七年级数学上册第五章《应用一元一次方程——水箱变高了》试题北师大版
北师大版数学七年级上册:5.3 应用一元一次方程——水箱变高了 同步练习(附答案)

3 应用一元一次方程——水箱变高了1.把一个用铁丝围成的长方形改制成一个正方形,则这个正方形与原来的长方形相比( )A .面积与周长都不变化B .面积相等但周长发生变化C .周长相等但面积发生变化D .面积与周长都发生变化2.根据图中给出的信息,可得正确的方程是( )A .π×(82)2×x =π×(62)2×(x +5) B .π×82×x =π×62×5C .π×(82)2×x =π×(62)2×(x -5) D .π×82×x =π×62×(x -5)3.有一个底面半径为10 cm ,高为30 cm 的圆柱形大杯中存满了水,把水倒入一个底面直径为10 cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( )A .6 cmB .8 cmC .10 cmD .12 cm4.要锻造直径为16 cm 、高为5 cm 的圆柱形毛坯,设需截取横截面边长为6 cm 的方钢(横截面为正方形的钢材)x cm ,则可得方程为 .5.一个长方体合金底面长为80 mm 、宽为60 mm 、高为100 mm ,现要锻压成新的长方体合金,其底面是边长为40 mm 的正方形,则新长方体合金的高为 .6.将一个底面半径为6 cm 、高为40 cm 的“瘦长”圆柱形钢材锻压成底面半径为12 cm 的“矮胖”圆柱形零件毛坯,请问毛坯的高是多少?7.在“爱护环境,建我家乡”的活动中,七(1)班学生回收饮料瓶共10 kg ,男生回收的重量是女生的4倍,设女生回收饮料瓶x kg ,根据题意,可列方程为( )A .4(10-x)=xB .x +14x =10 C .4x =10+x D .4x =10-x8.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多55人.设到雷锋纪念馆的人数为x 人,可列方程为 .9.李明和他父亲年龄的和为55岁,又知父亲的年龄比他年龄的3倍少1岁,求李明和他父亲的年龄分别为多少岁?10.有一根钢管长12米,要锯成两段,使第一段比第二段短2米,求每段长各多少米?11.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有女子善织,日自倍,五日织五尺.问日织几何?译文:一位善于织布的妇女,每天织的布都是前一天的2倍,她5天共织了5尺布,问在这5天里她每天各织布多少尺?设她第一天织布为x尺,以下列出的方程正确的是( )A.x+2x=5 B.x+2x+4x+6x+8x=5C.x+2x+4x+8x+16x=5 D.x+2x+4x+16x+32x=512.用长为1米、直径为50毫米的圆钢可以拉成直径为1毫米的钢丝米.13.一个两位数,个位数字与十位数字的和是9.若将个位数字与十位数字对调后所得的新数比原数小9,则原来的两位数为.14.如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为平方厘米.(1毫升=1立方厘米)15.用长为10 m的铁丝沿墙围成一个长方形(墙的一面为长方形的长,不用铁丝),长方形的长比宽多1 m,求长方形的面积.16.在一个底面直径为5 cm,高为18 cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6 cm,高为10 cm的圆柱形玻璃杯中,能否完全装下?若装不下,则瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.17.如图,长方形ABCD 中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为 .18.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?1.C2.A3.C4.(162)2π×5=62·x . 5.300_mm .6.解:设毛坯的高为x cm ,根据题意,得π×62×40=π×122·x.解得x =10.答:毛坯的高是10 cm.7.D8.2x +55=589-x .9.解:设李明的年龄为x 岁,则他父亲的年龄为(3x -1)岁,可列方程为 3x -1+x =55,解得x =14.则3x -1=41.答:李明的年龄为14岁,他父亲的年龄为41岁.10.解:设第二段长为x 米,则第一段长为(x -2)米.根据题意,得x +(x -2)=12.解得x =7.答:第一段长为5米,第二段长为7米.11.C12.2_500.13.54.14.25.15.解:设宽为x m,则长为(x+1)m.根据题意,得2x+(x+1)=10.解得x=3.所以x+1=4.故长方形的面积为3×4=12(m2).答:长方形的面积为12 m316.解:设圆柱形瓶内的水倒入玻璃杯中水的高度为x cm.由题意,得(52)2π×18=(62)2πx.解得x=12.5.因为12.5>10,所以不能完全装下.设瓶内水还剩y cm高.由题意,得(52)2π×18=(52)2πy+(62)2π×10.解得y=3.6.答:瓶内水还剩3.6 cm 高.17.44_cm 2.18.解:设这批书共有3x 本.根据题意,得 2x -4016=x +409.解得x =500.所以3x =1 500.答:这批书共有1 500本.。
最新北师大版七年级数学上册《应用一元一次方程——水箱变高了》同步精品练习题

5.3 应用一元一次方程——水箱变高了一、选择题(每小题4分,共12分)1.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出了这块矿石的体积.如果他量出玻璃杯的内直径是d,把矿石完全浸没在水中,测出杯中水面上升的高度为h,则小明的这块矿石体积是( )A.错误!未找到引用源。
d2hB.错误!未找到引用源。
d2hC.πd2hD.4πd2h2.小明用长250cm的铁丝围成一个长方形,并且长方形的长比宽多25cm,设这个长方形的长为x cm,则x等于( )A.75 cmB.50 cmC.137.5 cmD.112.5 cm3.请根据图中给出的信息,可得正确的方程是( )A.π·(错误!未找到引用源。
)2x=π·(错误!未找到引用源。
)2·(x+5)B.π·(错误!未找到引用源。
)2x=π·(错误!未找到引用源。
)2·(x-5)C.π·82x=π·62(x+5)D.π·82x=π·62×5二、填空题(每小题4分,共12分)4.一根内径为3cm的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8cm、高为1.8cm的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了cm.5.用直径为4cm的圆钢,铸造三个直径为2cm,高为16cm的圆柱形零件,则需要截取的圆钢长cm.6.用5个一样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是,宽是.答案解析1.【解析】选 A.根据圆柱的体积公式可得这块矿石的体积为:错误!未找到引用源。
d2h.2.【解析】选A.根据题意得:2(x+x-25)=250,解得:x=75.3.【解析】选A.根据圆柱的体积公式求得大量筒中的水的体积为:π×(错误!未找到引用源。
北师大版七年级上册5.3 应用一元一次方程——水箱变高了同步测试

应用一元一次方程——水箱变高了(含答案)一.选择题:(四个选项中只有一个是正确的,选出正确选项填在题目的括号内)1.直径为80mm 、高为60mm 的圆柱的体积是直径为40mm 、高为x (mm )的圆柱的体积的5倍,则所列方程正确的是( )A .2240805()()6022x π⨯⋅=π⋅⨯B .2280540()602x π⋅⋅=π⋅⨯ C .2280405()602x π⋅⋅=π⋅⨯ D .224080()5()6022x π⨯⋅=π⋅⨯ 2.用长为30米的铁丝围成一个长方形方框,使长为7.8米、宽为x 米,则可列方程为( )A .27.830x +⨯=B .7.830x +=C .27.830x +=D .2(7.8)30x +=3.要修一块周长为140m 的长方形绿地,并且长比宽多10m ,设绿地的宽为x (m );根据题意,正面列出的方程正确的是( )A .2(10)140x -=B .[]2(10)140x x +-=C .2(10)140x +=D .[]2(10)140x x ++=4.已知长方形的长是宽的3倍,如果宽增加4米,而长减少5米,那么面积增加15米2,设长方形原来的宽为x 米,则可列方程( )A .2(4)(35)153x x x +-+=B .2(4)(35)153x x x +--=C .2(4)(35)153x x x -+-=D .2(4)(35)153x x x -++=5.要锻造一个直径为10cm ,高为6cm 的圆柱形毛坯,至少要截取直径为5cm 的圆钢( )A .10cmB .20cmC .24cmD .30cm6.在周长为10米的长方形窗户钉上一块宽为1米的长方形遮阳布,使透光部分正好是正方形,则钉好后透光面积为( )A .4米2B .9米2C .16米2D .25米27.内径为200mm 、内高为360mm 的圆柱形玻璃杯内盛满水,倒入内径为240mm 的圆柱形玻璃杯,刚好倒满,则内径为240mm 的玻璃杯的内高是( )A .240mmB .250mmC .260mmD .270mm8.