x -2x(x+2) = (x -2)·(x+2)x(x+2)·(x+2) = x 2-4x(x+2)2, x -1(x+2)2= (x -1)·x (x+2)2·x = x 2-x x(x+2)2. (3)最简公分母:(a +1)2(a -1),a -1a 2+2a+1 = a -1(a+1)2 = (a -1)·(a -1)(a+1)2·(a -1) = (a -1)2(a+1)2(a -1), 6a 2-1= 6·(a+1)(a+1)(a -1)·(a+1) = 6(a+1)(a+1)2(a -1).设计意图:通过巩固训练,一是使学生注意当分母是多项式时,把分母分解因式后,再确定最简公分母;二是通过解决题目的过程,让学生反思解决问题的方法和结论,形成批判性思维和发散性思维,提高学生的总结概括能力和运算能力.课堂小结1.本节课探究了分式的哪些问题?2.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.3.最简公分母的确定:①找系数;②找字母;③找指数.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第132页练习第2题,第133页习题15.1第7题.2.七彩作业.第2课时分式的通分一、分式的通分.二、最简公分母的确定:最简公分母{1.找系数2.找字母3.找指数三、例题讲解.四、课堂评价.教学反思。

人教版八年级数学上册第十五章《分式》教案

人教版八年级数学上册第十五章《分式》教案

第十五章分式15.1 分式15.1.1 从分数到分式1.理解分式的意义,掌握使分式有意义时分母中字母的取值范围或字母之间的相互关系.2.在经历探索、思考、类比的过程中,体会分式的意义,感受分式是刻画现实问题中数量关系的一种模型.3.进一步增强从特殊到一般的认知过程,发展学生的数学思维能力.【教学重点】理解分式的意义,掌握使分式有意义时分母中字母的取值范围的判别方法.【教学难点】在分式有意义的条件下,分式值为0的字母的取值情况.一、情境导入,初步认识问题一艘轮船在静水中的最大航速为20千米/小时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?【教学说明】章前画面和上述问题可用多媒体展示,让学生感受生活,感受数学.对所提出的问题让学生相互交流,探索解决问题的过程、方法,教师巡视,适时参与学生的讨论,最后选取学生代表展示成果,教师及时提出新问题.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1刚才大家通过探讨,获得到100602020v v+-,这样的式子,它们是整式吗?如果不是,区别在哪里?思考1(1)长方形的面积为10cm2,长为7cm,宽为;若长方形的面积为S,长为a,则宽应为;(2)把体积为200cm3的水倒入底面积为33cm2的圆柱的容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度应为.思考2 式子S/a、V/S与10/7,200/33有什么区别?它们与10060 2020v v+-,有什么共同点?谈谈你的看法.【教学说明】教师应引导学生对上述三个问题进行积极思考,感受整式与分式、分式与分数之间的联系和区别,初步形成对分式的概念的理解.教师在学生交流过程中,巡视全场,引导学生关注所给式子的分子,分母的特征,此时可类比分数分子、分母进行描述.分式:一般地如果A、B表示两个整式,并且B中含有字母,那么式子AB 叫做分式.问题2(1)使分式11x-有意义,则x的取值有什么要求?(2)使分式A/B有意义,所需要的条件是什么?【教学说明】让学生自主探究,获得结论,然后相互交流,教师再予以总结.【归纳结论】使分式A/B有意义时,必有B≠0.三、典例精析,掌握新知例1指出下列各式中的整式与分式:【教学说明】教师总结判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.然后让学生自主探索,获得结论,这里要注意:π不是字母,是常数,所以x/π是整式.例2填空:(1)当x时,分式23x有意义?(2)当b时,分式153b-有意义?(3)当x ,y 满足关系 时,分式x y x y +-有意义? (4)当x 时,分式231x x + 有意义? 解:(1)由题意有:3x ≠0,故x ≠0,所以当x ≠0时,分式23x 有意义;(2)由题意有:5-3b ≠0,故b ≠5/3,所以当b ≠5/3时,分式153b -有意义;(3)由题意有x-y ≠0,故x ≠y ,所以当x ≠y 时,分式x y x y+-有意义;(4)由题意有x 2+1≠0,因为x 2≥0,x 2+1≥1,故x 为任何数时,分式231x x +有意义. 【教学说明】让学生自主探索,获得结论,选取一、两名同学汇报自己的结论,师生共同评论.评析时,教师应注意引导学生对(3)、(4)小题进行反思,巩固对分式有意义的条件和认识.例3什么条件下,下列分式的值为0?(1)1x x - ;(2)23m n m n-+ ;(3)()236x x x x --- . 解:(1)由题意有:x-1=0,∴x=1.当x=1时,分母x ≠0,所以当x=1时,分式1x x-的值为0; (2)由题意有:2m-3n=0,∴m=32n ,∴m+n=52n ,又m+n ≠0,即52n ≠0,∴n ≠0,从而在m=32n ≠0时,分式23m n m n-+的值为0; (3)由题意有:x(x-3)=0,∴x=0或x=3,当x=0时,分母x 2-x-6=-6≠0,当x=3时,x 2-x-6=9-3-6=0,故使分式()236x x x x ---的值为0时,x 的值为x=0. 【教学说明】教学时,教师应讲清楚使分式=0时所必须的条件是:分子=0且分母≠0,这样让学生自己通过探讨三个问题的结论时,感知分式有意义是确定分式的值的前提条件,然后给一定时间让学生自己尝试解决所提出的问题,再由老师给予完整解答,让学生在比较、分析与反思中巩固所学知识.在完成上述例题后,教师可引导学生做教材P4练习,以巩固知识.四、师生互动,课堂小结1.这节课你有哪些收获?2.通过这节课的学习,你还有哪些疑问?与同伴交流.【教学说明】问题都可由学生自己总结,选取代表发表自己的看法,从而系统地对本节知识进行回顾与思考,针对学生的疑问,可当堂予以解释,帮助学生掌握所学的知识.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.这节课的内容较少,比较贴近实际生活,要求学生知道什么是分式,能区分整式与分式,对保证分式有意义、分子分母要同时满足什么条件能很准确地指出来.此外,分式的值为0时分子分母也要满足一定的条件.教学中可以多出具一些实例,让学生在实际问题中去感知.15.1.2分式的基本性质1.掌握分式的基本性质,能依据分式的性质进行约分和通分运算.2.通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行分式的约分和通分.3.进一步增强学生的创新思维能力.【教学重点】理解并掌握分式的基本性质,能用分式的性质进行分式的约分和通分.【教学难点】在分式通分时找几个分母的公分母是关键,在分式的约分时应注意将分子、分母中的多项式进行分解因式.一、情境导入,初步认识分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.思考下列从左到右的变形成立吗?为什么?