乘法公式及配方法练习题
初中升高中数学衔接:第1讲 乘法公式(解析版)

【第1讲】 乘法公式【根底知识回忆】知识点1 平方公式〔1〕平方差公式 22()()a b a b a b +-=-;〔2〕完全平方公式 222()2a b a ab b ±=±+.〔3〕三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; 知识点2 立方公式〔1〕立方和公式 2233()()a b a ab b a b +-+=+; 〔2〕立方差公式 2233()()a b a ab b a b -++=-;〔3〕两数和立方公式 33223()33a b a a b ab b +=+++;〔4〕两数差立方公式 33223()33a b a a b ab b -=-+-.【合作探究】探究一 平方公式的应用 【例1】计算:〔1〕)416)(4(2m m m +-+〔2〕)41101251)(2151(22n mn m n m ++-〔3〕)164)(2)(2(24++-+a a a a 〔4〕22222))(2(y xy x y xy x +-++ 〔5〕22)312(+-x x【解析】〔1〕原式=333644m m +=+〔2〕原式=3333811251)21()51(nm n m -=- 〔3〕原式=644)()44)(4(63322242-=-=++-a a a a a 〔4〕原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=〔5〕原式=22]31)2([+-+x x913223822)2(312312)2(2)31()2()(234222222+-+-=-⨯⨯+⨯+-++-+=x x x x x x x x x x归纳总结:在进行代数式乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.【练习1】计算:2(21)x y ++【解析】原式=22(21)[(2)1]x y x y ++=++2(2)2(2)1x y x y =++++ 2244421x xy y x y =+++++探究二 立方公式的应用【例2】计算:〔1〕3(1)x + 〔2〕3(23)x - 【解析】〔1〕332(1)331x x x x +=+++ 〔2〕332(23)8365427x x x x -=-+-归纳总结:常用配方法:()2222a b a b ab+=+-,()2222a b a b ab+=-+.【练习2】用立方和或立方差公式分解以下各多项式:(1) 38x +(2) 30.12527b -分析: (1)中,382=,(2)中3330.1250.5,27(3)b b ==.【解析】(1) 333282(2)(42)x x x x x +=+=+-+(2) 333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+2(0.53)(0.25 1.59)b b b =-++探究三 整体代换【例3】13x x +=,求:〔1〕221x x +;〔2〕331x x +. 【解析】13x x +=,所以〔1〕222211()2327x x x x +=+-=-=.〔2〕32223211111()(1)()[()3]3(33)18x x x x x x x x x x +=+-+=++-=-=.归纳总结:〔1〕此题假设先从方程13x x +=中解出x 的值后,再代入代数式求值,那么计算较烦琐.〔2〕此题是根据条件式与求值式的联系,用“整体代换〞的方法计算,简化了计算.【练习3-1】2310x x +-=,求:〔1〕221x x +;〔2〕331x x -. 【解析】2310x x +-=,0≠∴x ,213x x ∴-=-,13x x ∴-=-.〔1〕222211()2(3)211x x x x +=-+=-+=;〔2〕331x x -2211()(1)3(111)36x x x x =-++=-⨯+=-.【练习3-2】4a b c ++=,4ab bc ac ++=,求222a b c ++的值.【解析】2222()2()8a b c a b c ab bc ac ++=++-++=.【课后作业】1.不管a ,b 为何实数,22248a b a b +--+的值 〔 〕A .总是正数B .总是负数C .可以是零D .可以是正数也可以是负数2.22169x y +=, 7x y -=,那么xy 的值为〔 〕 A .120 B .60 C .30 D .153.如果多项式29x mx -+是一个完全平方式,那么m 的值是4.如果多项式k x x ++82是一个完全平方式,那么k 的值是5.()()22_________a b a b +--=()222__________a b a b +=+-6.17x y +=,60xy =,那么22x y += 7.填空,使之符合立方和或立方差公式或完全立方公式: 〔1〕3(3)()27x x -=- 〔2〕3(23)()827x x +=+ 〔3〕26(2)()8x x +=+ 〔4〕3(32)()278a a -=-〔5〕3(2)()x +=; 〔6〕3(23)()x y -=〔7〕221111()()9432a b a b -=+ 〔8〕2222(2)4(a b c a b c +-=+++ )8.假设2210x x +-=,那么221x x +=____________;331x x -=____________.9.2310x x -+=,求3313x x ++的值.10.观察以下各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-…..根据上述规律可得:1(1)(...1)n n x x x x --++++=_________________【参考答案】1.乘法公式答案1.A 2.B 3.6± 4.16 5.4ab ; 2ab 6.1697.〔1〕239x x ++ 〔2〕2469x x -+ 〔3〕4224x x -+ 〔4〕2964a a ++ 〔5〕326128x x x +++ 〔6〕32238365427x x y xy y -+- 〔7〕1132a b - 〔8〕424ab ac bc --7.【解析】(1) 2229166824x y z xy xz yz ++--+(2) 22353421a ab b a b -++-+(3) 2233a b ab --(4) 331164a b -8.【解析】2210x x +-=,0≠∴x ,212x x ∴-=-,12x x ∴-=-.〔1〕222211()2(2)26x x x x +=-+=-+=;〔2〕331x x -2211()(1)2(61)14x x x x =-++=-⨯+=-.9.【解析】2310x x -+= 0≠∴x31=+∴x x原式=22221111()(1)3()[()3]33(33)321x x x x x x x x +-++=++-+=-+=10.11n x +-。
七年级数学整式的乘除

06 练习题与自测
基础知识巩固练习
整式的乘法运算
通过练习不同类型的整式乘法,如单项式乘单项式、单项 式乘多项式、多项式乘多项式等,巩固乘法分配律和结合 律的应用。
整式的除法运算
通过练习整式的除法,如单项式除以单项式、多项式除以 单项式等,掌握除法的基本法则和运算技巧。
幂的运算性质
通过练习幂的乘方、积的乘方、同底数幂的乘法、除法以 及零指数幂和负整数指数幂的运算,加深对幂运算性质的 理解。
负数底数幂运算注意事项
负数底数定义
负数底数幂表示的是负数的乘方运算,如(-2)^3表示-2的三次方。
运算规则
负数底数幂的运算需遵循乘方运算的基本法则,同时需注意负数的 奇次幂和偶次幂的结果符号不同。
注意事项
在计算过程中,需特别注意底数为负数的情况,避免出现计算错误 或遗漏。
复杂根式化简技巧
根式化简基本方法
将多项式拆分为多个单项 式的和或差。
分别相除
将拆分后的每个单项式分 别除以给定的单项式。
合并同类项
将除法运算后的结果进行 合并同类项。
带余除法及应用
带余除法定理
对于多项式f(x)和g(x),存在唯一的多项式q(x)和r(x),使得f(x) = g(x)q(x) + r(x),其中r(x)的次数小于g(x)的次数。
。
求解方程或表达式
利用数学运算和推理,求解出 未知量的值。
检验答案
将求解出的未知量值代入题目 条件进行检验,确保答案正确
。
计算题步骤规范及优化
明确计算目标
确定需要计算的目标和所需使 用的数学公式或方法。
列出计算步骤
按照数学运算的优先级和顺序 ,逐步列出计算步骤。
配方法的题及其答案(精选3篇)

配方法的题及其答案(精选3篇)以下是网友分享的关于配方法的题及其答案的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇一配方法及其应用初一()班学号:_______ 姓名:____________一、配方法:将一个式子变为完全平方式,称为配方,它是完全平方公式的逆用。
配方法是一种重要的数学方法,它是恒等变形的重要手段,又是求最大最小值的常用方法,在数学中有广泛的应用。