用一根长为48cm 的铁丝围成一个长与宽的比是5:1的长方形,则长方形的面积是( )A .50cm 2B .80cm 2C .100cm 2D .200cm 29.有甲、乙、丙三个圆柱形容器,甲的内径(指直径)为10cm ,高为40cm ,乙的内径(指直径)为20cm ,高为40cm ,甲、乙容器都装满了水,把甲、乙容器的水都倒入内径(指直径)为40cm 的丙容器中,而使水不溢出,则丙容器至少要高( )cmA .12.5B .20C .25D .3010.一个长方形的长比宽多4cm ,若把它的长、宽分别增加4cm 后,面积增加了48cm 2,则原来的长方形的长、宽分别是( )A .4cm ,2cmB .6cm ,2cmC .6cm ,4cmD .8cm ,4cm 二.填空题:(将正确答案填在题目的横线上)11.将一个底面直径为50cm ,高为36cm 的圆柱锻压成底面直径为30cm 的圆柱,高变成了多少?设_____________________________,填表:由题意,可列方程:____________________________;12.将一个底面直径为10cm,高为40cm的圆柱锻压成一个底面直径为20cm的圆柱,求它的高;若设高为xcm,则所列的方程为___________________________;13.钢锭的截面是正方形,其边长是40厘米,要锻造成长、宽、高分别为50厘米,20厘米,10厘米的长方体,应截取这种钢锭的长度为________厘米;14.如图,“目”字形木窗框的木条总长是7.2米,窗的高比宽多0.6米,则窗的宽是_______米;15.有一个底面半径为20cm,高为20 cm的圆柱形大杯中存满了水,把它里边的水倒入一个底面半径为5 cm的圆柱形小杯中,刚好倒满20杯,则小杯的高为__________cm;三.解答题:(写出必要的说明过程,解答步骤)16.用一根绳子可以围成一个边长是16cm的正方形,若用这根绳子围成一个长比宽多2cm 的长方形,求长方形的面积;17.将一个底面直径为20cm,高为60cm的圆柱锻压成一个底面直径为40cm的圆柱,高缩短了多少?18.如图,由6个正方形拼成一个大长方形,如果中间最小的的正方形边长为5cm,求拼成的长方形的面积;第14题图19.如图,宽为50cm的长方形由10个全等的小长方形拼成,求小长方形的面积;20.一个长方形的养鸡场的长边靠墙,墙长16.5米,其他三边用竹篱笆围成,现有长为41米的竹篱笆,甲打算用它围成一个养鸡场,其中长比宽多5米;乙也打算用它围成一个养鸡场,其中长比宽多3.5米;谁的设计符合实际?按照他的设计,养鸡场的面积是多少?5.3应用一元一次方程——水箱变高了参考答案:1~10 ADDBC ABBAB11.高变成了xcm ,可列方程:22536π⋅⨯=215x π⋅⋅;12.221020()40()22x π⋅⨯=π⋅⋅; 13.6.25; 14.1.34; 15.16; 16.设长方形的宽为xcm ,则长为(x +2)cm ,由题意得:2[x +(x +2)]=16 解得:x=3,∴x +2=5∴长方形的面积为:3×5=15(cm 2)17.设锻压后的圆柱高为xcm , 由题意得:222040()60()22x π⋅⨯=π⋅⋅ 解得:x=15 又60-15=45 ∴锻压后的圆柱的高缩短了45cm ;18.设右下角的两个小正方形的边长为xcm ,由图可得:长方形的宽为:(5)(10)215x x x +++=+长方形的长为:(5)x x x +++ 或表示为:(10)(105)x x +++ ∴(5)(10)(15)x x x x x +++=+++ 解得:20x =∴长方形的长为:65,宽为55;∴长方形的面积为:65×55=3575(cm 2);19.设小长方形的宽为xcm ,由图可得:小长方形的长为:50252= 由42550x += 得:254x = ∴ 小长方形的面积为: 22525156.25()4cm ⨯=; 20.甲的设计方案:设长方形的宽为x 米,则长为(x +5)米根据题意,得2x +(x +5)=41 解得x =12∴甲设计的长为x +5=12+5=17(米)而墙的长度只有16.5米,∴甲的设计不符合实际;乙的设计方案:设宽为y 米,则长为(y +3.5)米根据题意,得:2y +(y +3.5)=41 解得x =12.5∴乙设计的长为:x +3.5=12.5+3.5=16(米)而墙的长度是16.5米,∴乙的设计符合要求此时,养鸡场的面积为12.5×16=200 (米2)答:乙的设计符合要求,按他的设计养鸡场的面积是200米2;。
七年级上应用一元一次方程水箱变高了训练题有解析北师大版

适用精选文件资料分享七年级上应用一元一次方程- 水箱变高了训练题(有解析北师大版)七年级上应用一元一次方程 - 水箱变高了训练题(有解析北师大版)(30 分钟 50 分) 一、选择题( 每题 4 分, 共 12 分) 1. 小明在一次登山活动中捡到一块矿石 , 回家后 , 他使用一把刻度尺 , 一只圆柱形的玻璃杯和足量的水 , 就丈量出了这块矿石的体积 . 假如他量出玻璃杯的内直径是 d, 把矿石完满吞没在水中 , 测出杯中水面上涨的高度为h, 则小明的这块矿石体积是() A. d2h B. d2h C. π d2h πd2h 2. 小明用长 250cm的铁丝围成一个长方形 , 而且长方形的长比宽多 25cm,设这个长方形的长为 x cm,则 x 等于请依据图中给出的信息 , 可得正确的方程是( ) A. π?( )2x= π?( )2?(x+5) B. π?( )2x= π?( )2?(x -5) C.π?82x=π? 62(x+5) D.π?82x=π?62×5 二、填空题 ( 每题 4 分,共12 分) 4. 一根内径为3cm的圆柱形长试管中装满了水, 现把试管中的水逐渐滴入一个内径为 8cm、高为 1.8cm 的圆柱形玻璃杯中 , 当玻璃杯装满水时 , 试管中的水的高度降落了cm. 5. 用直径为4cm的圆钢 , 锻造三个直径为 2cm,高为 16cm的圆柱形部件 , 则需要截取的圆钢长cm. 6. 用 5 个相同大小的小长方形恰好可以拼成以以下列图的大长方形 , 若大长方形的周长是14, 则小长方形的长是, 宽是.三、解答题(共26分) 7.(8分)将一个底面半径是 5 厘米 , 高为 10 厘米的圆柱体冰淇淋盒改造成一个直径为20 厘米的圆柱体 , 若体积不变 , 高为多少 ? 8.(8 分) 长方形纸片的长是15cm,长、宽上各剪去 1 个宽为 3cm的长条 , 剩下的面积是原面积的 . 求原面积 . 【拓展延伸】 9.(10 分) 一个长方形的鸡场的长边靠墙 , 墙长14 米, 其余三边用篱笆笆围成 , 现有长为 35 米的篱笆笆 , 小王打算用它围成一个鸡场 , 此中长比宽多 5 米; 小赵也打算用它围成一个鸡场 , 此中长比宽多 2 米, 你以为谁的设计切合实质 ?依据他的设计 , 鸡场的面积是多少 ?答案解析 1. 【解析】选 A. 依据圆柱的体积公式可得这块矿石的体积为: d2h. 2. 【解析】选 A. 依据题意得 : 2(x+x-25)=250, 解得 :x=75.3.【解析】选 A. 依据圆柱的体积公式求得大批筒中的水的体积为: π×( )2x.小量筒中的水的体积为:π×( )2×(x+5).依据等量适用精选文件资料分享关系列方程得 : π×( )2x= π×( )2(x+5). 4.【解析】设试管中的水的高度降落了 xcm, 依据题意得 : π?1.52?x= π?42×1.8,解方程得:x=12.8.答案:12.8 5.【解析】设截取的圆钢长xcm. 依据题意得: π×( )2x=3 ×π×( )2 ×16, 解方程得 :x=12. 答案: 12 6. 【解析】设小长方形的宽为 x, 则长为 2x, 由题意得 :(5x+2x) ×2=14, 解方程得 x=1, 即小长方形的宽为 1, 长为 2. 答案: 2 1 7. 【解析】设圆柱体的高为 x 厘米 . 依据题意得 :25 π×10=1 00 πx, 解得:x=2.5. 答: 高为 2.5 厘米 . 8. 【解析】设长方形纸片的宽是 xcm,原面积是 15xcm2, 长、宽上各剪去 1 个宽为 3cm的长条 , 剩下的面积是12(x-3)cm2, 由题意得:15x ×=12(x -3), 所以9x=12(x-3), 解方程得x=12, 12×15=180(cm2), 所以原面积是180cm2. 9. 【解析】依据小王的设计可以设宽为 x 米, 则长为 (x+5) 米, 依据题意得:2x+(x+5)=35, 解方程得 :x=10. 所以小王设计的长为x+5=10+5=15(米), 而墙的长度只有 14 米, 故小王的设计不切合实质 . 依据小赵的设计可以设宽为 y 米, 则长为 (y+2) 米, 依据题意得2y+(y+2)=35, 解方程得 :y=11. 所以小赵设计的长为y+2=11+2=13(米), 而墙的长度为 14 米, 明显小赵的设计切合实质 , 此时鸡场的面积为13×11=143(平方米 ).。
北师大版七年级数学上册应用一元一次方程——水箱变高了测试题