【教学说明】教师应引导学生用类比分数的基本性质来解决上述问题,加深对分式性质的初步认识.教学时,让学生相互交流,感受新知.二、思考探究,获取新知(一)分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即··A A C A A CB BC B B C÷==÷,(A、B、C均为整式,且C≠0)试一试【教学说明】让学生自主探究,教师巡视,针对学生可能出现的问题及时给予指导,最后师生共同分析,完善答案.教学重点在于让学生明白通过分子(或分母)的变化特征,来获得分母(或分子)的变化思路,为后面的分式约分和通分作好铺垫.2.不改变分式的值,使下列分式的分子或分母都不含有“-”号:3.不改变分式的值,将下列分式中分子或分母的系数化为整数:【教学说明】2、3两道小题均由学生自主完成,相互交流.教师在学生处理第2题时应引导学生运用分数除法法则得到商的符号来完成分式中分子(或分母)的符号的处理办法,第3题应引导学生运用分式性质在分子、分母同乘以一个合适倍数来达到目的,边巡视,边指导,让学生在练习过程中加深对性质的理解和运用.(二)分式的约分分式的约分:把分式的分子、分母中的公因式约去的过程叫做分式的约分,如由2122x x x x =--,就是分式的约分. 最简分式:分子与分母中没有公因式的分式叫做最简分式.分式的约分,一般要约去分子和分母中所有公因式,使所得结果成为最简分式或整式.【教学说明】上述定义或结论,在教学时,教师可结合分数的约分和前面的1(1)小题进行说明,让学生通过感性认识获得理性思考,体验由特殊到一般的辨证思维方法.试一试4.约分:【教学说明】在学生自主探究,探索问题结论过程中,教师应关注学生以下几个方面:(1)找分式的分子、分母中的公因式是否彻底,是否考虑了分子、分母中各项的系数;(2)是否注意到分式的符号的变化;(3)约分是否彻底等,对所出现的问题一定要做好个别指导,最后师生共同讨论,给出正确答案,让学生对比自己的解答,进行必要的反思.(三)分式的通分思考:联想分数的约分,如何进行分式的通分呢?试一试5.将下列分式通分:【分析】(1)把分式化成分母相同的分式的过程叫做分式的通分;(2)通分的关键是确定几个分式的最简公分母,而确定最简公分母通常按以下三个步骤进行:①取各分母系数的最小公倍数作为公分母系数;②各个分母中所有不同的因式均作为公分母中的一个因式;③所有因式的指数以它的最高次幂作为公因式中该因式的指数.【教学说明】教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对分式通分的认识.三、师生互动,课堂小结1.通过本节课的学习,你有哪些收获?2.通过这节课的学习,你觉得有哪些知识是难以把握的?你有何想法?【教学说明】通过对问题的思考,让学生回顾本节学过的知识点有哪些,怎样利用分式的性质来化简分式中分子(或分母)的符号,怎样将分子、分母中的系数化成整数,如何进行分式的约分和通分,在约分和通分时最关键的问题有哪些,如何解决等等,进一步深化对本节知识的理解.在这里,教师可引导学生做教材P8练习以及习题14.1中的题,以帮助学生进一步掌握.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.“分式的基本性质”在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.15.2 分式的运算15.2.1 分式的乘除第1课时分式的乘除1.掌握分式的乘除法运算法则,能进行分式的乘除法运算.2.在经历探索、类比、归纳的过程中,理解并掌握分式的乘除法运算法则.3.在类比分数乘除法运算法则获得分式乘除法法则中,让学生体验由数到式的数学发展过程,激发学生学习兴趣,增强求知欲.【教学重点】理解并掌握分式乘除法运算法则,能用它来进行分式乘除法运算.【教学难点】运用分式乘除法运算法则解决一些实际应用问题,进一步增强数学应用能力.一、情境导入,初步认识观察下列算式:由上述算式,我们知道,分数的乘法法则是;分数的除法法则是.思考类比分数的乘除法法则,你能说出分式的乘除法法则吗?【教学说明】让学生直接由分数的乘除法运算法则感知分式的乘除法法则,可激发学生的学习兴趣,增强求知欲.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知类比分数的乘除法运算,可以发现分式的乘除法也有相同的运算法则.乘法法则:分式乘分式,把分子的积作为积的分子,分母的积作为积的分母,用式子可表示为:···a d a db c b c=.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子可表示为:···a d a c a cb c b d b d÷==.【教学说明】分式的乘除法则可由学生类比分数得到结论,让学生在合作交流中感受新知;教师不必直接给出结论.在教学时,教师可进一步地展示下面的一些问题,帮助学生加深理解.问题【教学说明】在教学时,上述三个问题教师可延时展示给学生,让学生逐一思考,获得结论.教师巡视,对有困难的学生适时给予指导,同时分别选派2~3名学生上黑板演示,师生共同评析.在问题1中,着重于除式是整式情形,这时应引导学生先将整式看作分母为1的式子来参与计算;问题中侧重于运算结果应予以约分化简,必须是最简分式时才算运算结束;问题3侧重于分式的分母、分子是多项式情形,此时应注重于分解因式,以便于约分化简,整个过程都应是学生自主探究,合作交流来完成的.三、典例精析,掌握新知【分析】本题是分式乘除法,分子、分母是多项式的应先把多项式分解因式再运用法则,而分式乘除法实质就是约分.【教学说明】本例仍由学生自主探究,抽学生回答,教师适时点拨,师生共同寻求解题方法,完成解题过程.在完成之后,教师可引导学生做P138练习第2、3题,在这个过程中,仍可让学生举手回答,教师予以点评.四、运用新知,深化理解1.一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的m、n时,水面的高为多少?2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?【教学说明】这两个题可由学生自主探究,获得结论,教师应关注学生将实际问题转化成分式模型的能力及是否能正确运用分式乘除法法则来完成解答.【答案】可参见教材P135问题1、问题2的解答.五、师生互动,课堂小结运用分式乘除法法则解决具体问题时有哪些需要注意的问题?谈谈你的看法,与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种.并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后就看写着结果再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式.第2课时分式的乘除混合运算与分式的乘方1.掌握分式的乘除法法则,能用它们进行分式的乘除混合运算.2.理解分式乘方的意义,能进行有关分式乘方的运算.3.通过对具体问题的探究思考,感受分式乘除混合运算、分式乘方运算方法,进一步增强类比的数学思想方法的理解.4.进一步增强学生的数学计算能力,发展严密的数学思维能力,增强数学学习兴趣.【教学重点】分式乘除、乘方混合运算能力.【教学难点】分式乘方法则的理解和运用.一、情境导入,初步认识问题分式乘除法运算法则是什么?如何进行分式乘除法混合运算呢?试一试参见教材P138例4.