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简,何时配方需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方,有时也将其称为“凑配法”.配方法使用的最基本的配方依据是二项完全平方公式(a +b ) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如:222a 2+b 2=(a +b ) 2-2ab =(a -b ) 2+2ab ;b 2⎛3⎫2⎛a +ab +b =(a +b ) -ab =(a -b ) +3ab =a ++ b ⎪;⎝2⎭⎝2⎭2222a 2+b 2+c 2+ab +bc +ca =[(a +b ) 2+(b +c ) 2+(c +a ) 2].下面举例说明配方法的应用:一、求字母的值【例1】已知a ,b 满足a +2b -2ab -2b +1=0,求a +2b 的值.分析:可将含x,y 的方程化为两个非负数和为0的形式, 从而求出两个未知数的值. 解:∵a +2b -2ab -2b +1=0,∴a +b -2ab +b -2b +1=0,∴(a -b ) +(b -1) =0.∵(a -b ) ≥0,(b -1) ≥0,∴a -b =0,b -1=0,∴a =1,b =1,∴a +2b =1+2×1=3,∴a +2b 的值是3.变式练习:1、已知x 2y 2+x 2+4xy +13=6x , 则x,y 的值分别为[1**********]122、已知a +b +4a -2b +5=0,则3a +5b -4的值为___ ___.4. 已知x 2+2xy +y 2-6x -6y +9=0,则x +y 的值为5、若a 、b 为有理数,且2a 2-2ab +b 2+4a +4=0,则a 2b +ab 2的值为___ ___.6、已知a 、b 、c 满足a 2+2b =7,b 2-2c =-1,c 2-6a =-17,则a +b +c 的值为______.7、已知a 2+2b 2+2c 2-2ab -2bc -6c +9=0,则abc 的值为___ ___.228. 已知a +b +1=ab +a +b ,则3a -4b 的值为___ ___. 2222二、证明字母相等【例2】已知a 、b 、c 是△ABC 的三边,且满足a 2+b 2+c 2-ab -bc -ac =0, ,判断这个三角形的形状.分析:等式两边乘以2, 得2a 2+2b 2+2c 2-2ab -2bc -2ac =0, 配方,得(a 2-2ab +b 2)+(b 2-2bc +c 2)+(c 2-2ca +a 2)=0,即(a -b )+(b -c )+(c -a )=0. 222由非负数的性质得a-b=0,b-c=0,c-a=0,a=b,b=c,c=a,即a=b=c.故△ABC 是等边三角形.变式练习:1、已知3a 2+b 2+c 2=(a +b +c ),求证:a =b =c 2()44442、已知:a +b +c +d =4abcd ,其中a ,b ,c ,d 是正数,求证:a=b=c=d。
乘法公式练习题及答案

乘法公式练习题及答案1.下列各式中,相等关系一定成立的是A.2=2B.=x2-6C.2=x2+y2D.6+x=2.下列运算正确的是A.x2+x2=2xB.a2·a3= a5C.4=16x6D.=x2-3y23.下列计算正确的是232A.·=-8x-12x-4xB.=x3+y3C.=1-16a2D.2=x2-2xy+4y24.的计算结果是A.x4+1B.-x4-1C.x4-1D.16-x45.19922-1991×1993的计算结果是A.1B.-1C.D.-26.对于任意的整数n,能整除代数式-的整数是A.B.C.D.27.=1-25a2, =4x2-9,=4a4-25b28.99×101== .9.=[z+][ ]=z2-2.10.多项式x2+kx+25是另一个多项式的平方,则k=.11.2=2+ ,a2+b2=[2+2], a2+b2=2+,a2+b2=2+ .12.计算.2-2;2-2;2-+2;1.23452+0.76552+2.469×0.7655;-2;+y413.已知m2+n2-6m+10n+34=0,求m+n的值11114.已知a+=4,求a2+2和a4+4的值. aaa15.已知2=654481,求的值.16.解不等式2+2>13.17.已知a=1990x+1989,b=1990x+1990,c=1990x+1991,求a2+b2+c2-ab-ac-bc的值.18.如果=63,求a+b的值.19.已知2=60,2=80,求a2+b2及ab的值.yyy20.化简+++…+,并求当x=2,y=9时1?22?38?9 的值.21.若f=2x-1=2×-1,f=2×3-1),求f?ff0200322.观察下面各式:12+2+22=222+2+32=232+2+42=2……写出第2005个式子;写出第n个式子,并说明你的结论.参考答案1.A2.B3.C4.C5.A6.C7.1-5a x+ -2a2+5b18.100-1 100+199.x-y z- x-y 10.±10 11.4ab -ab22ab12.原式=8mn;原式=-30xy+15y;原式=-8x2+99y2;提示:原式=1.23452+2×1.2345×0.7655+0.76552=2=22= 原式=-xy-3y2;原式=x413.提示:逆向应用整式乘法的完全平方公式和平方的非负性.∵m2+n2-6m+10n+34=0,∴+=0,22即+=0,由平方的非负性可知,?m?3?0,?m?3, ∴ ∴m+n=3+=-2. n??5.?n?5?0,14.提示:应用倒数的乘积为1和整式乘法的完全平方公式.11∵a+=4,∴2=42. aa111∴a2+2a·+2=16,即a2+2+2=16. aaa11∴a2+2=14.同理a4+4=194. aa15.提示:应用整体的数学思想方法,把看作一个整体. ∵2=654481,∴t2+116t+582=654481.∴t2+116t=654481-582.∴=+48×68=654481-582+48×68=654481-582+=654481-582+582-102=654481-100=654381.316.x<17.解:∵a=1990x+1989,b=1990x+1990,c=1990x+1991,∴a-b=-1,b-c=-1,c-a=2.∴a2+b2+c2-ab-ac-be 1=1=[++]七年级数学乘法公式专项练习题一、精心选一选1.下列多项式的乘法中能用平方差公式计算的是A.B.C.D.2.下列等式成立的是A.?4x4?yB.2?4x2?9y2C.??36m2?25D.?m4?4n23.等式?16b4?9a4中,括号内应填入的是A.3a2?4bB.4b2?3aC.?3a2?4bD.a2?4b24.若a2?b2?20,且a?b??4,则a?b的值是A.?B.4C.?5D.55.式子2?2是由两个整式相乘得到的,那么其中的一个整式可能是A.?3B.3C.?11D.117.计算2?2的结果是A.82B.8C.8b2?8aD.8a2?8b28.已知2?13,2?5,则mn的值是A.2B.C.D.二、细心填一填9.?____________.10.?_________.11.a??___________.12.设20082?A,则2007?2009?_________.13.22?__________.14.若4x2?12x?m是关于x的一个完全平方式,则m?_____.第 1 页共页)15.一个正方形的边长是a?12b,则它的面积是______________.16.?_______________.三、耐心做一做17.计算:.18.求值:19. 已知p?q??5,pq?6,求下列各式的值.p2q?pq2; p2?q2.20. 已知甲数为2a,乙数比甲数的2倍多3,丙数比甲数的2倍少3,求这三个数的积,并求当a??2.5时的积.21. 某农场为了鼓励学生集体到农场去参加劳动,许诺学生到农场劳动后,每人将得到与参加劳动人数数量相等的苹果,第一天去农场参加劳动的学生有a人,第二天有b人,第三天有人,第四天有人.请你求出这四天农场共送出多少个苹果?共页第页1112?,其中a?,b?3.33322. 阅读下列材料,解答下列问题.利用完全平方公式把一个式子或一个式子的一部分改写为完全平方式或几个完全平方式的和的形式,这种方法叫做配方法.如a2?2ab?b2?2;x2?4x??x2?4x?43??3; (2)请你给下列两个式子配方:x2?10x?24;9a2?12a?15.七年级数学乘法公式专项练习题参考答案一、1~4. BCAC;~8. DACA.二、9.9?4a2;10.16m2?49; 11.16?2a;12.A2?1;13.p4?8p2?16; 14.9;15.a?ab?214b; 16.x?4y?9z?6xz.22242222三、17.原式a?16.18.原式?19??22892b.当a?223,b?3时,原式?89?3?8. 19.原式?pq?630;原式??2pq??2?6?13.20.由题意,得乙数为4a?3,丙数为4a?3,故这三个数的积是2a2332a?32a?18a.当a??2.5时,原式?32??18455.21.这四天农场共送出的苹果数:a?ba?b?a?2ab ?b?a?4ab?4b?3a?6ab?6b. 2222222222222.x?10x?24?x?10x?25?1??1;9a?12a?15??2?3a?2?2?2?15??11.共页第页222222221. 填空=b2-a2; =a2-4b2;;;;;.计算:;;; 10199.3.计算:4.已知5.先化简,再求值:,,,求:的值。
第09讲 乘法公式(二)(原卷版)