5.3 应用一元一次方程——水箱变高了一、选择题(每小题4分,共12分)1.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出了这块矿石的体积.如果他量出玻璃杯的内直径是d,把矿石完全浸没在水中,测出杯中水面上升的高度为h,则小明的这块矿石体积是( )A.d2hB.d2hC.πd2hD.4πd2h2.小明用长250cm的铁丝围成一个长方形,并且长方形的长比宽多25cm,设这个长方形的长为x cm,则x等于( )A.75 cmB.50 cmC.137.5 cmD.112.5 cm3.请根据图中给出的信息,可得正确的方程是( )A.π·()2x=π·()2·(x+5)B.π·()2x=π·()2·(x-5)C.π·82x=π·62(x+5)D.π·82x=π·62×5二、填空题(每小题4分,共12分)4.一根内径为3cm的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8cm、高为1.8cm的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了cm.5.用直径为4cm的圆钢,铸造三个直径为2cm,高为16cm的圆柱形零件,则需要截取的圆钢长cm.6.用5个一样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是,宽是.答案解析1.【解析】选A.根据圆柱的体积公式可得这块矿石的体积为:d2h.2.【解析】选A.根据题意得:2(x+x-25)=250,解得:x=75.3.【解析】选A.根据圆柱的体积公式求得大量筒中的水的体积为:π×()2x. 小量筒中的水的体积为:π×()2×(x+5).根据等量关系列方程得:π×()2x=π×()2(x+5).4.【解析】设试管中的水的高度下降了xcm,根据题意得:π·1.52·x=π·42×1.8,解方程得:x=12.8.答案:12.85.【解析】设截取的圆钢长xcm.根据题意得:π×()2x=3×π×()2×16,解方程得:x=12.答案:126.【解析】设小长方形的宽为x,则长为2x,由题意得:(5x+2x)×2=14,解方程得x=1,即小长方形的宽为1,长为2.答案:2 1掌握的三个数学答题方法树枝答题法关注数学题的解题过程2014年上海市中考状元徐瑜卿认为,数学是一门思维学科,并不是平时做题多就一定会拿高分。
北师大版初中数学七年级上册《5.3 应用一元一次方程——水箱变高了》同步练习卷

北师大新版七年级上学期《5.3 应用一元一次方程——水箱变高了》同步练习卷一.选择题(共41小题)1.某商场一种品牌的服装标价为每件1000元,为了参与市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利进价的20%.若设这种服装每件的进价是x元,请列出关于x的方程是()A.1000×85%﹣40=20%xB.(1000﹣40)×85%﹣x=20%xC.1000×85%﹣40﹣x=20%×1000D.1000×85%﹣40=(1+20%)x2.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x 元,由题意得()A.40x+60(x﹣20)=6000B.40x+60(x+20)=6000C.60x+40(x﹣20)=6000D.60x+40(x+20)=60003.游泳池中有一批小朋友,男生戴蓝色游泳帽,女生戴红色游泳帽.如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍.设男孩有x 人,则可列方程()A.x=2(x﹣2)B.x﹣1=2(x﹣2)C.x=2(x﹣1)D.x﹣1=2x4.某班分两组志愿者去社区服务,第一组20人,第二组26人.现第一组发现人手不够,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A.20=2(26﹣x)B.20+x=2×26C.2(20+x)=26﹣x D.20+x=2(26﹣x)5.甲、乙两人从学校到博物馆去,甲每小时走4km,乙每小时走5km,甲先出发0.1h,结果乙还比甲早到0.1h.设学校到博物馆的距离为xkm,则以下方程正确的是()A.B.C.D.4x﹣0.1=5x+0.16.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x天,由题意得方程()A.+=1B.+=1C.+=1D.+=17.轮船在静水中的速度为20km/h,水流速度为4km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5h(不计停留时间),求甲、乙两码头间的距离.设甲、乙两码头间的距离为x km/h,则列出的方程正确的是()A.20x+4x=5B.(20+4)x+(20﹣4)x=5C.D.8.10月31日是王阳明先生诞辰日,为纪念王阳明先生诞辰545周年,某校在余姚阳明文化周期间组织了阳明文化节,某班有42名同学报名参加了阳明心学讲坛或阳明书画社活动,已知参加阳明心学讲坛的人数比参加阳明书画社的人数多4人,两个活动都参加的有22人,问参加阳明心学讲坛的有多少名同学?设参加阳明心学讲坛的有x名同学,根据题意,可列方程为()A.x+x+4﹣22=42B.x+x﹣4﹣22=42C.x+x+4+22=42D.x+x﹣4+22=429.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完,设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x10.杭州市用水收费规定如下:若每户每月的用水量不超过18立方米,则每立方米水价按2.9元收费,若用水量在18﹣25(含)立方米之间,则超过18立方米部分每立方米按3.85元收费,已知小静家1月份共交水费67.6元.若设小静家1月份用了x立方米的水,根据题意列出关于x的方程,正确的是()A.3.85x=67.6B.18×2.9+3.85(x﹣18)=67.6C.18×2.9+3.85x=67.6D.18×2.9+3.85(25﹣x)=67.611.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程①60m+10=62m﹣8;②60m+10=62m+8;③;④中,其中正确的有()A.①③B.②④C.①④D.②③12.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x个苹果,则列出的方程是()A.3x+1=4x﹣2B.3x﹣1=4x+2C.D.13.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④14.某村原有林地54公顷,旱地108公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108B.54﹣x=20%×(108+x)C.54+x=20%×162D.108﹣x=20%(54+x)15.用铝片做听装饮料瓶,现有150张铝片,每张铝片可制瓶身16张或制瓶底43张,一个瓶身和两个瓶底可配成一套,设用x张铝片制瓶身,则下面所列方程正确的是()A.2×16x=43(150﹣x)B.16x=43(150﹣x)C.16x=2×43(150﹣x)D.16x=43(75﹣x)16.一标志性建筑的底面呈长方形,长是宽的2倍,在其四周铺上花岗岩,形成一个边宽为3米的长方形框(如图所示).已知铺这个框恰好用了504块边长为0.5米的正方向花岗岩(接缝忽略不计).若设此标志性建筑底面长方形的宽为x米,给出下列方程:①4×3(2x+3)=0.5×0.5×504;②2×3(2x+6)+2×3x=0.5×0.5×504;③(x+6)(2x+6)﹣2x•x=0.5×0.5×504,其中正确的是()A.②B.③C.②③D.①②③17.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A.18(42﹣x)=12x B.2×18(42﹣x)=12xC.18(42﹣x)=2×12x D.18(21﹣x)=12x18.某区今年暑假选派了180名教师担任G20交通引导志愿者、80名教师担任安全维护志愿者,现要把一部分安全维护志愿者调到交通引导志愿者队伍中,使安全维护志愿者人数占交通引导志愿者人数的30%,设把x名安全维护志愿者调到交通引导志愿者队伍中,则可列方程()A.80﹣x=30%×(180+x)B.80﹣x=30%×180C.180+x=30%×(80﹣x)D.80﹣x=30%×26019.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品进价为200元,按标价的五折销售,仍可获利10%,设这件商品的标价为x元,根据题意列出方程()A.0.5x﹣200=10%×200B.0.5x﹣200=10%×0.5xC.200=(1﹣10%)×0.5x D.0.5x=(1﹣10%)×20020.若m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车,有下列四个等式:(1)40m+10=43m+1;(2)=;(3)=;(4)40m﹣10=43m﹣1,其中正确的是()A.(1)(2)B.(2)(4)C.(1)(3)D.(3)(4)21.七年级1班学生参加净化校园劳动,其中参加打扫操场的有28人,参加清洗教室的有20人,现根据需要,从参加清洗教室的同学中抽调部分去打扫操场,使参加打扫操场的人数是参加清洗教室人数的2倍,问应从参加清洗教室的同学中抽调多少人去打扫操场?设应抽调x人去打扫操场,可得正确方程是()A.28﹣x=2(20﹣x)B.28+x=2(20+x)C.28+x=2(20﹣x)D.28﹣x=2(20+x)22.