想一想小明同学在计算xy÷yx·xy时,其过程如下:原式=xy÷1=xy,你认为他的计算正确吗?说说你的理由,与同伴交流.【教学说明】教师延时展示上述三个问题,让学生自主探究,加深对分式乘除法法则的理解,体会分式乘除法混合运算方法.教师对学生的结论给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P138“思考”.【归纳结论】参见教材P138最后一段.【教学说明】教师提出问题,由学生自主探究,发现规律,形成认知,从而感受分式乘方的意义.试一试计算:【教学说明】选派两名同学上黑板计算,其余同学在座位上自主探究.教师巡视,最后全班同学一道对两位同学的演示结果进行评析,教师应对学生的解答进行详细讲解,帮助学生完善认知.【归纳结论】分式的乘方,就是把分式的分子、分母各自乘方.三、典例精析,掌握新知例计算:(1)参见教材P139例5第(2)小题;(2)参见教材P139练习第2题第(2)小题.【分析】分式的乘除、乘方混合运算,应先算乘方,再算乘除,能约分的一定要约分.【教学说明】教学时,教师应对一些学生易出现错误的地方予以强调,如(-c2d)2=-c4d2或c2d2,(-3c)3=-9c3等错误,引起学生注意.四、运用新知,深化理解1.参见教材P139“练习”第1题.2.计算:(1)参见教材P139“练习”第2题第(1)小题;(2)参见教材P146第3题第(4)小题.【教学说明】学生独立完成这些小题,然后相互交流,有时间的话,教师予以评价,让学生查漏补缺,巩固新知.五、师生互动,课堂小结本节课所学习的主要知识是什么?有哪些需要特别注意的地方?谈谈你的看法,并与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.15.2.2 分式的加减第1课时 分式的加减1.理解并掌握分式的加减法法则,能用它进行简单的分式加减.2.经历探究实际问题中数量关系的过程,感受分式的加减法也是实际需要,进而掌握分式的加减方法.3.进一步增强用类比的思想方法解决数学问题的能力,锻炼数学应用意识和用数学解决实际问题的能力,体验数学的应用价值.【教学重点】分式的加减法运算方法.【教学难点】异分母分式的加减法即化异分母分式为同分母分式的方法.一、情境导入,初步认识问题1参见教材P139“问题3”.问题2参见教材P139“问题4”.【教学说明】让学生对上述两个问题的思考,得出算式分别为11)3(n n ++ 和322121()s s s s s s --- ,教师巡视,对不能尽快得出算式的学生给予个别指导,让学生能自主分析问题,并探寻解决问题的方法.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P140“思考”.【归纳结论】同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,化为同分母分式,再加减.【教学说明】在师生共同探讨获得分式加减法法则后,教师应强调以下两个问题:①分式加减的最后结果能约分的一定要约分,化为最简分式;②异分母分式加减时,一定要先确定各分式的最简公分母,化为同分母分式后再进行加减法运算.三、典例精析,掌握新知例 参见教材P140例6.解:参见教材P140例6“解”部分.四、运用新知,深化理解参见教材P141“练习”.【教学说明】第1题只须与学生核对答案即可,而第2题建议选三名中等成绩同学上黑板演示,其它同学独立探究,然后师生共同评析三位同学的演算过程,在评讲过程中教师应有针对性地强调一些需注意的问题:如(1)中的最简公分母;(2)中化为同分母分式后分子应适时添加括号,(3)中应先将22a a b- 化为()()a a b a b +- ,再通分等.五、师生互动,课堂小结1.在进行异分母分式的加减法运算时,应关注哪些问题?2.通过这节课的学习,你还有哪些疑惑,与同伴交流.【教学说明】用问题形式对本节知识进行归纳总结,让学生对知识进行梳理,形成知识体系.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.这节课教师可采用探究与自主学习相结合的模式来完成.探究的目的是让学生经历类比分数加减运算的过程,通过将分式中的字母赋值,从而把分数的加减运算法则推及到分式的加减运算.整个过程中既有从特殊到一般的归纳,也有从一般到特殊的演绎.此外还可以通过把例题的再加工,使学生把错误暴露出来,引起他们的共鸣,而这些课堂内学生的差错会成为学生自己可贵的复习资料.接着可出些不同类型的题,让学生再次经历分式的加减运算过程,强化技能,以达到熟练的程度.第2课时分式的混合运算1.进一步掌握分式的加减法运算方法,能用它解决实际问题.2.能进行分式的乘除、加减、乘方混合运算.3.在具体问题情境的探索思考过程中,进一步增强学生的数学应用意识,锻炼分析问题、解决问题的能力.4.进一步培养学生严密的科学态度和良好的学习习惯.【教学重点】掌握分式乘除、加减、乘方混合运算.【教学难点】运用分式乘除、加减、乘方等解决实际问题.一、情境导入,初步认识问题1异分母分式的加减法的一般步骤有哪些?在运算过程中有哪些需要注意的问题?问题2在进行分式的乘除、加减,乘方混合运算时,你认为应该怎样做?谈谈你的想法.【教学说明】问题1的设置在于巩固上节课学过知识,并能用它解决本节问题,起承上启下作用;问题2则是让学生联想到分式乘除、分式加减法则是类比分数而得到的,因而可类比得到分式混合运算法则.在教学时,可让学生自主探究,相互交流,在探讨中形成认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】上述两个例题都应先让学生独立完成试试,然后教师再予以评讲,例1的(1)题侧重于展示分式的混合运算方法;先算乘方,再算乘除,最后算加减;而第(2)题进一步强调混合运算中的运算顺序:“先算乘方,再算乘除,最后算加减.有括号应先做括号内的运算,再算括号外的运算”.三、典例精析,掌握新知【教学说明】教学时,可让学生自主探索,获得结论,教师再行讲解.例1中计算(x2+xy+y2)(x-y)时,若已掌握公式(a2+ab+b2)(a-b)=a3-b3,可直接写出结果x3-y3,如果不知道此公式,可利用多项式乘多项式的法则计算.例2中含有一个开放性问题,这里教师应该强调:选择一个值代入时,一定要使原代数式有意义,即不能选x为0,1这两个值.四、运用新知,深化理解2.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,需比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的多少倍?【教学说明】学生独立探究,教师巡视时,对有困难同学给予指导,最后予以评讲,让学生在自查中反思,积累解题经验和方法.五、师生互动,课堂小结1.通过这节课的学习,你有哪些收获?2.你还有哪些疑问?与同伴交流.【教学说明】让学生对照上述两个问题自我反思,既系统回顾本节所学知识,又查找问题所在,在与同伴交流中加深认识.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.本课时要求学生理解并掌握分式的乘除、加减和乘方混合运算,为达到教学目标,本课时通过问题的提出,让学生类比前面不含乘方的混合运算.例题的讲解旨在引导学生把实际问题数学化.当然,无论是例题的分析还是练习题的落实,都以学生为中心,给予充分的时间让学生去演算并暴露问题,再指出问题所在,为后面的教学提供较好的对比分析材料.此外,教师还应引导学生发现并总结多。