原创精品资源学科网独家享有版权,侵权必究!1第09讲乘法公式(二)1、平方差公式定义:两数和与这两数差相乘,等于这两个数的平方差.()()22a b a b a b +-=-.(1)a 、b 可以表示数,也可以表示式子(单项式和多项式)(2)有些多项式相乘,表面上不能用公式,但通过适当变形后可以用公式:如:()()()()()22a b c b a c b a c b a c b a c +--+=+---=--⎡⎤⎡⎤⎣⎦⎣⎦2、平方差公式的特征:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.(2)右边是乘式中两项的平方差.3、完全平方公式定义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍.()2222a b a ab b +=++.()2222a b a ab b -=-+.4、完全平方公式的特征:(1)左边是两个相同的二项式相乘;(2)右边是三项式,是左边两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;(3)公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.1.下列各式中,计算正确的是().A .()222p q p q -=-B .()22222a b a ab b +=++C .()2242121a a a +=++D .()2222s t s st t --=-+2.计算()()()()4422a b a b b a a b ++-+的结果是().A .88a b -B .66a b -C .88b a -D .66b a -3.下列各式计算正确的是().A .()2222a b c a b c ++=++B .()2222a b c a b c +-=+-C .()()22a b c a b c +-=--+D .()()22a b c a b c +-=-+4.代数式222x x +-可化为()2x m k ++形式,其中m k ,为常数,则m k +的值为().A .2-B .4-C .2D .45.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形(()a b >,把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是().A .()()2222a b a b a ab b +-=+-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()()22a b a b a b -=+-6.如果()()22122163a b a b +++-=,那么a b +的值是________.7.计算:2123461234512347-⨯.8.计算:2222222212345699100-+-+-++- 的值是___________.9.若14x x +=,则221x x +=__________;441x x+=___________.10.已知15a a+=,则4221a a a ++=___________.11.计算:(1)()()()2339x x x +-+;(2)()()()()23452354a b a b a b b a ++--.12.计算:(1)()2a b c --;(2)()()a b c a b c ++--.13.计算:(59)(59)x y x y +--+.abab原创精品资源学科网独家享有版权,侵权必究!314.计算:()()()()()()()24816326421212121212121+++++++.15.若()243225x a x --+是完全平方式,求a 的值.16.如图1,是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为______________________________;(2)观察图2,请你写出三个代数式()2m n +、()2m n -、mn 之间的等量关系式:______________________________;(3)根据(2)中的结论,若6 2.75x y xy +=-=,,则x y -=_______________.(4)有许多代数恒等式可以用图形的面积来表示.如图3,它表示了:()()2m n m n ++2223m mn n =++.试画出一个几何图形,使它的面积能表示()()22343m n m n m mn n ++=++.17.杨辉是我国南宋时著名的数学家,他发现了著名的三角系数表,它的其中一个作用是指导按规律写出形如()n a b +(其中n 为正整数)展开式的系数,请你仔细观察下表中的规律,填出4()a b +展开式中所缺的系数.()1a b a b+=+()1a b a b-=-()2222a b a ab b +=++()()()2222a b a a b b -=+-+-=222a ab b -+()3322333a b a a b ab b +=+++()()()()3233233a b a a b a b b -=+-+-+-(1)仔细观察右边的图和左边的式子,写出()3a b -=___________________;(2)直接在横线上填数字:()44a b a +=+____3a b +____22a b +____3ab +____4b ;(3)请根据你找到的规律写出下列式子的结果:()5x y -=______________________________;()52x y -=______________________________.1.(2022秋·上海浦东新·七年级校考期中)下列式子中不能用平方差公式计算的是()1111111233A .(y +2)(y ﹣2)B .(﹣x ﹣1)(x +1)C .(﹣m ﹣n )(m ﹣n )D .(3a ﹣b )(b +3a )2.(2022秋·上海·七年级专题练习)从图1到图2的变化过程可以发现的代数结论是()A .(a+b)(a-b)=22a b -B .22a b -=(a+b)(a-b)C .222()2a b a ab b +=++D .2222()aab b a b ++=+3.(2022秋·上海嘉定·七年级统考期中)下列多项式中是完全平方式的为()A .24164x x -+B .21394525x x -+C .244x x +-D .291216x x -+4.(2022秋·上海·七年级期末)下列各式是完全平方式的是()A .214x x -+B .21+4x C .22a ab b ++D .221x x +-5.(2022秋·上海·七年级校考期中)下列计算正确的是()A .222()a b a b +=+B .326236a a a ⋅=C .()4312x x -=D .(m)()a b n ab mn++=+二、填空题6.(2022秋·上海·七年级专题练习)如果210x x +-=,则3233123x x x x+-++=_________7.(2022秋·上海闵行·七年级统考期中)已知6x y +=,7xy =,那么22(3)(3)x y x y +++的值为__.8.(2022秋·上海宝山·七年级校考期中)已知[]x 表示不超过x 的最大整数,设α=,则16α⎡⎤=⎣⎦___________9.(2022秋·上海宝山·七年级校考期中)计算:(21)(21)a a ---=____________.10.(2022秋·上海·七年级期末)观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;4325(1)(1)1x x x x x x -++++=- ,根据上述规律,计算:236263122222++++⋯++=____________.这个值的个位数字是_________.11.(2022秋·上海·七年级专题练习)计算:()()a 2bc a 2b c --+-12.(2022秋·上海浦东新·七年级统考期中)已知关于x 的多项式2459x kx --减去原创精品资源学科网独家享有版权,侵权必究!53333k k x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的差是一个单项式,求231k k -+-的值.13.(2022秋·上海长宁·七年级上海市娄山中学校考阶段练习)先化简,再求值:()()()252212153442x x x x y x x y ⎛⎫-+--++--⎪⎝⎭,其中=1x -,2y =.14.(2022秋·上海·七年级上海市建平中学西校校考期中)如图,已知并排放置的正方形ABCD 和正方形BEFG 的边长分别为n ,m (n m >),A 、B 、E 三点在一直线上,且正方形ABCD 和正方形BEFG 的面积之差为30.(1)用含有m 、n 的代数式,表示图中阴影部分的面积;(2)连接CF ,则四边形DGFC 的面积是多少?15.(2022秋·上海普陀·七年级统考期中)已知()22x y -=,32xy =.(1)求22x y +的值;(2)求()()2222x y x y +++的值.16.(2022秋·上海浦东新·七年级统考期中)计算(1)()342a a a ⋅⋅-(2)()()223243234a a a a a -+--(3)334422a b c a b c ⎛⎫⎛⎫+--+ ⎪⎪⎝⎭⎝⎭(4)()()()()232x y x x y x y x ---++17.(2022秋·上海静安·七年级上海市市西中学校考期中)我们规定一种运算:a b ad bc cd=-.例如242534235=⨯-⨯=-,35935x x -=+.按照这个规定,当x 取何值时12021x x x x ++=-+.18.(2022秋·上海宝山·七年级校考期中)先化简再求值:()()()()()23232x y x y x y x y x y ++-++-+,其中12x =,=3y -.1.若()2288201a -=,则代数式()()3818a a --的值是________.计算:()()()2121214a a a +-+=_________2.计算:(1)322v y y -⋅=___________;(2)()23a a -⋅=___________;(3)()322a a +=___________;(4)()()()2121214a a a +-+=___________;(5)11151816⎛⎫-⨯= ⎪⎝⎭___________;(6)()()2022202322-+-=___________.3.计算:(x ﹣2)(x +2)﹣6x (x ﹣3)+5x 24.配方法是数学中非常重要的一种思想方法,它是指将一个式子或将一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法.这种方法常被用到代数式的变形中,并结合非负数的意义来解决问题.定义:若一个整数能表示成22a b +(,a b 为整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,理由:因为22512=+,所以5是“完美数”.解决问题:(1)已知29是“完美数”,请将它写成22a b +(,a b 为整数)的形式:____________(2)若245x x -+可配方成()2x m n -+(,m n 为常数),则mn =___________(3)探究问题:已知222450x y x y +-++=,求x y +的值.。