包装厂有42名工人,每人平均每天可以生产圆形铁片120片或长方形铁片80片.为了每天生产的产品刚好制成一个个密封的圆桶,应该分配多少名工人生产圆形铁片,多少名工人生产长方形铁片?设应分配x名工人生产长方形铁片,(42﹣x)名工人生产圆形铁片,则下列所列方程正确的是()A.120x=2×80(42﹣x)B.80x=120(42﹣x)C.2×80x=120(42﹣x)D.23.甲、乙两人从学校到博物馆去,甲每小时走4km,乙每小时走6km,甲先出发1h,结果乙还比甲早到1h.设学校到博物馆的距离为S,则以下方程正确的是()A.B.C.D.4S﹣1=6S+1 24.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()A.(1+50%)x×80%﹣x=8B.50%x×80%﹣x=8C.(1+50%)x×80%=8D.(1+50%)x﹣x=825.某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x小时,则可列方程得()A.B.C.D.26.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则还多出2个座位,有下列四个等式:①40m+10=43m﹣2;②=;③=;④40m﹣10=43m+2.其中正确的是()A.①②B.②④C.①③D.③④27.小红去水果店买苹果,店内一欧四种苹果,各品种的单价如下表所示:回家后,小红根据买的情况看列了一个方程50﹣12.4x﹣9(4﹣x)=3.8(设购买B品种的苹果x千克),像考考妈妈,下列说法与实际购买信息不符合的是()A.一共买了4千克苹果B.(4﹣x)表示买C品种苹果的千克数C.没有买A,D品种的苹果D.本次购买苹果共支出50元28.“实现五水共治,绿化美丽东吴”,东吴镇计划把某一河岸的一侧全部载上杨柳树,要求岸边的两端各载上一棵,并且每两棵树的间隔相等,如果每隔4米栽1棵,则树苗缺25棵;如果每隔5米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.4(x+25)=5x B.4(x+25)=5(x﹣1)C.4(x+25﹣1)=5x D.4(x+25﹣1)=5(x﹣1)29.洪峰到来前,120名战士奉命加固堤坝,已知5人运沙袋3人堆垒沙袋,正好运来的沙袋能及时用上且不窝工,为了合理安排,如果设x人运送沙袋,其余人堆垒沙袋,那么以下所列方程正确的是()A.=x B.120﹣x=xC.x=(120﹣x)D.3x+2x=12030.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44B.5x+4(x﹣2)=44C.9(x+2)=44D.9(x+2)﹣4×2=4431.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106C.518﹣x=2(106+x)D.518+x=2(106﹣x)32.为了参加社区“畅响G20”文艺演出,某校组建了46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调了部分同学参加合唱队,使合唱队的人数恰好是舞蹈队人数的3倍,设从舞蹈队中抽调了x人参加合唱队,可得正确的方程是()A.3(46﹣x)=30+x B.46+x=3(30﹣x)C.46﹣3x=30+x D.46﹣x=3(30﹣x)33.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程()A.98+x=x﹣3B.98﹣x=x﹣3C.(98﹣x)+3=x D.(98﹣x)+3=x﹣334.一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?如果设还要租x辆客车,可列方程为()A.44x﹣328=64B.44x+64=328C.328+44x=64D.328+64=44x 35.有一批画册,若3人合看一本,则多余2本;若2人合看一本,就有9人没有,设人数为x,则列出的方程是()A.3x+2=2x﹣9B.﹣2=C.+2=D.+2=﹣9 36.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108B.54﹣x=20%(108+x)C.54+x=20%×162D.108﹣x=20%(54+x)37.汽车队运送一批货物,若每辆车装4吨,还剩下8吨未装;若每辆车装4.5吨,恰好装完,求这个车队有多少辆车?设这个车队有x辆车,可列方程为()A.4x﹣8=4.5x B.4x+8=4.5xC.4(x﹣8)=4.5x D.4(x+8)=4.5x38.2013年“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A.30x+8=31x﹣26B.30x+8=31x+26C.30x﹣8=31x﹣26D.30x﹣8=31x+2639.某人以每小时5千米的速度从家步行到单位上班,下班时以每小时4千米的速度按原路返回,结果下班时比上班时多用10分钟,如果设上班时所用的时间为x小时,则下列根据题意所列方程正确的是()A.5x=4(x﹣10)B.C.D.40.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵,设有x 棵树,则根据题意列出方程正确的是()A.10x﹣6=12x+6B.=C.10x+6=12x﹣6D.=41.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x名工人生产螺栓,其他工人生产螺母,所列方程正确的是()A.12x=18(26﹣x)B.18x=12(26﹣x)C.2×18x=12(26﹣x)D.2×12x=18(26﹣x)二.填空题(共9小题)42.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/小时,设A港和B港相距x千米,则根据题意列出的方程是.43.整理一批图书,由一个人做要40小时完成,现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?设先安排x人工作,可列方程:.44.如图,天平左边放着3个乒乓球,右边放5.4g的砝码和1个乒乓球,天平恰好平衡.如果设1个乒乓球的质量为x(g),请你列出一个含有未知数x的方程.45.某村原有林地108公顷,旱地54公公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x公顷旱地改为林地,则为可列方程为.46.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产了60件,设原计划每小时生产y个零件,可列方程为.47.某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x万元,则可列出的方程为.48.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.49.一个数的3倍比它的2倍多10,若设这个数为x,可得到方程.50.一轮船从甲港顺流驶到乙港,比从乙港返回甲港少用了2.5小时,若船速为26千米/时,水速为2千米/时,求甲港和乙港相距多少千米?设甲港和乙港相距x千米,根据题意,可列出的方程是.北师大新版七年级上学期《5.3 应用一元一次方程——水箱变高了》2019年同步练习卷参考答案与试题解析一.选择题(共41小题)1.某商场一种品牌的服装标价为每件1000元,为了参与市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利进价的20%.若设这种服装每件的进价是x元,请列出关于x的方程是()A.1000×85%﹣40=20%xB.(1000﹣40)×85%﹣x=20%xC.1000×85%﹣40﹣x=20%×1000D.1000×85%﹣40=(1+20%)x【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,100×85%﹣40=x(1+20%),故选:D.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.2.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x 元,由题意得()A.40x+60(x﹣20)=6000B.40x+60(x+20)=6000C.60x+40(x﹣20)=6000D.60x+40(x+20)=6000【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,40x+60(x﹣20)=6000,故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.3.游泳池中有一批小朋友,男生戴蓝色游泳帽,女生戴红色游泳帽.如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍.设男孩有x 人,则可列方程()A.x=2(x﹣2)B.x﹣1=2(x﹣2)C.x=2(x﹣1)D.x﹣1=2x【分析】设男孩有x人则女孩有(x﹣1)人,根据题意可得等量关系:男孩人数=2×(女孩人数﹣1),根据等量关系列出方程即可.