仿生机器鱼介绍..
仿生机器鱼

仿 机器鱼
。 山东省青岛十九中高三( 1 1 ) 班 林广硕
很多人都喜欢养金鱼, 金 鱼浮游水中 , 翩 翩起舞 ,尤其是那一摇一摆的大尾 巴好似一
把 展 开 的扇 子 ,非常 优 美 。通 过观 察金 鱼 的 游动 , 我提 出 了一 种 仿生 机 的 身体 分 为 头 部 、 躯干 、 尾部 , 鱼尾
尾 部 的摆 动 ,尾部 的摆 动可 以使 鱼 获得 前 进
的动 力 。
摆 动 时会 形 成 向后 的推 力 ,利用 作 用力 与 反 作 用 力 原理 ,水 也产 生 对 鱼 向前 游 动 的 力 。
如 图 l所示 , 向左 摆 动 鱼 尾 , 鱼 向左 转 , 向 右 摆 动 鱼尾 , 鱼 向右 转 , 向左 、 向右 快 速摆 动 鱼 尾, 鱼 就会 向前 游 动 , 因此 鱼 尾 的摆 动是 鱼 游
一
二、 机 器 鱼 的设 计构 想 机 器 鱼 依 靠 尾 部 的摆 动 获 得 前 进 的 动 力 ,通 过 连杆 机 构将 马 达旋 转运 动转 换 为 尾
部 的摆 动 , 如 图 2所 示 。马达 带 动 曲柄旋 转 ,
通 过连 杆 带 动摇杆 摆 动 ,摇 杆 的摆 动转 化 为
机 器 鱼 结 构 如 图 3所 示 ,为 把 四连 杆 机 构 固 定 在 鱼 体 内 ,我 在 鱼 体 内 安 装 了 支
架, 将马 达同定在 支架上 , 曲柄 设 计 成 圆 盘
状 用 于 支 撑 连 杆 与 摇 杆 ,通 过 马 达 的 旋 转 使 鱼 尾 左 右 摆 动 ,这 样 机 器 鱼 就 可 以 在 水
里游动 了。
动 的关 键 。鱼 的 身体 是流 线 型 ,在水 中所 受
仿生鱼科技整理

“仿生鱼”科技技术1.概念仿生机器鱼是一种按照鱼类游动的推进机理,利用机械、电子元器件或智能材料来实现水下推进的装置。
仿生机器鱼可以进行长时间、大范围、工况较复杂的水下作业,可以用于机动性能要求较高的场合,进行海洋生物考察、海底勘探和海洋救生等等许多场合。
最近几年来,国内外许多研究机构和高等院校对仿生机器鱼(图片来源于维基百科)行了大量的研究,并且在各个领域中得到了实际运用。
英国埃塞克斯大学的研究人员向泰晤士河投放专门设计的仿生机器鱼,用于探测水中的污染物,并绘制河水的3D污染图。
日本三菱重工也已经将研究的仿生机器鱼玩具批量生产。
中国北京航空航天大学和中国科学院研制的SPC-II仿生机器鱼也成功地用于水下考古探测。
2. 原理仿生机器鱼主要是模仿机器鱼的外形和运动规律,尽心环境数据收集。
其模仿鱼类外形和运动规律的目的是为了实现鱼类高效的游动效率和良好的机动性。
所以在仿生方面尤其注意鱼体和鱼鳍的模仿和控制。
鱼主要有背鳍、胸鳍、腹鳍、臀鳍和尾鳍。
胸鳍:它的基本功能为运动、平衡和掌握运动方向。
腹鳍:主要协助背鳍、臀鳍维持鱼体的平衡,并有辅助鱼体升降和拐弯功能。
尾鳍:有平衡、推进和转向的作用,尾的扭曲和伸直使鱼体产生前进运动。
鱼类的运动方式主要为波浪式运动,或称游泳。
借助于连续的肌节收缩与舒张,从头部开始的收缩在身体两侧交替进行,形成波浪式的传递,使收缩波传向尾部,身体则向收缩的一侧弯曲使成S型。
收缩在尾部结束,尾部将收缩的力传给水,这个力被水以同等大小、但方向相反的反作用力作用于尾部。
这个力向前的分力是鱼体向前运动的主要推进力。
目前各个研究单位研究的仿生机器鱼的结构不尽相同,但是都主要通过模仿和控制鱼鳍的运动来达到运动目的。