第1讲 乘法公式的综合应用(学生版)

知识总结典型例题1计算:2已知3若4当5已知6解答下列问题.7设8知识总结典型例题9若10已知:11已知12已知13阅读下列材料,并利用材料中使用的方法解决问题.这样的“走马灯” 性质实在是让人啧啧称奇.于是我们开始好奇,142857 为什么会具有这样神奇的性质?是否还会有其他数具有这样的性质呢?先回答第一个问题.数学系的人也许会高冷地回答你:因为 10 是模 7 的一个原根.但这个回答,一定是令 99 % 的人懵逼的.大部分普通人恐怕会问:“原根” 是什么?当然,也许还有些连初中数学都还给老师的人,会问:“模” 是什么,哈这个问题,其实正是让数学小白们叩开初等数论大门的伟大机会啊!我相信,要完整地理解这个问题的来龙去脉,对于初中数学水平的人,大概也就需要半个小时而已~当然,需要 3 个很简单的前提条件:你知道质数(素数)的概念:只能被 1 和自身整除的数;也知道互质的含义(最大公约数为1);你会竖式计算;你已经知道:142857*7=999999;那么,下面我们开始吧~一、竖式计算的奥秘既然你已经知道了 142857*7=999999,那么你一定很容易联想到 1/7 会有 142857 的循环节.毕竟1000000 除以 7 余 1 嘛!竖式计算告诉我们,产生循环几乎是显然的:仔细观察一下竖式计算,你会发现一个很有趣的现象:前 6 次相减,余数分别 3、2、6、4、5、1,恰好遍历了比 7 小的 1~6,这就意味着,下一个余数无论是几,都必然会和前面的重复,从而必须产生循环.这个现象揭示了一个简单的定理:定理 1.1:1/n 的小数展开,其循环节长度不超过 n-1.如果循环节恰好为 n-1 ,在竖式计算的每一步中,余数一定遍历了 1,2,…,n-1,那么显然,1/n, 2/ n,…, (n-1)/n 的竖式计算,一定能和 1/n 的竖式计算中的某一步衔接起来,循环节会形成 “走马灯” 的效果.反之,对于任意一个“走马灯数”,我们可以把它当做循环小数的循环节,而循环小数必然可以表示成分数 k/n,若循环节小于 n-1,那么余数必然不能遍历 1,2,…,n-1,那么 “走马灯” 的效果则不会出现.于是我们得到了另一个定理:定理 1.2:对每一个 “走马灯数” ,都存在自然数 n,走马灯数为 1/n 的小数展开后的循环节,且这个循环节恰好有 n-1 位.接下来,我们需要寻找满足条件的 n,初等数论的大门将缓缓打开.14如图,在边长为15已知16若17已知18如果多项式19关于多项式20若21已知22已知。
第1讲-乘法公式进阶(配方法)
第1讲-乘法公式进阶(配方法)一、知二推二的应用 二、配方法1.配方法的步骤:①首先按某个字母的降幂排列——“化成一般式”.②分清二次项与一次项,把二次项系数化为1——“提系数”.③加上一次项系数一半的平方,再减去所加的数——“加上一次项系数一半的平方”. 2.配方法的基本应用: ①求最值;②非负性解不定方程. 【例1】(1)已知()()a a 200-198-=999,则()()a a 22200-+198-=________.(2)若()()x x 22+2+-3=13,则()()x x +23-=________.【答案】(1), ,()()[()()]()()a a a a a a 222∴200-+198-=200--198-+2200-198-=2002;(2),所以,.【例2】若x y -=2,x y 22+=4,求x y 19921992+的值.【答案】由x y -=2平方得x xy y 22-2+=4②;又已知x y 22+=4,③③-②得xy xy 2=0⇒=0.所以x ,y 中至少有一个为0,但x y 22+=4. 因此x ,y 中只能有一个为0,另一个为2或-2. 无论哪种情况,都有()x y 19921992199219921992+==0+±2=2.(200)(198)999a a --=(200)(198)2a a ∴---=22(2)(3)x x ++-22(2)(3)x x =++-[]2(2)(3)2(2)(3)x x x x =++--+-252(2)(3)13x x =-+-=2(2)(3)12x x +-=(2)(3)6x x +-=【例3】(1)完成下列配方 ①_____()x x 22+4+= ②_____()x x 22+10+= ③_____()x x 22+7+= ④_____()x x 22+11+= ⑤_____()x x 22-9+= ⑥_____()x x 22-5+= ⑦_____()x x 22-13+=⑧_____()x x 22-15+=通过这道题,你得到的结论是:_____()x ax 22++= _____()x mx 22-+=(2)完成下列配方 ①_______()x x 222+4+= ②_______()x x 222+12+= ③________()x x 223+7+=④________()x x 223+11+= ⑤________()x x 22-+9+= ⑥________()x x 22--5+= ⑦________()x x 22-2-13+=⑧________()x x 22-3-15+=通过这道题,你得到的结论是:________()___()ax bx 22++== ________()___()ax bx 22-++==【答案】(1)①4,x +2;②25,x +5;③494,x 7+2;④1214,x 11+2;⑤814,x 9-2;⑥254,x 5-2;⑦1694,x 13-2;⑧2254,x 15-2.结论:a 2⎛⎫⎪2⎝⎭,a x +2;m 2⎛⎫ ⎪2⎝⎭,m x -2.(2)①2,2,x +1;②18,2,x +3;③4912,3,x 7+6;④12112,3,x 11+6;⑤81⎛⎫- ⎪4⎝⎭,-1,x 9-2;⑥25⎛⎫- ⎪4⎝⎭,-1,x 5+2;⑦169⎛⎫- ⎪8⎝⎭,-2,x 13+4;⑧75⎛⎫- ⎪4⎝⎭,-3,x 5+2;结论:b a24,a ,b b x x a a 222++4,a ,b x a +2;b a 2⎛⎫- ⎪4⎝⎭,a -,b b x x a a 222-+4,a -,b x a -2.【例4】(1)23(2)5x -+的最小值是_________,22(3)7x -+-的最大值是_________.(2)求最值并求出取最值时各未知数的取值:①x x 2-4+1 ②x x 23+-6③x x 2--8+10 ④x x 25-+9 ⑤x x 22+4+7⑥x x 2-2+10【答案】(1)5,-7. (2)①原式()x 2=-2-3,当x =2时,取最小值为-3; ②原式x 2333⎛⎫=+- ⎪24⎝⎭,当x 3=-2,时取最小值33-4;③原式()x 2=-+4+26,当x =3时,取最大值26; ④原式x 2561⎛⎫=--+ ⎪24⎝⎭,当x 5=2时,取最大值614.⑤原式()()x x x 22=2+2+1+5=2+1+5,当x =-1时,有最小值5;⑥原式x x x 222525525⎛⎫⎛⎫=-2-5++=-2-+ ⎪ ⎪4222⎝⎭⎝⎭,当x 5=2时,有最大值252.【例5】(1)若()()x y 22-5++4=0,则x =_______,y =_______.(2)若x y x y 22+-4+6+13=0,则x =_________,y =_________.(3)已知x x y y 222-4+3-12+14=0,求x y xy -2⎛⎫+ ⎪⎝⎭.(4)已知x y z x y z 222++-2+4-6+14=0,求x y z ++的值.【答案】(1)5,-4;; (2)x y x y 22+-4+6+13=0,()()x x y y 22∴-4+4++6+9=0 ()()x y 22∴-2++3=0,x y =2⎧∴⎨=-3⎩.(3)x x y y 222-4+3-12+14=0,()()x x y y 22∴2-2+1+3-4+4=0()()x y 22∴2-1+3-2=0,,x x y y xy -2=1⎧⎛⎫+4∴∴=⎨ ⎪=29⎝⎭⎩.【例6】(1)已知a ab b a 222-2++4+4=0,则a =_________,b =_________.(2)已知x x y xy 222+6+=2-9,则y x =_________.(3)已知a b a b ab 2222+++16=10,那么a b 22+=___________.【答案】(1)-2,-2. (2)x x y xy 222+6+=2-9,()()x y xy x x 222∴+-2++6+9=0()()x y x 22∴-++3=0,x y =-3⎧∴⎨=-3⎩,y x 1∴=-27(3)a b a b ab 2222+++16=10()()()()()a b ab a b ab ab a b a b ab a b a b ab 222222222∴-8+16++-2=0∴-4+-=0-=0⎧∴⎨=4⎩∴+=-+2=8【例7】(1)x xy y y 222-4+5-12+13的最小值是__________.(2)已知a ab b a 22-2+2+4+8=0,求ab .【答案】(1)原式()x xy y y y 222=2-2++3-12+13 ()()()()x y y y x y y 2222=2-+3-4+4+1=2-+3-2+1∴当x y ==2时,原式有最小值1. (2)a ab b a 22-2+2+4+8=0,()a ab b a 22∴2-2+2+4+8=0,a ab b a 22∴2-4+4+8+16=0,a ab b a a 222∴-4+4++8+16=0,()()a b a 22∴-2++4=0,a ∴=-4,b =-2,ab ∴=8.【例8】若4a b +=,求22a b +和ab 的最值.【答案】法一:由题意知,b a =4-,()()a b a a a a a 222222∴+=+4-=2-8+16=2-2+8≥8, ()()ab a a a a a 22=4-=-+4=--2+4≤4.