【解答】解:设男孩有x人则女孩有(x﹣1)人,由题意得:x=2(x﹣2),故选:A.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.4.某班分两组志愿者去社区服务,第一组20人,第二组26人.现第一组发现人手不够,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A.20=2(26﹣x)B.20+x=2×26C.2(20+x)=26﹣x D.20+x=2(26﹣x)【分析】设抽调x人,则调后一组有(20+x)人,第二组有(26﹣x)人,根据关键语句:使第一组的人数是第二组的2倍列出方程即可.【解答】解:设抽调x人,由题意得:20+x=2(26﹣x),故选:D.【点评】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.5.甲、乙两人从学校到博物馆去,甲每小时走4km,乙每小时走5km,甲先出发0.1h,结果乙还比甲早到0.1h.设学校到博物馆的距离为xkm,则以下方程正确的是()A.B.C.D.4x﹣0.1=5x+0.1【分析】根据题意可以列出相应的方程,本题得以解决.【解答】解:由题意可得,,故选:B.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.6.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x天,由题意得方程()A.+=1B.+=1C.+=1D.+=1【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出等式即可.【解答】解:设乙独做x天,由题意得方程:+=1.故选:B.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题关键.7.轮船在静水中的速度为20km/h,水流速度为4km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5h(不计停留时间),求甲、乙两码头间的距离.设甲、乙两码头间的距离为x km/h,则列出的方程正确的是()A.20x+4x=5B.(20+4)x+(20﹣4)x=5C.D.【分析】首先理解题意找出题中存在的等量关系:顺水从甲到乙的时间+逆水从乙到甲的时间=5小时,根据此等式列方程即可.【解答】解:设两码头间的距离为x km,则船在顺流航行时的速度是:24km/时,逆水航行的速度是16km/时.根据等量关系列方程得:.故选:D.【点评】考查了由实际问题抽象出一元一次方程.列方程解应用题的关键是找出题目中的相等关系,注对于此类题目要意审题.8.10月31日是王阳明先生诞辰日,为纪念王阳明先生诞辰545周年,某校在余姚阳明文化周期间组织了阳明文化节,某班有42名同学报名参加了阳明心学讲坛或阳明书画社活动,已知参加阳明心学讲坛的人数比参加阳明书画社的人数多4人,两个活动都参加的有22人,问参加阳明心学讲坛的有多少名同学?设参加阳明心学讲坛的有x名同学,根据题意,可列方程为()A.x+x+4﹣22=42B.x+x﹣4﹣22=42C.x+x+4+22=42D.x+x﹣4+22=42【分析】设参加阳明心学讲坛的有x名同学,根据参加阳明心学讲坛的人数+参加阳明书画社的人数﹣两个活动都参加的有22人=42列出方程.【解答】解:设参加阳明心学讲坛的有x名同学,根据题意,可列方程为x+x﹣4﹣22=42.故选:B.【点评】考查了由实际问题抽象出一元一次方程.解题的关键是读懂题意,找到等量关系,列出方程.9.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完,设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,5(x+21﹣1)=6(x﹣1),故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程,注意要求路的两端各栽一棵.10.杭州市用水收费规定如下:若每户每月的用水量不超过18立方米,则每立方米水价按2.9元收费,若用水量在18﹣25(含)立方米之间,则超过18立方米部分每立方米按3.85元收费,已知小静家1月份共交水费67.6元.若设小静家1月份用了x立方米的水,根据题意列出关于x的方程,正确的是()A.3.85x=67.6B.18×2.9+3.85(x﹣18)=67.6C.18×2.9+3.85x=67.6D.18×2.9+3.85(25﹣x)=67.6【分析】根据水费是由两部分费用组成,不超过18立方米的费用和超过18立方米的费用相加即可.【解答】解:设小静家1月份用了x立方米的水,不超过18立方米收费为18×2.9,超过18立方米的水费为3.85×(x﹣18),即18×2.9+3.85(x﹣18)=67.6,故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,解题的关键是理解水费的收费标准.11.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程①60m+10=62m﹣8;②60m+10=62m+8;③;④中,其中正确的有()A.①③B.②④C.①④D.②③【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【解答】解:根据总人数列方程,应是60m+10=62m﹣8,根据客车数列方程,应该为:=,故选:A.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,能够根据不同的等量关系列方程.12.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x个苹果,则列出的方程是()A.3x+1=4x﹣2B.3x﹣1=4x+2C.D.【分析】根据苹果总个数不变,结合每个小朋友分3个则剩1个;每个小朋友分4个则少2个,分别表示苹果数量进而得出等式即可.【解答】解:∵设共有x个苹果,∴每个小朋友分3个则剩1个时,小朋友的人数是;,若每个小朋友分4个则少2个时,小朋友的人数是;,∴,故选:C.【点评】此题主要考查了用一元一次方程解决实际问题,列方程解应用题的关键是找出题目中的相等关系,此题从分体现了数学与实际生活的密切联系.13.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【解答】解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选:D.【点评】此题的关键是能够根据不同的等量关系列方程.14.某村原有林地54公顷,旱地108公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108B.54﹣x=20%×(108+x)C.54+x=20%×162D.108﹣x=20%(54+x)【分析】设把x公顷旱地改为林地,根据旱地面积占林地面积的20%列出方程即可.【解答】解:设把x公顷旱地改为林地,根据题意可得方程:108﹣x=20%(54+x).故选:D.【点评】本题考查一元一次方程的应用,关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.15.用铝片做听装饮料瓶,现有150张铝片,每张铝片可制瓶身16张或制瓶底43张,一个瓶身和两个瓶底可配成一套,设用x张铝片制瓶身,则下面所列方程正确的是()A.2×16x=43(150﹣x)B.16x=43(150﹣x)C.16x=2×43(150﹣x)D.16x=43(75﹣x)【分析】由一个瓶身与两个瓶底才能配成一套,可知瓶底的个数是瓶身个数的2倍;根据这一数量关系列方程解答即可.【解答】解:设用x张制瓶身,则用(150﹣x)张制瓶底才能正好制成整套的饮料瓶,根据题意列方程得,2×16x=43(150﹣x),故选:A.【点评】此题考查一元一次方程的问题,解答此题抓住“一个瓶身与两个瓶底才能配成一套”,理清数量关系,列出方程解决问题.16.一标志性建筑的底面呈长方形,长是宽的2倍,在其四周铺上花岗岩,形成一个边宽为3米的长方形框(如图所示).已知铺这个框恰好用了504块边长为0.5米的正方向花岗岩(接缝忽略不计).若设此标志性建筑底面长方形的宽为x米,给出下列方程:①4×3(2x+3)=0.5×0.5×504;②2×3(2x+6)+2×3x=0.5×0.5×504;③(x+6)(2x+6)﹣2x•x=0.5×0.5×504,其中正确的是()A.②B.③C.②③D.①②③【分析】根据题意表示出长方形框的面积进而分别得出答案.【解答】解:设此标志性建筑底面长方形的宽为x米,给出下列方程:①4×3(2x+3)=0.5×0.5×504,错误;②2×3(2x+6)+2×3x=0.5×0.5×504,正确;③(x+6)(2x+6)﹣2x•x=0.5×0.5×504,正确.故选:C.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确表示出长方形边框的面积是解题关键.17.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A.18(42﹣x)=12x B.2×18(42﹣x)=12xC.18(42﹣x)=2×12x D.18(21﹣x)=12x【分析】根据题意,可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,12x×2=(42﹣x)×18,故选:C.