八年级数学上册《分式》15.1.分式 第1课时教学设计(定稿)

八年级数学上册《分式》15.1.分式 第1课时教学设计(定稿)

集体备课:八年级数学上册第十五章《分式》15.1.分式第1课时教学设计(定稿)时间:2017年12月20日地点:赵化中学初二办公室主讲:…………记录:…………成员:………………………………………………………………………… .一. 教材分析1.《分式》15.1节的地位和作用:分式是继整式之后对代数式的进一步研究.15.1.《分式》内容的学习为今后进一步学习函数和方程等知识起到奠基的作用.《分式》15.1分式的内容分两课时来完成,而第一课时的内容则是分式的起始课,它是在学生学习了整式运算、分解因式的基础上进行的,学好本节课,是今后继续学习分式的性质、分式的运算及解方式方程的前提;其中对“分式有无意义的讨论”为以后学习反比例函数作了铺垫. 且后续的含分式的解答题的正确率一般都较低;分式的涵盖知识点多,技巧性强,是很能考查数学素养的,所以15.1.《分式》内容的学习地位重要.2.教学目标:(1).经历用分式表示现实情境中数量关系的过程,能用分式表示实际问题中的数量关系.(2).经历自主探索、小组合作交流的过程,归纳分式的概念,明确分式与整式的区别.进一步培养学生代数表达能力和有条理地思考问题的能力.(3).通过与分数的类比,探究分式有无意义的条件等活动,进一步培养学生运用类比转化的思想解决问题的能力.(4).利用实际情境,培养学生关注生活,热爱数学的情感,增进学生对数学的理解和应用数学的信心。