典型仿生机器鱼的结构如下图所示,主要有视频模块、导航模块、(图片来源于维基百科)任务调度模块、运动控制模块、通讯模块、电源模块和尾鳍模块。
仿生机器鱼的推进方式主要有两种:摆动式和波动式。
仿生机器鱼介

仿生机器鱼介绍ppt xx年xx月xx日contents •引言•仿生机器鱼的应用场景•仿生机器鱼的原理•仿生机器鱼市场•仿生机器鱼的技术瓶颈•仿生机器鱼的未来展望•其他相关资料与文献目录01引言仿生机器鱼是模仿自然界中鱼类外形结构和游动行为的机器鱼。
定义主要包括机械机构设计、水动力学分析、自主控制方法及系统集成等方面的研究。
研究内容简介1仿生机器鱼的意义23仿生机器鱼可以代替人类在海洋中探索和观测,对海洋资源进行更深入的了解和开发。
探索海洋仿生机器鱼可以监测海洋污染和环境变化,为环境保护提供数据支持。
环境监测在灾难发生时,仿生机器鱼可以快速到达现场进行救援和搜救,提高救援效率。
海洋救援仿生机器鱼的种类与特点水下滑翔机则具有长航程、低能耗的优点,可以在水下持续观测和探测。
群体仿生机器鱼具有分布式、模块化的特点,能够完成大规模的水下任务。
单体仿生机器鱼具有高度的灵活性和机动性,可以执行各种复杂的水下任务。
类型:根据外形和功能,仿生机器鱼可分为单体仿生机器鱼、群体仿生机器鱼和水下滑翔机等类型。
特点02仿生机器鱼的应用场景探测海洋资源仿生机器鱼可以用于探测海洋中的生物、石油、天然气等资源,帮助人类更好地了解海洋资源的分布和储量。
水下考古仿生机器鱼也可以用于水下考古,探索水下遗址和文物,为人类历史文化的研究提供重要资料。
水下探测水质监测仿生机器鱼可以在水域中监测水质,包括pH值、溶解氧、浊度等参数,为环境保护提供数据支持。
气候变化研究仿生机器鱼还可以用于研究气候变化,通过长期监测水域变化,为气候模型提供重要数据。
环境监测仿生机器鱼可以用于电影拍摄,作为特效镜头制作和场景布置的重要元素,营造出更加逼真的水下场景。
电影拍摄仿生机器鱼也可以作为娱乐玩具,供人们休闲娱乐和互动,增加生活情趣。
娱乐玩具娱乐行业侦查探测仿生机器鱼可以用于军事侦查和探测,在水下进行情报收集、目标定位等任务,提高作战效果。
水下威慑仿生机器鱼也可以作为一种水下威慑力量,用于防范敌方潜艇等水下装备的入侵和攻击,维护国家安全。
仿生机器鱼运动控制算法设计及性能评估

仿生机器鱼运动控制算法设计及性能评估随着科技的不断发展,仿生机器鱼作为一种模拟真实鱼类行为的智能机器人得到了广泛的关注与研究。
仿生机器鱼具备了真实鱼类的机械结构和运动特征,能够在水中自由地游动、转向和操纵,具备了一定的灵活性和适应性。
在这篇文章中,我将着重探讨仿生机器鱼运动控制算法的设计和性能评估。
首先,我们需要考虑的是仿生机器鱼的运动控制算法的设计。
仿生机器鱼的运动控制算法需要模拟真实鱼类的运动方式,并具备自主的决策能力,以实现在水中灵活自如的运动。
为了实现这一目标,可以考虑以下几个关键因素:1. 运动模式选择:仿生机器鱼可以采用鱼类行为学中已有的运动模式,如直线游动、转向、盘旋等。
选择合适的运动模式可以使机器鱼更加适应不同的环境和任务需求。
2. 运动轨迹规划:仿生机器鱼需要通过计算和规划来确定运动轨迹,以实现预设的任务目标。
可以采用轨迹规划算法来生成运动轨迹,如最优路径规划、遗传算法等。
3. 运动控制策略:仿生机器鱼需要根据环境信息和任务目标来选择合适的运动控制策略,以实现良好的运动性能。
可以采用自适应控制、反馈控制等方法来实现运动控制策略。