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.18.某区今年暑假选派了180名教师担任G20交通引导志愿者、80名教师担任安全维护志愿者,现要把一部分安全维护志愿者调到交通引导志愿者队伍中,使安全维护志愿者人数占交通引导志愿者人数的30%,设把x名安全维护志愿者调到交通引导志愿者队伍中,则可列方程()A.80﹣x=30%×(180+x)B.80﹣x=30%×180C.180+x=30%×(80﹣x)D.80﹣x=30%×260【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,80﹣x=30%×(180+x),故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.19.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品进价为200元,按标价的五折销售,仍可获利10%,设这件商品的标价为x元,根据题意列出方程()A.0.5x﹣200=10%×200B.0.5x﹣200=10%×0.5xC.200=(1﹣10%)×0.5x D.0.5x=(1﹣10%)×200【分析】根据题意可得等量关系:标价×打折﹣进价=利润率×进价,根据等量关系可得方程.【解答】解:设这件商品的标价为x元,根据题意得:0.5x﹣200=10%×200,故选:A.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,掌握售价、进价、利润之间的关系.20.若m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车,有下列四个等式:(1)40m+10=43m+1;(2)=;(3)=;(4)40m﹣10=43m﹣1,其中正确的是()A.(1)(2)B.(2)(4)C.(1)(3)D.(3)(4)【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【解答】解:根据总人数列方程,应是40m+10=43m+1,(4)错误,(1)正确;根据客车数列方程,应该为)=;(2)错误,(3)正确;所以正确的是(1)(3).故选:C.【点评】此题考查了由实际问题抽象出一元一次方程的知识,解题的关键是能够根据不同的等量关系列方程.21.七年级1班学生参加净化校园劳动,其中参加打扫操场的有28人,参加清洗教室的有20人,现根据需要,从参加清洗教室的同学中抽调部分去打扫操场,使参加打扫操场的人数是参加清洗教室人数的2倍,问应从参加清洗教室的同学中抽调多少人去打扫操场?设应抽调x人去打扫操场,可得正确方程是()A.28﹣x=2(20﹣x)B.28+x=2(20+x)C.28+x=2(20﹣x)D.28﹣x=2(20+x)【分析】设应抽调x人去打扫操场,根据参加打扫操场的人数是参加清洗教室人数的2倍列出方程即可.【解答】解:设应抽调x人去打扫操场,根据题意列出方程为:28+x=2(20﹣x),故选:C.【点评】本题考查一元一次方程的应用,关键是根据参加打扫操场的人数是参加清洗教室人数的2倍列出方程.。
北师大版七年级上册数学5.3应用一元一次方程——水箱变高了优秀试题
5.3应用一元一次方程——水箱变高了1.(8 分) 将一个底面半径是 5 厘米, 高为 10 厘米的圆柱体冰淇淋盒改造成一个直径为20 厘米的圆柱体 , 若体积不变 , 高为多少 ?2.(8 分) 长方形纸片的长是 15cm,长、宽上各剪去 1 个宽为 3cm的长条, 剩下的面积是原面积的错误!未找到引用源。
. 求原面积 .【拓展延长】3(10 分) 一个长方形的鸡场的长边靠墙 , 墙长 14 米, 其余三边用篱笆笆围成 , 现有长为 35 米的篱笆笆 , 小王打算用它围成一个鸡场 , 此中长比宽多 5 米; 小赵也打算用它围成一个鸡场 , 此中长比宽多 2 米, 你以为谁的设计切合实质 ?依据他的设计 , 鸡场的面积是多少 ?答案分析7.【分析】设圆柱体的高为 x 厘米 .依据题意得 :25 π× 10=100πx,解得 :x=2.5.答: 高为 2.5 厘米 .28. 【分析】设长方形纸片的宽是xcm,原面积是 15xcm,长、宽上各剪去 1 个宽为 3cm的长条 , 剩下的面积是 12(x-3)cm 2,由题意得 :15x ×错误!未找到引用源。
=12(x-3),所以 9x=12(x-3),解方程得 x=12,12×15=180(cm2),2所以原面积是180cm.9.【分析】依据小王的设计能够设宽为 x 米,则长为 (x+5) 米,依据题意得 :2x+(x+5)=35,解方程得 :x=10.所以小王设计的长为x+5=10+5=15(米), 而墙的长度只有14 米, 故小王的设计不切合实质 .依据小赵的设计能够设宽为y 米 , 则长为 (y+2) 米,依据题意得 2y+(y+2)=35,解方程得 :y=11.所以小赵设计的长为y+2=11+2=13(米), 而墙的长度为14 米, 明显小赵的设计切合实质 , 此时鸡场的面积为13×11=143(平方米 ).。
北师大版七年级数学上册第五章《应用一元一次方程—水箱变高了》课时练习题(含答案)
北师大版七年级数学上册第五章《3.应用一元一次方程—水箱变高了》课时练习题(含答案)一、单选题1.某阶梯教室开会,设座位有x 排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( )A .30x ﹣8=31x ﹣26B .30x+8=31x+26C .30x+8=31x ﹣26D .30x ﹣8=31x+262.有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排4人,将会空出5间宿舍;如果每间宿舍安排3人,就有100人没床位,那么在学校住宿的学生有多少人?若设在学校住宿的学生有x 人,那么根据题意,可列出的方程为( )A .100543x x -+=B .510043x x +-= C .453100x x -=+ D .100543x x +-= 3.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x 度,则所列方程正确的是( )A .6x +6(x -2000)=150000B .6x +6(x +2000)=150000C .6x +6(x -2000)=15D .6x +6(x +2000)=154.某学校组织师生去衢州市中小学素质教育实践学校研学.已知此次共有n 名师生乘坐m 辆客车前往目的地,若每辆客车坐40人,则还有15人没有上车;若每辆客车坐45人,则刚好空出一辆客车.以下四个方程:①()4015451m m +=-;②()4015451m m -=-;③1514045n n -=-;④1514045n n -=+.其中正确的是( ) A .①③B .①④C .②③D .②④ 5.一个底面半径为10cm 、高为30cm 的圆柱形大杯中存满了水,把水倒入底面直径为10cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( )A .6cmB .8cmC .10cmD .12 cm6.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .727.小明用长16cm 的铁丝围成一个长方形,并且长方形的长比宽多2cm ,设这个长方形的长为xcm ,则x 的值为()A .9B .5C .7D .108.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为( )A .60-x =20%(120+x)B .60+x =20%×120C .180-x =20%(60+x)D .60-x =20%×120二、填空题9.一个蓄水池可蓄水240吨,现有一个进水管和一个排水管,单独打开进水管8小时可以把水池注满,单独打开排水管6小时可以把满池水排空.若原有满池水,设两管齐开,x 小时可把满池水排空,则可列方程________.10.某小学女生占全体学生52%,比男生多a 人,这个学校一共有______人学生. 11.已知一个两位数,其十位上的数字是个位上数字的3倍还少1,且它们的和是11,那么这个两位数是________.12.如图,一个尺寸为3604(⨯⨯单位:)dm 密封的铁箱中,有3dm 高的液体.当此铁箱竖起来(以34⨯为底面)时,箱中液体的高度是________dm .13.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为_______________.14.一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:4,圆锥的高是4.8厘米,则圆柱的高是___厘米.三、解答题15.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?16.10位同学在植树节这天共种了26棵树苗,其中男生每人种3棵,女生每人种2棵,则男生和女生分别有多少人?17.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)18.