法二:[()()]()a b a b a b a b 2222211+=++-≥+=822,[()()]()ab a b a b a b 22211=+--≤+=444.【课后作业】 【练1】(1)若n 满足22(2010)(2012)1n n -+-=,则(2012)(2010)n n --=__________.(2)已知()()a a 10-7-=40,则()()a a 2210-+7-=________.【答案】(1)令2010n a -=,2012n b -=,则221a b +=、2a b +=, ∴222()()322a b a b ab +-+==. (2)89. 【练2】求最值:(1)xx 2+-43(2)x x 2--2+7 (3)x x 22+ (4)x x 2-4+16-1【答案】(1)最小值1-436;(2)最大值8;(3)最小值1-8;(4)最大值15. 【练3】(1)若x y x y 22+-8+4+20=0,则x =_________,y =_________.(2)已知x y z x y z 222++-6+8-10+50=0,则x y z ++=__________.【答案】(1)4,-2.(2)∵x y z x y z 222++-6+8-10+50=0, ∴()()()x y z 222-3++4+-5=0, 故x =3,y =-4,z =5,x y z ++=4. 【练4】(1)已知x xy y y 22-4+5+6+9=0,则y x -=_______________.(2)已知x xy y y 222-4+5-12+13=1,则x y -3⎛⎫=⎪⎝⎭___________.(3)已知x xy y y 228-12+5-4+8=0,求x y +.【答案】(1)x xy y y 22-4+5+6+9=0()()x xy y y y 222∴-4+4++6+9=0()()x y y 22∴-2++3=0,y ∴=-3,x =-6,y x -∴=-216. (2)x xy y y 222-4+5-12+13=1,()()x xy y y y 222∴2-2++3-4+4=0,()()x y y 22∴2-+3-2=0,x y ∴==2, x y -3⎛⎫∴=1 ⎪⎝⎭; (3)∵x xy y y 228-12+5-4+8=0, ∴x xy y y 2216-24+10-8+16=0,∴x xy y y y 22216-24+9+-8+16=0,即()()x y y 224-3+-4=0, ∴x =3,y =4, ∴x y +=7.【练5】求x y x y 22++10+8+50的最小值,并写出取得最小值时x 、y 的取值.【答案】9,此时x =-5,y =-4. 【练6】若4a b -=,求22a b +和ab 的最值.【答案】法一:[()()]()a b a b a b a b 2222211+=++-≥-=822,[()()]()ab a b a b a b 22211=+--≥--=-444.法二:由题意知,b a =-4,()()a b a a a a a 222222∴+=+-4=2-8+16=2-2+8≥8.。
乘法公式——完全平方公式专题训练试题精选(五)附答案
完全平方公式专题训练试题精选(五)一.填空题(共30小题)1.(1999•内江)配方:x2+4x+_________=(x+_________)2.2.(1999•杭州)如果a+b+,那么a+2b﹣3c=_________.3.设a>b>0,a2+b2=4ab,则的值等于_________.4.如果x+=2,则=_________.5.已知x﹣=1,则=_________.6.若x<0且,则=_________.7.已知实数x,y满足方程(x2+2x+3)(3y2+2y+1)=,则x+y=_________.8.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=_________.9.已知:m,n,p均是实数,且mn+p2+4=0,m﹣n=4,则m+n=_________.10.若x2﹣4x﹣1=(x+a)2﹣b,则|a﹣b|=_________.11.若a+b﹣3=0,则a2+2ab+b2﹣6的值为_________.12.已知(a+b)2=36,ab=2,当a>b时,a﹣b=_________.13.已知实数a、b满足(a+b)2=1和(a﹣b)2=25,则a2+b2+ab=_________.14.如果x2﹣2(m+1)x+m2+5是一个完全平方式,则m=_________.15.(x+b)2=x2+ax+121,则ab=_________.16.如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,在空位上填出(a+b)8的展开式中最中间一项的系数_________.17.利用乘法公式计算:982+4×98+4=(_________+_________)2=_________.18.已知,则的值为_________.19.已知代数式x2+4x可以利用完全平方公式变形为(x+2)2﹣4,进而可知x2+4x的最小值是﹣4,依此方法,代数式x2+y2+6x﹣2y+12的最小值是_________.20.简便计算:80002﹣16000×7998+79982=_________.21.若x2﹣mx+16=(x﹣4)2,那么m=_________.22.已知a>0,且a﹣=2,那么a2+的值等于_________.23.当a=b+时,a2﹣2ab+b2=_________.24.若x=2﹣,则x2﹣4x+8=_________.25.(3x﹣1)2=9x2_________+1.26.填空,使等式成立:x2+10x+_________=(x+_________)227.已知(a+2b)2=(a﹣2b)2+A,则A=_________.28.当a﹣b=5,ab=﹣2时,代数式(a﹣b)2+4ab的值是_________.29.已知x2﹣4x+1=0,那么的值是_________.30.已知a2+b2=6ab,且a>b>0,则的值为_________.完全平方公式专题训练试题精选(五)参考答案与试题解析一.填空题(共30小题)1.(1999•内江)配方:x2+4x+4=(x+2)2.考点:完全平方公式.分析:根据乘积二倍项和已知平方项确定出这两个数是x和2,再根据完全平方公式解答.解答:解:∵4x=2×2•x,∴这两个数是x和2,∴x2+4x+4=(x+2)2.故应填:4;2.点评:本题考查了完全平方公式,根据乘积二倍项和已知的平方项确定出这两个数是求解的关键.2.(1999•杭州)如果a+b+,那么a+2b﹣3c=0.考点:完全平方公式;非负数的性质:绝对值;非负数的性质:偶次方.专题:压轴题.分析:先移项,然后将等号左边的式子配成两个完全平方式,从而得到三个非负数的和为0,根据非负数的性质求出a、b、c的值后,再代值计算.解答:解:原等式可变形为:a﹣2+b+1+|﹣1|=4+2﹣5(a﹣2)+(b+1)+|﹣1|﹣4﹣2+5=0(a﹣2)﹣4+4+(b+1)﹣2+1+|﹣1|=0(﹣2)2+(﹣1)2+|﹣1|=0;即:﹣2=0,﹣1=0,﹣1=0,∴=2,=1,=1,∴a﹣2=4,b+1=1,c﹣1=1,解得:a=6,b=0,c=2;∴a+2b﹣3c=6+0﹣3×2=0.点评:此题较复杂,能够发现所给等式的特点,并能正确地进行配方是解答此题的关键.3.设a>b>0,a2+b2=4ab,则的值等于.考点:完全平方公式;代数式求值.专题:计算题.分析:由a2+b2=4ab,先求出(a+b)和(a﹣b)的平方,进而求出()2=3,然后再求算术平方根.解答:解:由a2+b2=4ab,可得:(a+b)2=6ab﹣﹣﹣﹣(1);(a﹣b)2=2ab﹣﹣﹣(2);(1)÷(2)得=3,∵a>b>0,∴a﹣b>0,即>0,故=.点评:此题有一定难度,考查了完全平方公式的灵活应用,熟练掌握公式并灵活运用是解题的关键.4.如果x+=2,则=.考点:完全平方公式.分析:由于=,故先由已知条件求得x2+的值后,代入即可.解答:解:∵(x+)2=x2+2+=4,∴x2+=2,∴==.故本题答案为:.点评:此题主要考查了完全平方式的运用.完全平方公式:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2;当两个数的互为倒数时(如:()2=a2+2+),它们完全平方后的乘积项是个常数.像此类题型往往根据这个特点求它们的平方和.5.已知x﹣=1,则=.考点:完全平方公式.专题:整体思想.分析:把x﹣=1两边平方求出x2+的值,再把所求算式整理成的形式,然后代入数据计算即可.解答:解:∵x﹣=1,∴x2+﹣2=1,∴x2+=1+2=3,===.故应填:.点评:本题主要考查完全平方公式的运用,利用好乘积二倍项不含字母是常数是解题的关键,另外,对所求算式分子分母都除以x2,整理出已知条件的形式也很关键.6.若x<0且,则=.考点:完全平方公式.分析:把所给的等式平方,所求式子平方,整理即可得到答案.解答:解:对式子两边平方得,x2+﹣2=8,∴x2+=10,∴x2++2=(x+)2,=10+2,=12,∵x<0,∴x+=﹣2.点评:本题考查了完全平方公式,利用好乘积二倍项不含字母是常数是解题的关键,公式:(a±b)2=a2±2ab+b2.7.已知实数x,y满足方程(x2+2x+3)(3y2+2y+1)=,则x+y=﹣.考点:完全平方公式;非负数的性质:偶次方.专题:计算题.分析:在原式基础上去分母后,把等式左边变成两个完全平方式,然后利用非负数的性质求出x和y的值,最后代入求解.解答:解:∵(x2+2x+3)(3y2+2y+1)=,∴[(x+1)2+2][3y2+2y+1]×3=4,∴[(x+1)2+2][9y2+6y+3]=4,∴[(x+1)2+2][(3y+1)2+2]=4,∵(x+1)2≥0,(3y+1)2≥0,∴x+1=0,3y+1=0,∴x=﹣1,y=﹣,∴x+y=﹣.点评:本题考查了完全平方公式,巧妙运用了完全平方公式和非负数的性质,整理成平方的形式是解题的关键.8.