4. 感知与感知处理:仿生机器鱼需要通过传感器来感知环境信息,并通过感知处理技术来提取和处理有效的信息。
可以采用视觉传感器、压力传感器等来感知水中的障碍物、水流等信息。
5. 控制器设计:仿生机器鱼的控制器设计需要考虑到运动特性、动力学模型和控制算法的综合因素。
可以采用模糊控制、神经网络控制等方法来设计控制器,以实现精确的运动控制。
在设计完成仿生机器鱼的运动控制算法之后,我们需要对其性能进行评估。
性能评估是评估算法的有效性和可行性的过程,可以通过以下几个方面进行评估:1. 运动准确性:评估仿生机器鱼的运动控制算法在执行各种任务时的准确性。
可以通过比较仿真结果和实际测试结果来评估运动的准确性。
2. 运动稳定性:评估仿生机器鱼在不同环境下的运动稳定性。
可以通过检测机器鱼的姿态、速度等参数来评估运动的稳定性。
仿生机器鱼设计

结果展示与性能评估
结果展示
将实验结果以图表、图像等形式进行可视化展示,直观地反映仿 生机器鱼的性能表现。
性能评估
根据实验结果和性能评估标准,对仿生机器鱼的性能进行综合评价 ,包括游动速度、转向灵活性、续航能力等方面。
结果讨论
对实验结果进行讨论和分析,探讨仿生机器鱼设计的优缺点及改进 方向,为后续的优化设计提供参考。
开发高效水下机器人
仿生机器鱼可以模仿真实鱼类的游动方式,具有高效、灵 活和隐蔽性强的特点,有望在水下探测、海洋资源开发和 军事侦察等领域发挥重要作用。
促进多学科交叉融合
仿生机器鱼涉及生物学、机械工程、控制科学与工程等多 个学科领域,其研究有助于推动相关学科的交叉融合与发 展。
仿生机器鱼的应用领域
水下探测与海洋资源开发
04
仿生机器鱼的控制系统设计
传感器类型选择及布局规划
传感器类型
01
根据仿生机器鱼的需求,选择包括压力传感器、加速度计、陀
螺仪、深度传感器等在内的多种传感器。
布局规划
02
将传感器合理分布在机器鱼的各个部位,以便准确感知周围环
境信息和机器鱼自身状态。
数据处理
03
设计高效的数据处理算法,对传感器采集的数据进行实时处理
和分析,为控制算法提供准确可靠的输入。
控制算法研究与实现
控制算法研究
针对仿生机器鱼的运动特点,研究适用的控制算法,如PID控制 、模糊控制、神经网络控制到仿生机器鱼的控制系统中,实现 对机器鱼运动的精确控制。
参数优化
通过实验和仿真等手段,对控制算法参数进行优化调整,提高控 制效果和机器鱼的运动性能。
仿生机器鱼设计
汇报人:XX 2024-01-23
仿生学中的机器鱼研究

仿生学中的机器鱼研究随着科技的不断发展,人类越来越能够模仿自然的形态和动作,而仿生学就是将科技与自然相结合的一门学科。
而在仿生学中,机器鱼的研究是一个备受关注的领域。
机器鱼通过学习鱼类的游动方式,利用先进的技术,成功地进行了模拟。
在本文中,将会介绍机器鱼研究的发展历程、原理以及未来的应用前景。
一、机器鱼研究的发展历程机器鱼的研究起源于上个世纪八十年代,当时,法国Toulon研究所的一组科学家研制出了第一个机器鱼。
虽然这只机器鱼只能进行直线游泳,但这标志着机器鱼领域得以开始。
之后,日本的一所大学进行了更深入的机器鱼研究。
他们研制出的机器鱼,不仅能够进行直线游泳,而且还可以进行弧线游泳和转向等操作。
在后来的研究中,他们实现了机器鱼会通过跳跃来实现避开障碍物的效果,从而让机器鱼看起来更像真实的鱼类。
二、机器鱼模拟原理在仿生学中,机器鱼是通过模拟鱼类运动的方式来实现的。
机器鱼的结构通常包括了鱼类的主要器官,如鳍和尾巴。