足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?19.有一个两位数,它的十位上的数字比个位上的数字大5,且这个两位数比它的两个数位上的数字之和的8倍还要多5,求这个两位数.20.冰墩墩是2022年北京冬季奥运会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,体现了追求卓越、引领时代,以及面向未来的无限可能.某学校购进了一批冰墩墩吉祥物分配给各班,若每班分4个,则剩余2个;若每班分5个,则还缺16个.求这个学校有几个班级?参考答案1.C2.A3.A4.B5.C6.D7.B8.A9.240240240 68x⎛⎫-=⎪⎝⎭10.25a11.8312.45.13.2x+56=589-x14.6.415.解:设长方形的长为cmx,根据题意,得2(10)10462x+=⨯+⨯.25220,x∴=-解得:16,x=所以长方形的长为16cm,宽为10cm.16.解:设男生x人,则女生(10-x)人,根据题意,得3x+2(10-x)=26,解得:x=6,10-x=10-6=4(人),答:男生6人,女生4人.17.解:设支援拔草的有x人,由题意得:31+x=2[18+(20-x)].18.解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程:3x+5x=32,解得:x=4,则黑色皮块有:3x=12个,白色皮块有:5x=20个.答:黑色皮块有12个,白色皮块有20个.19.解:设个位上的数字为x,则十位上的数字为(x+5),那么这个两位数为10(x+5)+x,依题意,可列方程10(x+5)+x=8[ (x+5)+x ]+5.解方程可得:x=1代入可得这个两位数为61.答:这个两位数为61.20.解:设这个学校有x个班级,则+=-,x x42516x=.解得18答:这个学校有18个班级。
北师大版七年级数学上册《应用一元一次方程——水箱变高了》典型例题(含答案)
《应用一元一次方程——水箱变高了》典型例题例1用内径为90毫米的圆柱形玻璃杯装满水,向一个底面积为131×131(毫米)2,内高为81毫米的长方体容器倒水,玻璃杯里的水恰好倒满该容器,问玻璃杯的内高是多少( 取3.14)。
例2现有铁篱笆120米,靠墙围成一个长方形菜地(墙可做菜地的一个长边,其他三面用铁篱笆围成),要使菜地的长是宽的2倍,则菜地的长和宽各是多少米。
例3如图“□”“△”“○”各代表一种物质,其质量的关系由下面两个天平给出,如果“○”的质量是一千克,求“□”和“△”的质量.例4一个长方形如图所示,恰好分成六个正方形,其中最小的正方形面积cm,求这个长方形的面积.是12例5某农民准备利用一面旧墙围一长方形鸡舍,他编好了6米竹篱笆,考虑三种方案.(1)要使长比宽多0.6米,此时长方形的长和宽及面积各是多少?(2)要使长比宽多0.3米,此时长方形的长和宽及面积各是多少?(3)要使长和宽相等,此时长方形的边长是多少米?参考答案例1 分析 由题意可知,有如下相等关系:圆柱形玻璃杯的容积=长方体容器的容积若把玻璃杯的内高用x 表示出来,就可以得方程。
解 设玻璃杯的内高是x 毫米,依题意,得 81131131)290(2⨯⨯=⨯x π 解方程,得 61.218≈x答:玻璃杯的内高大约是218.61毫米。
说明:在列一元一次方程解应用题时,设和答必须标明单位,而解出的x 是一个数不需要再标单位。
如上题是61.218≈x ,不要写成61.218≈x 毫米。
例2 分析 由题意可知,相等关系是:某地的长边+菜地的宽×2=120米题中又给出了长和宽的关系,易得方程。
解 设菜地的宽是x 米,则菜地的长就是2·x 米,依题决,得12022=+x x 解方程,得 30=x所以602=x答:菜地的长是60米,宽是30米。
说明:这题给出了墙是菜地的长边,可得上面方程,如果没有说明墙是长边,还是宽,我们就必须分两种情况进行讨论。
《5.3应用一元一次方程——水箱变高了》课时练习含答案解析
北师大版数学七年级上册5.3应用一元一次方程水箱变高了同步练习一、选择题1.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54-x=20%×108B.54-x=20%(108+x)C.54+x=20%×162D.108-x=20%(54+x)答案:B解析:解答:设把x公顷旱地改为林地,根据题意可得方程:54-x=20%(108+x).故选B.分析:设把x公顷旱地改为林地,根据旱地面积占林地面积的20%列出方程即可.2.某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程()A.22+x=2×26B.22+x=2(26-x)C.2(22+x)=26-xD.22=2(26-x)答案:B解析:解答:设抽调x人,由题意得:(22+x)=2(26-x),故选:B.分析:设抽调x人,则调后一组有(2+x)人,第二组有(26-x)人,根据关键语句:使第一组的人数是第二组的2倍列出方程即可.3.甲数是2013,甲数是乙数的14还多1.设乙数为x,则可列方程为()A.4(x-1)=2013 B.4x-1=2013C.14x+1=2013D.14(x+1)=2013答案:C解析:解答:设乙数为x,由题意得,14x+1=2013.故选C.分析:设乙数为x,根据甲数是乙数的14还多1.列出方程即可.4.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,设有x辆汽车,可列方程()A.45x-28=50(x-1)-12B.45x+28=50(x-1)+12C.45x+28=50(x-1)-12D.45x-28=50(x-1)+12答案:C解析:解答:设有x辆汽车,根据题意得:45x+28=50(x-1)-12.故选C.分析:等量关系为:45×汽车辆数+28=50×(汽车辆数-1)-12.依此列出方程即可求解.5.我校初一所有学生参加2012年“元旦联欢晚会”,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是()A.30x-8=31x+26B.30x+8=31x+26C.30x-8=31x-26D.30x+8=31x-26答案:D解析:解答:设座位有x排,由题意得,30x+8=31x-26.故选D.分析:设座位有x排,根据题意可得等量关系为:总人数是一定的,据此列方程.6.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87答案:B解析:解答:设铅笔卖出x支,由题意,得1.2×0.8x+2×0.9(60-x)=87.故选:B.分析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,据此列出方程即可.7.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x度,则所列方程正确的是()A.6x+6(x-2000)=150000B.6x+6(x+2000)=150000C.6x+6(x-2000)=15D.6x+6(x+2000)=15答案:A解析:解答:设上半年每月平均用电x度,在下半年每月平均用电为(x-2000)度,由题意得,6x+6(x-2000)=150000.故选A.分析:设上半年每月平均用电x度,在下半年每月平均用电为(x-2000)度,根据全年用电量15万度,列方程即可.8.希望中学九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是()A.2(x-1)+x=49B.2(x+1)+x=49C.x-1+2x=49D.x+1+2x=49答案:A解析:解答:设男生人数为x人,则女生为2(x-1),根据题意得:2(x-1)+x=49,故选A.分析:利用该班少一名男生时,男生人数恰为女生人数的一半用男生的人数表示出女生的人数,利用女生人数+男生人数=49求解.9.为创建园林城市,盐城市将对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔6米栽1棵,则树苗缺22棵;如果每隔7米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.6(x+22)=7(x-1)B.6(x+22-1)=7(x-1)C.6(x+22-1)=7xD.6(x+22)=7x答案:B解析:解答:设原有树苗x棵,由题意得6(x+22-1)=7(x-1).故选:B.分析:设原有树苗x棵,根据首、尾两端均栽上树,每间隔6米栽一棵,则缺少22棵,可知这一段公路长为6(x+22-1);若每隔7米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为7(x-1),根据公路的长度不变列出方程即可.10.一个饲养场里的鸡的只数与猪的头数之和是70,鸡、猪的腿数之和是196,设鸡的只数是x,依题意列方程为()A.2x+4(70-x)=196B.2x+4×70=196C.4x+2(70-x)=196D.4x+2×70=196答案:A解析:解答:设鸡的只数是x,则猪的头数为(70-x)头,由题意得,2x+4(70-x)=196.故选A.分析:设鸡的只数是x,则猪的头数为(70-x)头,根据鸡、猪的腿数之和是196,列方程.11.