3.教学重难点:教学重点:分式的意义、用分式表示现实情境中的数量关系.教学难点:分式有无意义条件的讨论.突破重难点的方法是利用丰富多彩的现实情境,让学生充分经历自主探索、小组合作交流的过程,主动地获取知识.二.教法分析:根据本节课的教学目标、教材内容以及学生的认知特点,采用启发式、探究式的教学方法.意在帮助学生通过自主探索、合作交流的活动,主动地获取知识,并通过类比、归纳、概括等途径来深化对知识的理解.“数学源于生活,用于生活”是整节课的一条暗线,意在让数学课堂“活”起来,以培养学生的应用意识,体会数学的价值.三.教学过程设计及意图(一).创设情境,导入新课⑴.小刚从家到学校有2500米,如果小明骑车每小时走m米,则小刚从家到学校要走_______小时.⑵.某服装厂购进一批面料,共用了a元,已知这批面料共生产了b件上衣,那么这批上衣每件的面料成本为_______________元.⑶.三友书店库存一批图书,其中一种图书的原价是每册m元,现降价x元销售,当这种图书的库存全部售出时,其销售额为6元.降价销售开始时,文林书店这种图书的库存量是____________元. (二).自主探究1.问题:认真观察上面的式子,它们还是整式吗?教师再补充一些例子:--+3a b1,,,x y a b3x.它们有什么共同特点?引导观察:都有一个分数线(表示除法),分子、分母都是整式;分母中都有含有分母.(可安排小组讨论,)师生共同学习:整式A除以整式B ,可以表示成AB的形式,如果除式B中含有分母,那么称AB为分式;其中A称为分式的分子,B称为分式的分母师生分析知识本质:①概念理解:分式就是两个整式的商;②概念要点:分式的分母中含有字母.2.追踪练习:下列各项那些时整式,那些是分式?①.-+m 3m 3;②.23a a 1+;③.+51π;④. -a 12;⑤.+1x x ;⑥.-2a 2a 3;⑦.-1x 1 . (三).例题讲解: ⑴.当=x 2,3时,分别求出分式--3x x 1的值; ⑵.当x 取何值时,分式--3x x 1有意义? ⑶.当x 取何值时,分式--3x x 1的值为0? 归纳:⑴.分式A B 有意义的条件:分母___________零,即B ___ 0 ⇔ 分式A B有意义; ⑵.分式A B 无意义的条件:分母___________零,即B ___ 0 ⇔ 分式A B无意义; ⑶.分式A B的值等于零的条件:分子的值_______零,分母的值________零,即A ___ 0, B ___ 0 ⇔ 分式=A 0B .(四).应用1.下列各式中,哪些是整式?哪些是分式?①.-2m 1;②.-3a 1;③.-1π;④. +m 33;⑤.-1a a ;⑥.-x 23;⑦.--2a 2a 1 . 2.设A B 、都是整式,若A B表示分式,则 ( ) A. A B 、中都必须含有字母 B.A 中必须含有字母C .B 中都必须含有字母 D.A B 、中都不必须含有字母 3.当x 取什么值时,下列分式有意义?⑴.-12x 3; ⑵.-34x ; ⑶.--x 2x 2 ; ⑷.+21x 1 ; ⑸.()-22x 3 . 4.当x ______ 时,分式-312x 无意义;当x ______ 时,分式-23x 1无意义. 5.当x 取什么值时,下列分式的值为0?⑴.--2x x 5; ⑵.--x 44x ; ⑶.---22x 1x 2x 3.(五)拓展提升1.已知函数=-1y 1x的自变量x 的取值范围是 ( )A .≥x 1B .≥-x 1C .≠x 1D .≤x 12、要使分式-+22m 1m 1有意义,m 的取值范围是 ( ) A .=-m 1 B .=m 1 C .=±m 1D .任意实数3.当x _______ 时,分式--2x 4x 2的值为0. 4.把甲、乙两种饮料按质量比x y 、混合在一起,可以调制成一种混合饮料.调制1千克这种混合饮料需多少甲种饮料?5.一水果店购进一箱橘子需要a 元,已知橘子与箱子的总质量为mkg ,箱子的质量为nkg ,为了不亏本,这箱橘子的零售价至少应定为多少元/千克?6.已知分式-+2x a x b,当=-x 3 时,分式无意义;当=-x 1 时,分式的值为0,请求出+22a b 的值。

分式说课稿人教版

分式说课稿人教版

分式说课稿人教版尊敬的各位评委老师:大家好!今天我说课的内容是人教版八年级数学上册第十五章《分式》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析(一)教材的地位和作用《分式》这一章是初中数学中的重要内容之一。

分式的概念和运算既是对整式知识的拓展和延伸,也是后续学习函数、方程等知识的基础。

通过对分式的学习,学生能够进一步理解数学中的符号语言和代数运算,提高逻辑推理和数学运算能力。

(二)教材内容本节课主要包括分式的概念、分式有意义和值为零的条件。

教材首先通过实际问题引入分式的概念,让学生感受分式与实际生活的紧密联系,然后通过类比分数,探讨分式有意义和值为零的条件。

二、学情分析(一)知识基础学生在之前已经学习了整式的相关知识,掌握了整式的运算和方程的解法,具备了一定的代数运算能力和逻辑推理能力。

(二)学习能力八年级的学生已经具备了一定的自主学习能力和合作探究能力,但对于抽象概念的理解和应用还需要进一步的引导和训练。

(三)心理特点学生在这个阶段对新鲜事物充满好奇心和求知欲,但在学习过程中可能会出现注意力不集中、容易疲劳等问题,需要教师在教学中创设生动有趣的情境,激发学生的学习兴趣。

三、教学目标(一)知识与技能目标1、理解分式的概念,能区分整式与分式。

2、掌握分式有意义和值为零的条件,并能应用这些条件解决相关问题。

(二)过程与方法目标1、通过实际问题的引入和分析,培养学生观察、分析和解决问题的能力。

2、经历分式概念的形成过程,体会类比、转化等数学思想方法。

(三)情感态度与价值观目标1、让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。

2、通过小组合作探究,培养学生的团队合作精神和创新意识。

四、教学重难点(一)教学重点1、分式的概念。

2、分式有意义和值为零的条件。

(二)教学难点1、理解分式的概念,特别是分式中分母不为零的条件。

二七区某中学八年级数学上册第十五章分式分式的乘除说课稿新版新人教版3

《分式的乘除法(第1课时)》各位评委:下午好!今天我说课的题目是《分式的乘除法(第1课时)》,所选用是人教版的教材。

下面我将从教材分析,教法分析,学法分析和教学过程分析四个方面加以说明。

一、教材分析1、教材的地位和作用本节教材是八年级数学第十五章第二节第一课时的内容,是初中数学的重要内容之一。

一方面,这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。

因此,我认为,本节课起着承前启后的作用。

2、教学目标分析根据新课标的要求和本节课内容特点,考虑到年级学生的知识水平,我制定了如下课的三维教学目标:1.认知目标:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