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=0.考点:完全平方公式.专题:计算题.分析:本题不应考虑直接求出2008﹣a与2007﹣a的值,而应根据已知等式的特点,用配方法进行求解.解答:解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.点评:本题考查了完全平方公式,根据式子特点,等式两边都减去2(2008﹣a)(2007﹣a),转化为完全平方式是解题的关键.9.已知:m,n,p均是实数,且mn+p2+4=0,m﹣n=4,则m+n=0.考点:完全平方公式.专题:计算题.分析:由mn+p2+4=0可得出mn=﹣p2﹣4;将m﹣n=4的左右两边同时乘方,根据完全平方公式两公式之间的联系整理出(m+n)2,然后开方即可求出m+n的值.解答:解:∵mn+p2+4=0,m﹣n=4,∴mn=﹣p2﹣4,(m﹣n)2=16,∴(m+n)2﹣4mn=(m﹣n)2=16,∴(m+n)2=16+4mn,=16+4(﹣p2﹣4),=﹣4p2;∵m,n,p均是实数,∴(m+n)2=﹣4p2≥0,∴p=0,∴m+n=0.故答案是:0.点评:本题考查了完全平方公式,关键是要灵活运用完全平方公式,整理出(m+n)2的形式.10.若x2﹣4x﹣1=(x+a)2﹣b,则|a﹣b|=7.考点:完全平方公式;绝对值.专题:计算题.分析:根据完全平方公式把(x+a)2展开,再根据对应项系数相等列式求解即可.解答:解:∵(x+a)2﹣b=x2+2ax+a2﹣b,∴2a=﹣4,a2﹣b=﹣1,解得a=﹣2,b=5,∴|a﹣b|=|﹣2﹣5|=7.故本题的答案是7.点评:本题主要考查完全平方公式,需要熟练掌握并灵活运用,还考查负数的绝对值等于它的相反数的性质.11.若a+b﹣3=0,则a2+2ab+b2﹣6的值为3.考点:完全平方公式.专题:计算题.分析:将已知条件转化为a+b=3;然后将所求的代数式a2+2ab+b2﹣6中的a2+2ab+b2利用转化为完全平方和的形式后,把a+b=3代入其中并求值即可.解答:解:∵a+b﹣3=0,∴a+b=3;∴a2+2ab+b2﹣6=(a+b)2﹣6=32﹣6=3.故答案是:3.点评:本题考查了完全平方公式.解答该题需要熟记完全平方公式:(a±b)2=a2±2ab+b2.12.已知(a+b)2=36,ab=2,当a>b时,a﹣b=.考点:完全平方公式.专题:计算题.分析:根据完全平方公式将a﹣b转化为(a﹣b)2=(a+b)2﹣4ab=28;然后根据已知条件a>b求解即可.解答:解:∵(a+b)2=36,ab=2,∴(a﹣b)2=(a+b)2﹣4ab,=36﹣8,=28;∴a﹣b=±2;又∵a>b,∴a﹣b>0,∴a﹣b=2.故答案是:2.点评:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.13.已知实数a、b满足(a+b)2=1和(a﹣b)2=25,则a2+b2+ab=7.考点:完全平方公式.专题:计算题.分析:首先由(a+b)2=1和(a﹣b)2=25,可求得a2+b2+2ab=1,a2+b2﹣2ab=25,然后将a2+b2与ab看作整体,解方程即可求得其值,则可求得答案.解答:解:∵(a+b)2=1,(a﹣b)2=25,∴a2+b2+2ab=1①,a2+b2﹣2ab=25②,①+②得:a2+b2=13,①﹣②得:ab=﹣6,∴a2+b2+ab=13﹣6=7.故答案为:7.点评:本题考查了完全平方公式的应用.解题的关键是整体思想的应用.14.如果x2﹣2(m+1)x+m2+5是一个完全平方式,则m=2.考点:完全平方公式.分析:根据完全平方公式的乘积二倍项和已知平方项确定出这两个数,列式求解即可.完全平方公式:(a±b)2=a2±2ab+b2.解答:解:∵m2+5=(m+1)2=m2+2m+1,∴m=2.点评:本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.此题解题的关键是利用乘积项与平方项之间的关系来求值.15.(x+b)2=x2+ax+121,则ab=242.考点:完全平方公式.专题:计算题.分析:把等式左边展开,再根据对应项系数相等,列出方程解出a、b,从而解答.解答:解:∵(x+b)2=x2+2bx+b2=x2+ax+121,∴b2=121,a=2b,∴b=11,a=22或b=﹣11,a=﹣22∴ab=242.点评:本题考查完全平方公式,根据对应项系数相等列出方程是解题的关键.16.如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,在空位上填出(a+b)8的展开式中最中间一项的系数70.考点:完全平方公式.专题:规律型.分析:阅读材料题要认真分析题中所给出的数据,从而找到一般性的规律.本题的规律是下一行的数据是上一行对应2个数的和.解答:解:根据图中所揭示的规律可知第9行数据为1,8,28,56,70,56,28,8,1,所以(a+b)8的展开式中最中间一项的系数70.点评:本题考查了完全平方公式的推广,探寻并总结出系数的变化规律是解题的关键.17.利用乘法公式计算:982+4×98+4=(98+2)2=10000.考点:完全平方公式.专题:推理填空题.分析:根据原式可知4=22,4×98=2×2×98,逆用完全平方公式进行解答即可.解答:解:∵4=22,4×98=2×2×98,∴982+4×98+4=(98+2)2=10000.故答案为:98,2,10000.点评:本题考查的是完全平方公式,即(a+b)2=a2+b2+2ab.18.已知,则的值为4+2.考点:完全平方公式.专题:计算题.分析:根据完全平方公式求得(x+)2的值,然后再来求的值.解答:解:∵=,又∵,∴=﹣2=4+2.故答案为:4+2.点评:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.19.已知代数式x2+4x可以利用完全平方公式变形为(x+2)2﹣4,进而可知x2+4x的最小值是﹣4,依此方法,代数式x2+y2+6x﹣2y+12的最小值是2.考点:完全平方公式;非负数的性质:偶次方.分析:把代数式x2+y2+6x﹣2y+12配方成a(x+b)2+c的形式,根据任何数的平方是非负数即可求解.解答:解:x2+y2+6x﹣2y+12=x2+6x+9+y2﹣2y+1+2=(x+3)2+(y﹣1)2+2,∵(x+3)2≥0,(y﹣1)2≥0,∴(x+3)2+(y﹣1)2+2的最小值是2.故答案为:2.点评:本题主要考查配方这种基本的方法,在式子的变形中要注意变化前后式子的值不变.20.简便计算:80002﹣16000×7998+79982=4.考点:完全平方公式.专题:计算题.分析:根据完全平方公式得出原式=(8000﹣7998)×(8000﹣7998),求出即可.解答:解:80002﹣16000×7998+79982=80002﹣2×8000×7998+79982,=(8000﹣7998)×(8000﹣7998),=2×2,=4,故答案为:4.点评:本题考查了对完全平方公式的灵活运用,主要考查学生运用公式进行计算的能力,题型较好,是一道比较好的题目.21.若x2﹣mx+16=(x﹣4)2,那么m=8.考点:完全平方公式.分析:把等号右边的式子展开,再根据对应项系数相等解答.解答:解:∵(x﹣4)2=x2﹣8x+16,x2﹣mx+16=(x﹣4)2,∴﹣m=﹣8,解得m=8.点评:此题主要考查了完全平方式的运用.当等号一边的式子可以用公式展开时,一般要展开.22.已知a>0,且a﹣=2,那么a2+的值等于8.考点:完全平方公式.专题:计算题.分析:可以先把已知式子a﹣=2两边同时平方,展开后即可得出结论.解答:解:∵a﹣=2,∴(a﹣)2=4,即a2+﹣4=4,∴a2+=8.点评:本题考查了利用完全平方公式恒等变形的能力,利用好乘积二倍项不含字母是常数是解本题的关键.23.当a=b+时,a2﹣2ab+b2=.考点:完全平方公式.分析:将a=b+化为,a﹣b=,再两边平方求得a2﹣2ab+b2的值.解答:解:∵a=b+,∴a﹣b=,两边平方得:a2﹣2ab+b2=.点评:考查了完全平方公式的运用.24.若x=2﹣,则x2﹣4x+8=14.考点:完全平方公式.专题:计算题.分析:先把x2﹣4x+8凑成完全平方式的形式(x﹣2)2+4,然后把x的值代入求解.解答:解:∵x2﹣4x+8,=x2﹣4x+4+4,=(x﹣2)2+4,当x=2﹣时,原式=(2﹣﹣2)2+4=10+4=14.点评:本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.解该题的关键是把式子凑成完全平方式的形式,然后再代入x的值,运算更加简便.25.(3x﹣1)2=9x2﹣6x+1.考点:完全平方公式.分析:根据完全平方公式,这里首末两项是3x和1的平方,那么中间项为减去3x和1的乘积的2倍.解答:解:(3x﹣1)2=9x2﹣6x+1.点评:本题考查了完全平方公式,两数的平方和减去它们乘积的2倍,熟记公式结构是解题的关键.26.填空,使等式成立:x2+10x+25=(x+5)2考点:完全平方公式.分析:完全平方公式:(a±b)2=a2±2ab+b2,从公式上可知.解答:解:∵10x=2×5x,∴x2+10x+52=(x+5)2.故应填:25;5.点评:本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.要求熟悉完全平方公式,并利用其特点解题.27.已知(a+2b)2=(a﹣2b)2+A,则A=8ab.考点:完全平方公式.分析:把方程变形为:A=(a+2b)2﹣(a﹣2b)2,再用完全平方公式展开求解得到A.解答:解:∵(a+2b)2=(a﹣2b)2+A,∴A=(a+2b)2﹣(a﹣2b)2,=a2+4ab+4b2﹣a2+4ab﹣4b2,=8ab.点评:本题主要考查完全平方公式,熟记公式结构并表示出A的式子是关键.28.当a﹣b=5,ab=﹣2时,代数式(a﹣b)2+4ab的值是17.考点:完全平方公式.分析:直接把已知条件的数据代入计算即可.解答:解:∵a﹣b=5,ab=﹣2,∴(a﹣b)2+4ab=52+4×(﹣2)=17.点评:本题考查了代数式求值的方法,同时还考查了整体思想的运用.29.已知x2﹣4x+1=0,那么的值是.考点:完全平方公式.专题:计算题.分析:把已知条件两边都除以x,得到x+=4,然后两边平方,利用完全平方公式展开,求出x2+的值,再把所求代数式分子分母都除以x2,然后整体代入计算即可得解.解答:解:把x2﹣4x+1=0方程两边都除以x得,x+=4,两边平方得,x2++2=16,所以,x2+=14,===.故答案为:.点评:本题考查了完全平方公式的应用,把已知条件与所求代数式进行变形出现x互为倒数的和的形式是解题的关键.30.已知a2+b2=6ab,且a>b>0,则的值为2.考点:完全平方公式.专题:计算题.分析:首先由a2+b2=6ab,即可求得:(a+b)2=8ab,(a﹣b)2=4ab,然后代入即可求得答案.解答:解:∵a2+b2=6ab,∴a2+b2+2ab=8ab,a2+b2﹣2ab=4ab,即:(a+b)2=8ab,(a﹣b)2=4ab,∴==2.故答案为:2.点评:本题主要考查完全平方公式.注意熟记公式的几个变形公式,还要注意整体思想的应用.。