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x-28B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x-28D.(1+50%x)×80%=x+28答案:B解析:解答:标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%;∴可列方程为:(1+50%)x×80%=x+28,故选B.分析:根据售价的两种表示方法解答,关系式为:标价×80%=进价+28,把相关数值代入即可.12.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程()A.98+x=x-3B.98-x=x-3C.(98-x)+3=xD.(98-x)+3=x-3答案:D解析:解答:设甲班原有人数是x人,(98-x)+3=x-3.故选:D.分析:设甲班原有人数是x人,根据甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等可列出方程.13.甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是()A.7x=6.5x+5B.7x+5=6.5xC.(7-6.5)x=5D.6.5x=7x-5答案:B解析:解答:乙跑的路程为5+6.5x,∴可列方程为7x=6.5x+5,A正确,不符合题意;把含x的项移项合并后C正确,不符合题意;把5移项后D正确,不符合题意;故选B.分析:等量关系为:甲x秒跑的路程=乙x秒跑的路程+5,找到相应的方程或相应的变形后的方程即可得到不正确的选项.14.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()A.(1+50%)x•80%-x=8B.50%x•80%-x=8C.(1+50%)x•80%=8D.(1+50%)x-x=8答案:A解析:解答:设每个双肩背书包的进价是x元,根据题意得:(1+50%)x•80%-x=8.故选:A.分析:首先根据题意表示出标价为(1+50%)x,再表示出售价为(1+50%)x•80%,然后利用售价-进价=利润即可得到方程.15.王大爷存入银行2500元,定期一年到期后扣除20%的利息税后得到本息和为2650元,若这种储蓄的年利率为x,那么可得方程()A.2500(1+x)=2650B.2500(1+x%)=2650C.2500(1+x•80%)=2650D.2500(1+x•20%)=2650答案:C解析:解答:∵这种储蓄的年利率为x∴一年到期后王大爷的存款本息合为:2500(1+x)∵要扣除20%的利息税∴本息为:2500+2500x(1-20%)由题意可列出方程:2500+2500x(1-20%)=2650将上述方程整理可得:2500(1+80%•x)=2650;故选C.分析:由年利率为x和扣除20%的利息税,可写出王大爷存款一年后的本息和表达式,又因为题中已知本息和为2650,所以可列出一元一次方程.二、填空题16.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列方程为______.答案:20x=15(x+4)-10解析:解答:设原计划每天生产x个,则实际每天生产(x+4)个,由题意得,20x=15(x+4)-10.故答案为:20x=15(x+4)-10.分析:设原计划每天生产x个,则实际每天生产(x+4)个,根据原计划在20天内完成的任务实际15天完成且还多生产10个,列方程.17.小明与家人和同学一起到游泳池游泳,买了2张成人票与3张学生票,共付了155元.已知成人票的单价比学生票的单价贵15元,设学生票的单价为x元,可得方程______.答案:3x+2(x+15)=155解析:解答:设学生票的单价为x元,则成人票的单价为(x+15)元,根据题意得:3x+2(x+15)=155,故答案为:3x+2(x+15)=155.分析:由学生票的单价为x元,表示出成人票的单价为(x+15)元,根据买了2张成人票与3张学生票,共付了155元,即可列出方程.18.“比a 的2倍小3的数等于a 的3倍”可列方程表示为:______.答案:2a -3=3a解析:解答:根据题意得:2a -3=3a .故答案为:2a -3=3a .分析:根据“比a 的2倍小3的数等于a 的3倍”可列出方程.19.一台电脑的进价为2000元,原标价为3000元,现打折销售,要使利润率保持20%,那么需要在原标价的基础上打几折?设需要打x 折.可列方程为______.答案:3000×10x =2000(1+20%) 解析:解答:设需要打x 折, 根据题意得:3000×10x =2000(1+20%), 故答案为3000×10x =2000(1+20%). 分析:等量关系为:售价=进价+进价×利润率,依此列出方程即可.20.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为______. 答案:2x +56=589-x解析:解答:设到雷锋纪念馆的人数为x 人,则到毛泽东纪念馆的人数为(589-x )人, 由题意得,2x +56=589-x .故答案为:2x +56=589-x .分析:设到雷锋纪念馆的人数为x 人,则到毛泽东纪念馆的人数为(589-x )人,根据到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.列方程即可.三、解答题21.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)答案:31+x =2[18+(20-x )].解答:设支援拔草的有x 人,由题意得:31+x =2[18+(20-x )].解析:分析:首先设支援拔草的有x 人,则支援植树的有(20-x )人,根据题意可得等量关系:原来拔草人数+支援拔草的人数=2×(原来植树的人数+支援植树的人数).22.有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则飞机票价格应是多少元?答案:1200元.解答:设飞机票价格应是x元,由题意得:(30-20)×1.5%x=180,解之得:x=1200,答:飞机票价格应是1200元.解析:分析:设飞机票价格应是x元,根据该旅客购买了180元的行李票,列方程求解.23.A、B两站相距300千米,一列快车从A站开出,行驶速度是每小时60千米,一列慢车从B站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)答案:15 604030060x x+-=().解答:设快车开出x小时后两车相遇,根据题意得:15 604030060x x+-=().解析:分析:设快车开出x小时后两车相遇,根据题意可得,两辆车总共走了300千米,据此列方程.24.抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?答案:应调至甲地段20人,则调至乙地段9人解答:设应调至甲地段x人,则调至乙地段(29-x)人,根据题意得:28+x=2(15+29-x),解得:x=20,所以:29-x=9,答:应调至甲地段20人,则调至乙地段9人.解析:分析:首先设应调至甲地段x人,则调至乙地段(29-x)人,则调配后甲地段有(28+x)人,乙地段有(15+29-x)人,根据关键语句“调配后甲地段人数是乙地段人数的2倍”可得方程28+x=2(15+29-x),再解方程即可.25.一份试卷,一共30道选择题,答对一题得3分,答错一题扣1分,小红每题都答了,共得78分,那么小红答对了几道题?请根据题意,列出方程.答案:3x-(30-x)×1=78.解答:设小红答对了x道题,由题意得:3x-(30-x)×1=78.解析:分析:首先设小红答对了x道题,则答错了(30-x)道题,再根据题意可得等量关系:答对题的得分-答错题的得分=78分,根据等量关系列出方程即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用一元一次方程—水箱变高了
1、要锻造一个直径为8cm,高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢( )cm.
A、12
B、16
C、24
D、32
2、若给一个圆柱体加粗,使它的半径为原来的2倍,则体积为原来的( )倍.
A、2
B、1
C、4
D、6
3、用两根长为24cm的铁丝分别围成一个长与宽之比为2:1的长方形和正方形,则长方形和正方形的面积依次为( ).
A、9,8
B、8,9
C、32,36
D、36,32
4、一个长方形的周长是40cm,若将长减少8cm,宽增加2cm,长方形就变成了正方形,则正方形的边长为( )
A、6cm
B、7cm
C、8cm
D、9cm
5、将一个底面直径是10厘米,高为40厘米的圆柱锻压成底面直径为l5厘米的圆柱,求它的高?若设高为x厘米,则所列的方程为_____________.
6、把一个长、宽、高分别9cm、6cm、4cm的长方体铁块和一个棱长为5cm的正方体铁块熔炼成一个底面直径为25cm的圆柱体、原长方体的铁块的体积是_____ cm3,原正方体铁块的体积是_______cm3,设要熔炼的圆柱体的高为x cm,则圆柱体的体积是______cm3,因此可列方程为:________________.
7、用长为10m的铁丝沿墙围成一个长方形(墙的一面为长形的长,不用铁丝),长方形的长比宽长1m,求长方形的面积.。