2.技能目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

3.情感目标:教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。

3、教学重难点本着课程标准,在充分理解教材的基础上,我确立了如下的教学重点、难点:教学重点:运用分式的乘除法法则进行运算。

教学难点:分子、分母为多项式的分式乘除运算。

下面,为了讲清重点难点,使学生能达到本节课的教学目标,我再从教法和学法上谈谈:二、教法分析本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以师生互动的形式,在教师的指导下突破难点:分式的乘除法运算,在例题的引导分析时,教学中应予以简单明白,深入浅出的分析本课教学难点:分子、分母为多项式的分式乘除运算。

让学生在练习题中巩固难点,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

说教材《分式》精品课件

解:设摩托车的速度为x千米/小时, 则抢修车速度为1.5x千米/小时, 依题意得 :
x 1.5 x 60
解得:x=40
经检验,x=40是原方程的解, 且x=40,1.5x=60,符合题意.


注意两次检验: (1)是否是所列方程的解; (2)是否满足实际意义.
答:摩托车的速度为40千米/小时, 抢修车的速度为60千米/小时.
经历通过观察、归纳、 类比、猜想,获得分式 的基本性质、分式的乘 除运算法则、分式的加 减运算法则,发展学生 的合情推理能力和代数 恒等变形能力
掌握分式的基本性质, 能熟练地进行分式的约 分、通分和加减乘除运 算,会解可以化为一元 一次方程的分式方程, 了解增根的原因,会检 验分式方程的根
会解决一些与分式 和分式方程有关的 实际问题,具有一 定的分析问题、解 决问题的能力和应 用意识。
a+x a+1 = b+x b+1
易犯错误
4、化为同分母的分式后的符号容易出错,从而导致 结果错误。
4 x+2 例:计算: x-2 2 x
容易忽视分数线具有括号的作用。
易犯错误
5、混合运算时,运算顺序易出错。
例:计算 容易先运算乘法,后运算除法,同级运 算,在没有括号的情况下,按顺序进行。
能结合具体情境发 现并提出数学问题, 尝试从不同角度寻 求解决问题的方法, 并能有效的解决问 题
知识 技能
经历从具体情境中抽象 出符号的过程,认识分 式,分式方程,掌握必 要的运算技能,探索具 体问题中的数量关系, 并能描述出来
情感 态度
课 程 目 标
能积极参与数学 学习活动,对数 学有好奇心和求 知欲,锻炼克服 困难的意志,建 立学好数学的信 心
中考链接

数学人教版八年级上册第15章第一节分式(教案)

五、教学反思
在今天的教学中,我发现学生们对分式的概念和性质掌握得还算不错,但在具体的运算和应用上,部分学生还是显得有些吃力。我意识到,分式的运算规则和实际应用是本节课的难点,需要在今后的教学中进一步强化。
在导入新课环节,通过提问的方式激发学生的兴趣,这个方法效果不错,大家都能积极参与进来。但在新课讲授过程中,我发现理论介绍部分可能过于枯燥,有些学生的注意力开始分散。下次我可以尝试结合更多的实际案例,让理论知识更加生动有趣。
举例:通过实际例题,引导学生掌握求解分式方程的步骤和技巧。
2.教学难点
(1)分式的概念理解:学生可能难以理解分式中字母的含义和作用。
解决方法:通过具体实例和图形说明,帮助学生建立起分式的直观认识。
(2)分式的通分:在具体运算中,学生可能会在寻找最简公分母时遇到困难。
解决方法:提供寻找最简公分母的策略,如分解质因数、使用公共因子等,并进行大量练习。
此外,我还发现部分学生对分式方程的求解感到困惑,特别是对分母为零的情况处理不当。在今后的教学中,我要着重强调这一点,并通过更多的练习题来巩固学生的掌握情况。
最后,我也要肯定学生们的努力和进步。虽然分式的学习对大家来说是一个挑战,但我相信只要我们共同努力,一定能够克服困难,掌握好这一章的知识。教学相长,我也将在反思中不断成长,为学生们提供更好的教学。
3.重点难点解析:在讲授过程中,我会特别强调分式的定义和分式运算这两个重点解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式相关的实际问题,如如何分配物品、计算速度等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用分式来计算不同物体的平均速度。
(3)分式的运算:熟练进行分式的加减乘除运算,掌握运算规则。