配方法的应用精选题43道
配方法的应用精选题43道一.选择题(共19小题)1.如果ax2=(3x﹣)2+m,那么a,m的值分别为()A.3,0B.9,C.9,D.,92.代数式x2﹣4x+5的最小值是()A.﹣1B.1C.2D.53.在△ABC中,内角A、B、C的对边分别为a、b、c.若b2+c2=2b+4c﹣5且a2=b2+c2﹣bc,则△ABC的面积为()A.B.C.D.4.若x2+mx+19=(x﹣5)2﹣n,则m+n的值是()A.﹣16B.16C.﹣4D.45.若M=5x2﹣12xy+10y2﹣6x﹣4y+13(x、y为实数),则M的值一定是()A.非负数B.负数C.正数D.零6.已知P=2m﹣3,Q=m2﹣1(m为任意实数),则P、Q的大小关系为()A.P>Q B.P≤Q C.P<Q D.不能确定7.关于代数式﹣x2+4x﹣2的取值,下列说法正确的是()A.有最小值﹣2B.有最大值2C.有最大值﹣6D.恒小于零8.若代数式x2+6x+m=(x+n)2﹣1,则m=()A.﹣8B.9C.8D.﹣99.若a2+6a+b2﹣4b+13=0,则a b的值是()A.8B.﹣8C.9D.﹣910.已知关于x的多项式﹣x2+mx+9的最大值为10,则m的值可能为()A.1B.2C.4D.511.多项式2x2﹣2xy+5y2+12x﹣24y+51的最小值为()A.41B.32C.15D.1212.若a2+2a+b2﹣6b+10=0,则b a的值是()A.﹣1B.3C.﹣3D.13.对于任意实数x,多项式x2﹣6x+10的值是一个()A.负数B.非正数C.正数D.无法确定正负的数14.若3x2+6x+2=a(x+k)2+h(其中a、k、h为常数),则k和h的值分别为()A.1,1B.1,﹣1C.1,﹣D.﹣1,15.已知代数式x2﹣4x+7,则()A.有最小值7B.有最大值3C.有最小值3D.无最大值和最小值16.不论x、y为什么实数,代数式x2+y2+2x﹣4y+9的值()A.总不小于4B.总不小于9C.可为任何实数D.可能为负数17.关于x、y的多项式x2﹣4xy+5y2+8y+15的最小值为()A.﹣1B.0C.1D.218.不论a为何实数,代数式a2﹣4a+5的值一定是()A.正数B.负数C.零D.不能确定19.对于代数式x2﹣4x+5,通过配方能说明它有最小值为()A.5B.1C.4D.9二.填空题(共17小题)20.设x,y为实数,代数式5x2+4y2﹣8xy+2x+4的最小值为.21.代数式x2+8x+5的最小值是.22.若x2﹣4x+5=(x﹣2)2+m,则m=.23.填空:x2﹣4x+3=(x﹣)2﹣1.24.若把代数式x2﹣4x﹣5化成(x﹣m)2+k的形式,其中m,k为常数,则m+k=.25.已知a﹣b=2,ab+2b﹣c2+2c=0,当b≥0,﹣2≤c<1时,整数a的值是.26.已知x,y为实数,求代数式x2+y2+2x﹣4y+7的最小值.27.已知a2+b2+4a﹣8b+20=0.则b a=.28.若a,b,c是实数,且a+b+c=2+4+6﹣14,则2b+c=.29.代数式2a2﹣a+10的最小值是.30.代数式x2+10y2+6xy﹣4y+4的最小值为.31.若a2+b2+c2﹣ab﹣bc﹣ac=0,且a+3b+4c=16,则a+b+c的值为.32.把x2﹣4x+1化为(x+h)2+k(其中h、k是常数)的形式是.33.设A=2a2﹣a+3,B=a2+a,则A与B的大小关系为.34.代数式2x2﹣4x+1的最小值为.35.已知代数式x2+2x+5可以利用完全平方公式变形为(x+1)2+4,进而可知x2+2x+5的最小值是4.依此方法,代数式y2﹣y+5的最小值是.36.4x2+9y2+12x﹣6y+10=0,则8x﹣9y=.三.解答题(共7小题)37.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?38.仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.39.已知实数a,b,c满足(a﹣b)2+b2+c2﹣8b﹣10c+41=0.(1)分别求a,b,c的值;(2)若实数x,y,z满足,,,求的值.40.阅读下列两则材料,回答问题材料一:我们将(+)与(﹣)称为一对“对偶式”因为(+)(﹣)=()2﹣()2=a﹣b,所以构造“对偶式”相乘可以有效地将(+)和(﹣)中的“”去掉例如:已知﹣=2,求+的值.解:(﹣)×(+)=(25﹣x)﹣(15﹣x)=10∵﹣=2,∴+=5材料二:如图,点A(x1,y1),点B(x2,y2),以AB为斜边作Rt△ABC,则C(x2,y1),于是AC=|x1﹣x2|,BC=|y1﹣y2|,所以AB=.反之,可将代数式的值看作点(x1,y1)到点(x2,y2)的距离.例如===.所以可将代数式的值看作点(x,y)到点(1,﹣1)的距离.(1)利用材料一,解关于x的方程:﹣=2,其中x≤4;(2)①利用材料二,求代数式的最小值,并求出此时y与x的函数关系式,写出x的取值范围;②将①所得的y与x的函数关系式和x的取值范围代入y=+中解出x,直接写出x的值.41.阅读与应用:同学们,你们已经知道(a﹣b)2≥0,即a2﹣2ab+b2≥0.所以a2+b2≥2ab (当且仅当a=b时取等号).阅读1:若a、b为实数,且a>0,b>0,∵()2≥0,∴a﹣2+b≥0,∴a+b ≥2(当且仅当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数).由阅读1结论可知:x+即x+∴当x=即x2=m,∴x=(m>0)时,函数y=x+的最小值为2阅读理解上述内容,解答下列问题:问题1:若函数y=a+(a>1),则a=时,函数y=a+(a>1)的最小值为.问题2:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,矩形周长的最小值为.问题3:求代数式(m>﹣1)的最小值.问题4:建造一个容积为8立方米,深2米的长方体无盖水池,池底和池壁的造价分别为每平方米120元和80元,设池长为x米,水池总造价为y(元),求当x为多少时,水池总造价y最低?最低是多少?42.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时,∵,∴,当且仅当a=b时取等号.请利用上述结论解决以下问题:(1)当x>0时,的最小值为;当x<0时,的最大值为.(2)当x>0时,求的最小值.(3)如图,四边形ABCD的对角线AC,BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.43.阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式a2﹣2a+5的最小值.方法如下:∵a2﹣2a+5=a2﹣2a+1+4=(a﹣1)2+4,由(a﹣1)2≥0,得(a﹣1)2+4≥4;∴代数式a2﹣2a+5的最小值是4.(1)仿照上述方法求代数式x2+10x+7的最小值;(2)代数式﹣a2﹣8a+16有最大值还是最小值?请用配方法求出这个最值.。
专题02 乘法公式重难点题型专训(11大题型+15道拓展培优)(原卷版)
专题02 乘法公式重难点题型专训(11大题型+15道拓展培优)【题型目录】题型一 运用平方差公式进行运算题型二 平方差公式与几何图形题型三 运用完全平方公式进行运算题型四 通过完全平方公式变形求值题型五 求完全平方公式中的字母系数题型六 完全平方式在几何图形中的应用题型七 整式的混合运算题型八 乘法公式中的多结论问题题型九 乘法公式的相关计算题型十 乘法公式中的“知二求三”题型十一 乘法公式与几何图形的综合应用【知识梳理】知识点一、平方差公式平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.特别说明:在这里,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如利用加法交换律可以转化为公式的标准型(2)系数变化:如(3)指数变化:如(4)符号变化:如(5)增项变化:如(6)增因式变化:如知识点二、完全平方公式完全平方公式:两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.特别说明:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:22()()a b a b a b +-=-b a ,()()a b b a +-+(35)(35)x y x y +-3232()()m n m n +-()()a b a b ---()()m n p m n p ++-+2244()()()()a b a b a b a b -+++()2222a b a ab b +=++2222)(b ab a b a +-=-【经典例题一【例1A.【变式训练】1.(2023(+(21)4.(2024上·广东湛江·八年级校考期末)观察下列计算∶()()22a b a b a b -+=-()()2233a b a ab b a b -++=-()()322344a ab ab a b b b a +++=--(1)猜想∶ ()()1211n n a a a a ---++++=L _______________________.(其中n 为正整数,且2n ³);(2)利用(1)猜想的结论计算∶ 109873222222221++++++++L ;【经典例题二 平方差公式与几何图形】【例2】(2023下·甘肃兰州·七年级统考期中)下面给出的三幅图都是将阴影部分通过割,拼,形成新的图形,其中不能验证平方差公式的是( )A .①B .②③C .①③D .③【变式训练】1.(2023上·吉林白城·八年级统考期末)如图,从边长为()3a +的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线剪开后又拼成如图的长方形(不重叠,无缝隙),则拼成的长方形的另一边的长为( )A .26a +B .22a +C .6a +2.(2023上·河南周口·八年级校联考阶段练习)有正方形纸片A 3.(2024上·云南玉溪·八年级统考期末)如图甲所示,边长为乙是由图甲中阴影部分拼成的一个长方形,设图甲中阴影部分面积为(1)请直接用含a 和b 的代数式表示达).(2)试利用这个公式计算:112æ-çè(1)上述操作能验证的等式是_______.(请选择正确的一个)A .()()22=a b a b a b -+-;B .22a ab -+(2)请应用(1)中的等式完成下列各题:①2202320242022-´;【经典例题三【例则2a +【变式训练】1.(2023·A .(1)如图所示图形可验证的等式是:(2)计算:2+´+2.23 4.463.77(3)运用(1)中的等式,若x【经典例题四【例4【变式训练】1.(2024(1)观察图2,请你直接写出下列三个代数式:(a+(2)晓晓同学利用上面的纸片拼出了一个面积为2a _______.(3)根据(1)题中的等量关系,解决如下问题:数学思考:利用图形推导的数学公式解决问题(1)已知7a b +=,12ab =,求22a b +的值;(2)已知()()202420222023x x --=,求()()2220242022x x -+-的值.拓展运用:如图3,点C 是线段AB 上一点,以AC ,BC 为边向两边作正方形【经典例题五【例5( )【变式训练】1.(2024整式B ,使得2A B =,则称A 完全平方式.例如()242a a =,()242a a =,()2244121a a a -+=-,则4a ,2441a a -+均为完全平方式.(1)下列各式中是完全平方式的是 (只填序号).①6a ;②22a ab b ++;③21025x x --;④269m m ++(2)将(1)中所选的完全平方式写成一个整式的平方的形式.(3)若2x x m ++是完全平方式,求m 的值.4.(2023上·山西晋中·九年级统考期中)阅读与思考如果一个多项式()20,0ax bx c a c ++>>是完全平方式,那么它的各项系数a ,b ,c 之间存在着怎样的关系呢?围绕这个问题,小丽同学所在的小组进行了如下探究,请你加入他们的探究并补全探究过程:探究完全平方式各项系数的关系举例探究:将下列各式因式分解:()22211x x x ++=+;2816x x -+= ;24129x x -+= ;观察发现:观察以上三个多项式的系数,我们发现:224110-´´=;()2841160--´´=;()2124490--´´=;归纳猜想:若多项式()200,0ax bx c a c ++=>>是完全平方式,猜想:系数a ,b ,c 之间存在的关系式为 ;验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论:解决问题:若多项式()()()26261n x n x n +++++是一个完全平方式,利用你猜想的结论求出n 的值.【经典例题六【例6已知大正方形的面积是【变式训练】1.(2021划出长方形(1)你认为图②中阴影部分的正方形的边长等于_______.(2)请用两种不同的方法列代数式表示图②中阴影部分的面积方法①___________;方法②__________.(3)观察图②,试写出()2m n +,()2m n -,mn 这三个代数式之间的等量关系(1)代数式241x x -+有最 (填大或小)值,这个值(2)解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为计一个尽可能大的花圃,如图设长方形一边长度为【经典例题七【例7A .2b a =B .3b a =【变式训练】1.(2022上·重庆北碚·九年级西南大学附中校考开学考试)设()()22@x y x y x y =+--,则下列结论:①若@0x y =,则x ,y 均为0;②()@@@x y z x y x z +=+;③存在实数x ,y ,满足22@5x y x y =+;④设x ,y 是矩形的长和宽,若矩形的周长固定,则当x y =时,@x y 最大.其中正确的个数( )A .4个B .3个C .2个D .1个2.(2022·河北保定·校考模拟预测)已知222810x x -=,则()()()212111x x x ---++= 3.(2024上·四川成都·八年级校考期末)(1)先化简,再求值:2()()()()x y x x y x y x y +-++-+,其中2x =-,1y =-.(2)已知260m m --=,求2(2)(2)(4)m n m n n m +-+-的值.4.(2024上·福建莆田·八年级统考期末)庆祝元旦期间,张老师出了一道“年份题”:计算22222023202320242024+´+的算术平方根.张老师提示可将上述问题一般化为:计算2222(1)(1)n n n n ++++的算术平方根(n 为正整数),然后对n 进行特殊化:当1n =时,222221122(121)+´+=´+,当2n =时,222222233(231)+´+=´+,当3n =时,222223344(341)+´+=´+,……(1)根据以上规律,请直接写出22222023202320242024+´+的算术平方根;(按规律写出结果即可,不必计算)(2)根据以上等式规律,请写出第n 个等式,并验证其正确性;(3)某同学将上述问题更一般化为:计算2222n n m m ++的算术平方根,并猜想22222()n n m m nm m n ++=+-,【经典例题八【例82x,第二项是【变式训练】1.(2023①不存在这样的实数【经典例题九【例9(1)(x【变式训练】1.(2023【经典例题十【例10(1)2x【变式训练】1.(20233ab =Q ,2225225619a b ab \+=-=-=.()2222a b a b ab \+=+-.5a b +=Q ,3ab =,2225619a b \+=-=.请你参照上面两种解法中的一种,解答以下问题.(1)已知1a b -=,229a b +=,求ab 的值;(2)已知14a a +=,求21a a æö-ç÷èø的值.3.(2023上·福建厦门·八年级厦门市第十中学校考期中)已知4m n -=-,2mn =,求下列代数式的值.(1)22m n +(2)()()11m n +-4.(2023上·广西南宁·八年级广西大学附属中学校考期中)阅读下列材料并解答下面的问题:利用完全平方公式()2222a b a ab b ±=±+,通过配方可对22a b +进行适当的变形,如:()2222a b a b ab +=+-或()2222a b a b ab +=-+,从而使某些问题得到解决.例:已知5,3+==a b ab ,求22a b +的值.解:()2222252319a b a b ab +=+-=-´=.通过对例题的理解解决下列问题:(1)已知2,3a b ab -==,求22a b +的值;(2)若16a a +=,求221a a+的值;(3)若n 满足()()22202420231n n -+-=,求式子()()20242023n n --的值.【经典例题十一【例11A 种纸片是边长为【发现】(1)根据图2,写出一个我们熟悉的数学公式 ;【应用】(2)根据(1)中的数学公式,解决如下问题:①已知:7a b +=,22a b 29+=,求ab 的值;【变式训练】1.(2023的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由(1)若用不同的方法计算这个边长为(2)若实数a,b,c满足3.(2023上·湖北武汉·七年级统考期中)问题呈现数学运用:如图,分别以a ,b ,m ,n 为边长作正方形,已知m n >且满足①222224a m abmn b n -+=与②2222216b m abmn a n ++=.若图4中阴影部分的面积为3,图5中梯形ABCD 的面积为5,则图5阴影部分的面积是______.(直接写出结果).【拓展培优】1.(2024A .①②B .①③C .①②③D .①②④6.(2023·江苏泰州·统考一模)已知()()2022202448x x --=,则代数式2(2023)x -的值为 7.(2024上·湖北随州·八年级统考期末)如果()2221914a b a b +=+=,,则()2a b -= .9.(2023上·江苏南通·八年级统考期中)请同学们运用公式题:已知,,a b c 满足2226a b c ++=10.(2024上·湖南湘西·八年级统考期末)完全平方公式(2)利用等量关系解决下面的问题:①5a b -=,6ab =-,求()2a b +和22a b +的值;②已知13x x -=,求441x x +的值.根据上面灰太狼的解题思路与方法,请解决下列问题:(1)①若4mn =,22m n +②若6x y +=,22x y +=③若6a b +=,4ab =,则。