人教版初中数学课标版八年级上册 第十五章 15.1 分式 教案-教学文档

案例名称15.1.1 从分数到分式科目数学作者一、教学内容分析本节课选自人教版八年级上册第十五章《分式》中的第一节内容:从分数到分式.本节的主要内容是分式的概念、分式有意义的条件、分式值为0的条件.分式是与整式完全不同的两种代数式,为了突显分式与整式的区别,教材中给出了一些代数式让学生观察找特征,得出分式的概念;又根据分数的意义得出分式的意义;最后例题中的实际问题可让学生深刻的体会出分式的意义.二、教学目标1.知识与技能目标:了解分式的概念,能识别整式、分式;会判断分式中的字母满足什么条件时分式有意义;在现实情境中进一步理解用字母表示数的意义;2.过程与方法目标:经历从分数到分式概念的形成过程,体会类比思想、从特殊到一般、从一般到特殊的数学思想方法;能从具体情境中抽象出数量关系和变化规律,培养符号感;3.情感与态度价值观目标:感悟数学在实际生活中的应用,增强数学应用意识,认识到数学的学习价值,激发学习数学的兴趣.三、学习者特征分析学生的知识技能基础:学生已具备整数、分数、整式的基础知识,已初步掌握了列代数式、求代数式的值及解简单的一元方程.在学习整式时,已接触过分式的形式,但是还没有了解分式的概念.从整数到分数是数的扩充,从整式到分式是式的扩充.数学知识源于生活、用于生活.分式与整式都是描述数量关系的代数式,研究分式有助于进一步培养数学建模的意识和数学应用的能力.分式概念是形式定义,分式的分母不能为0(即分式有意义的条件)是对分式概念的深入理解.明确分式的分母不能为0有助于理解解分式方程可能产生增根的道理.学生活动经验基础:在相关知识的学习过程中,学生已经经历了整式概念的形成过程,获得了一些相关的数学学习经验;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.四、教学策略选择与设计根据学生已有的知识技能基础和活动经验基础,教学时,教师可以让学生首先回顾整式的概念,为学生搭建“脚手架”,在剖析分式的概念时,让学生体会由数到式的发展,体现了从特殊到一般的认知过程;针对本节课的知识点,采用按照“(一)分式的概念,(二)分式有意义的条件,(三)分式值为0的条件主线进行教学,通过同一个背景题目的变式将本节课的三个知识点串起来,让学生对这节课的知识框架有一个清晰的认识,注重配合充足的练习题巩固新知,鼓励学生参与合作交流,培养学生良好的观察能力、归纳总结能力以及沟通表达能力.五、教学重点及难点重点:了解分式的概念,能识别整式、分式;难点:会判断分式中的字母满足什么条件时分式有意义.六、教学过程教师活动预设学生活动设计意图导入新课探究一:分式的概念1.长方形的面积为5,一边长3,则另一边长为_________;2.长方形的面积为S,一边长3,则另一边长为_________;3.长方形的面积为S,一边长a,则另一边长为_________;4.长方形的面积为(42-x),一边长(2+x),则另一边长为____________.思考:观察所列式子,如何对它们进行分类?预设:生1:35一类,式子中不含有字母,3S,aS,242+-xx为一类,式子中含有分母;生2:35,3S为一类,式子分母中不含有字母,aS,242+-xx为一类,式子分母中含有字母.师:像第一个圈中的式子,我们称他们为整式,分母中都不含有字母,而第二个圈中的式子分母含有字母,你们想如何称呼它们呢?通过长方形的实际背景问题引入,让学生在具体情境中抽象出数量关系和变化规律,培养符号感,体会数学是源于生活的思想,增强数学的应用意识.同时,让学生认识到从分数到分式的发展.同时,让学生对所列式子分类,有助于学生理解分式与分数、分式与整式的区别和联系.形成概念分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子BA叫做分式.分式BA中,A叫做分子,B叫做分母.思考:(1)分式与分数有何联系?①分数中不含有字母,分式中分母一定含有字母;②分数是分式中的字母取某些值的结果,分式更具一般性.(2)分式与整式区别是什么?整式分母不含有字母,分式的分母中含有字母.(3)既然分式是不同于整式的另一类式子,那么它们统称让学生了解分式的概念是一种形式概念,它与整式的本质区别是它的分母中含有字母.242+-xxaS3S35为什么呢? 有理式小试牛刀例1.下列各式哪些是整式?哪些是分式?2.请你说出一个式子,让你的同桌判断是整式还是分式?设置小试牛刀这一环节,意在及时巩固刚刚学会的新知识,进行概念的辨析,能区分整式与分式.提炼方法归纳小结:1、判断时,注意含有π的式子,π是常数.2、式子中含有多项时,若其中有一项分母含有字母,则该式也为分式,如:a11+. 及时引导学生归纳易错点,提高认识.探究二探究二:分式有意义的条件例2.引例中的问题4 分式242+-x x ,(1)当3=x 时,分式的值是多少?当3=x 时,分式值为123432=+- (2)当2-=x ,能算出来吗?当2-=x ,分式的分母.0,02)2(,没有意义分母为=+-(3)当x 为何值时,分式有意义?2-,02≠≠+x x 即母要使分式有意义,则分通过给分式中的字母赋值,让学生体会分式比分数更具有一般性,从分式到分数,体现了从一般到特殊的应用过程.同时让学生发现分母为0的情况,通过与分数类比,得出分式有意义的条件,渗透类比的数学思想. 提炼方法归纳:对于分式BA,当B ≠0时,分式有意义; 当B=0时,分式无意义.引导学生及时对解题方法进行总结,提高认识.小试牛刀下列分式中的字母满足什么条件时分式有意义?(写出过程) (1)x 32 (2)1-x x (3)b351- (4)y x y x -+通过练习,让学生巩固解题方法.,75-x ,3b a +,11a +,132-x ,1222-+-x y xy x ,72,54c b +.3π探究三探究三:分式值为零的条件例3:已知分式242+-x x ,当x 为何值时,分式的值为0?解:分式的值为0,因此分子 的值为0,又因为分式分母不能为0,则进一步与分数类比,得出分式值为0的条件,渗透类比的数学思想.提炼方法 归纳小结 对于分式BA,当00≠=B A 且时,分式值为0.引导学生及时对解题方法进行总结,提高认识.小试牛刀当下列分式中的字母满足什么条件时分式的值为0? (1)y x -1 (2)x x 1- (3)212+-x x 通过练习,让学生巩固解题方法.游戏环节环节一:各显神通游戏规则: 在第一环节中,为必答题.看到题目后,每组选取一个代表,按照组的顺序依次答题,答题过程中其他组不得讨论.答对一题得10分,答错不得分.1.长方形的面积为Scm ²,长为7cm.宽应为______cm;长方形的面积为S,长为a,宽应为______;2.把体积为200cm ³的水倒入底面积为 33cm ²的圆柱形容器中,水面高度为_____cm;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为 ___ ;3、△ABC 的面积为 S ,BC 边长为 a ,高AD 为______4、某村有n 个人,耕地 40 公顷,人均耕地面积为_____ 公顷;5、甲完成工作量为m 的工作需t 小时,则甲的工作效率为______,乙完成同样工作比甲少用1小时,则乙的工作效率为________.环节二:眼疾嘴快游戏规则: 第二环节为抢答题,看到题目后,任何人都可以回答.回答时先举手,答对得10分,答错不得分.游戏环节再次提升学生的兴趣.教师鼓励学生开阔思路、大胆发言、不断出新,师生共同分享“突发奇想”、掌握知识的喜悦,培养学生参与竞争的意识.240422±===-x x x 42-x 02≠+x 综上所述: 2-≠x .024x 22的值为时,当+-=x x1、一辆汽车行驶a 千米用b 小时,它的平均车速为 千米/小时;一列火车行驶a 千米比这辆汽车 少用1小时,它的平均车速为 千米/小时.2.下列式子中,是分式的是_________①3x -,②a 5,③a -11,④15y x +,⑤a22-,⑥232x x ,⑦π43x +-3.下列各式中,无论x 取何值,分式都有意义的是( )A. B. C. D.4.一个分子为x -5的分式,且知它在x ≠1时有意义.你能写出一个符合上面条件的分式吗?试试看.拓展提高1.下列分式中的字母满足什么条件时分式有意义?)1(11-x x )( 1522++x x )( 2.在什么条件下,分式44||+-x x 的值为0?让学有余力的学生有拓展思维的空间.学生感悟与反思引导学生思考并回答以下问题:通过本节课我知道了……我能……需要注意的是……我感悟了....数学思想鼓励学生大胆发言,审视自己本节课的学习效果.教师引导 课堂小结1、分式的概念;2、分式有意义的条件;3、分式值为零的条件;4、数学思想方法:类比思想、从特殊到一般、从一般到特殊、转化思想.小结本节课所学知识,引导学生建构自己的学习框架,升华认识.布置作业1、书本P133 习题 15.1 1,2,32、《优化设计》课时作业课后作业的布置,使课堂学习的知识得到巩固和延伸.21x x +121x +231x x +2221x x +七、教学流程图八、板书设计15.1.1 从分数到分式一、梳理知识PPT 投影 1.分数的概念 例一:2.分式有意义的条件 例二:3.分式值为零的条件开 始PPT 复习引入新知探究CAI 展示小试牛刀拓展深化游戏、思考,解答归纳小结结 束小组讨论九.教学反思本堂课优点:1、教学设计目标明确,思路清晰,主线明显,在引入中通过具体情境从分数过渡到分式,并且用引例中变式4的例子作为后面两个环节的例题,整堂课的重难点突出,学生能聚焦到本堂课的三个重要知识点中;2、能注重及时归纳小结方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7
编 者 意 图
分式是“整式”之后对代数式的 进一步研究,所以教材的编排研究方 法和整式的相似,如:让学生经历字 母表示现实情境中数量关系(分式, 分式方程)的过程,经历通过观察、 类比、猜想获得分式的基本性质以及 分式的四则混合运算的方法,体会分 式,分式方程的模型思想,进一步发 展符号感。
思考、探究 、归纳等栏 目
人教版 《义务教育教科书》
第15章《分式 》 说课标 说教材
说课流程
说教 材
说课标
说 课 流 程
说建议
说中招 要求
一、说课标
3


•1.能用代数式、方程、 等刻画事物间的相互
关系。2.根据数学信 息做出合理的推断。
数学思考
•能结合具体情 境发现问题,并 能解决,从而获 得解决问题的经
解决问题
口头评价
利用网络、多媒体 光盘等资源查阅资料, 并加以改进,制作多媒 体课件。
以数学的眼光 看周围,从生 活中发现数学
信息技 术资源
合理开发 习题资源
社会教 育资源 发课 与程 利资 用源 建的 议开 生成性 资源
作业批 改记录 错题本
文本资源
创造性使用 教材资源
发挥小组合作的 优势,让学生在 探讨中发现问题、 解决问题。
章前图
小贴示 、 云朵
练习题 、 习题
选学栏 目 教学活动
正文
引言
小结
章前 编写体例 分 式 章末
复习题
教材的内容
(2)分式的运算。(加减、 乘方、乘除、整数指数幂)
(1)分式的基本性质。 (性质、通分、约分) 分 式
(3)分式方程( 定义、 解方程、方程的解、应 用)
教 材 内 容
三、说建议
11
验。
知识与技能
单元目标
分 式
情感与态度
•乐于接触社会中的数学信 息;敢于面对困难,并独 立克服困难;在独立思考 的的运算技能,探索具体 问题中的数量关系,并能描 述。
二、说教材
6

人教版是按传统逻辑体系编写的,讲究精 讲精练,北师大版教材编写的特点是螺旋 上升的。人教版课后习题相对难一些,灵 活些,北师大版课后习题简单。
重视基 本概念 的教学
注重创设问题 情境,采用启 发式教学。
尊重学生的主体 地位,重视合作 探究
加强对学 生推理能 力的培养。
注意引导学 生梳理知识 重视现代信 息技术的应 用
教 学 建 议
评价建议
家长评价 教师评价 评价方法
作业评价 评价呈现形式 试卷评价
自我评价
评价方法 及呈现形式 评 价 建 议
爱心 耐心
信心
恒心
我 的 教 学 感 悟
分式是初中阶段数学的重要内容,自1986年 河南省中招考试统一命题以来,每年必出试题 类型主要是化简或计算,解分式方程,分式方 程解决实际问题等。
17
相关文档
最新文档