此外,它还有一个内部控制系统,能够让机器鱼自主地控制运动。
机器鱼通过一些传感器,如运动传感器和距离传感器,可以从周围环境中收集信息,然后通过控制系统对其处理,最终实现机器鱼的自主运动。
三、机器鱼的应用前景机器鱼的应用前景是非常广泛的。
在工业领域,机器鱼可以作为一种新型的水下机器人,实现深海勘探和维修工作。
在船舶领域,机器鱼可以作为一种有效的船体检测工具,帮助船舶的维护和保养。
医疗领域方面,机器鱼可以作为一种辅助治疗工具。
例如,利用机器鱼在水中控制游动,可以实现让骨折患者进行水中康复训练,从而达到更好的疗效。
在科研领域,机器鱼也可以作为实验工具,帮助科学家们进行相关研究。
例如,在环境保护方面,通过研究机器鱼对水域环境的影响,可以更好地保护水域环境。
总之,机器鱼领域的研究才刚刚开始,未来还有很多应用前景。
随着科技的不断发展和人们对未知领域的探索,机器鱼将会在更多的领域得到应用。
仿生机器鱼三自由度胸鳍尾鳍协同推进性能及控制方法研究
仿生机器鱼三自由度胸鳍尾鳍协同推进性能及控制方法研究近年来,随着科技的发展,仿生机器鱼作为一种新颖的水下机器人,得到了广泛的关注。
仿生机器鱼模仿鱼类的游动方式,通过胸鳍和尾鳍的协同推进实现自主游动。
因此,研究仿生机器鱼的三自由度胸鳍尾鳍协同推进性能及控制方法,对于提高机器鱼的游动性能和应用前景具有重要意义。
首先,仿生机器鱼的三自由度胸鳍尾鳍协同推进性能的研究至关重要。
三自由度指的是仿生机器鱼胸鳍和尾鳍的三个自由度,即水平方向的摆动、垂直方向的摆动以及扭矩控制。
胸鳍和尾鳍的协同推进是仿生机器鱼实现高效游动的关键。
仿生机器鱼胸鳍和尾鳍的协同推进不仅需要考虑它们各自的运动特性,还需要考虑它们之间的相互作用。
通过研究仿生机器鱼的三自由度胸鳍尾鳍协同推进,可以获得更好的推进性能,提高机器鱼在水下环境中的适应能力。
其次,研究仿生机器鱼的三自由度胸鳍尾鳍协同推进的控制方法也是必不可少的。
仿生机器鱼的运动控制是实现协同推进的关键所在。
目前,常用的控制方法包括基于PID控制器的方法、神经网络控制方法以及模糊控制方法等。
这些方法都具有各自的优势和适用范围。
对于仿生机器鱼的控制方法,需要考虑到其运动特性和水下环境的复杂性,并结合实际应用需求进行优化和改进。
此外,为了验证仿生机器鱼的三自由度胸鳍尾鳍协同推进性能及控制方法的有效性,需要进行实验研究。
实验可以通过仿真模拟和实际试验相结合的方式进行。
仿真模拟可以利用计算机软件模拟仿生机器鱼的运动特性和控制方法,评估其推进性能并进行优化。
而实际试验可以通过制作仿生机器鱼的物理模型,观察其运动行为和控制效果,并与仿真结果进行对比分析。
综上所述,仿生机器鱼的三自由度胸鳍尾鳍协同推进性能及控制方法的研究是一个具有挑战性和前景的课题。
通过研究该课题,可以提高仿生机器鱼的游动性能和应用前景,进一步推动水下机器人技术的发展。
在未来的研究中,我们需要不断完善仿生机器鱼的设计原理和控制方法,提高其自主游动的能力和灵活性,为水下工程、海洋探索等领域的应用提供支持综合以上所述,研究仿生机器鱼的三自由度胸鳍尾鳍协同推进性能及控制方法对于提高其游动性能和应用前景具有重要意义。
仿生机器鱼
未来奇兵仿生机器鱼仿生技术的军事应用正在快速发展,各国都投入大量资金深入开展从空中的掌上飞机、地面的微型昆虫到水下的仿生机器鱼等方面的一系列理论和技术研究。
其中,水下仿生机器鱼的发展更是如火如荼。
仿生机器鱼是模仿鱼类游动的推动机理,通过机械、电子机构或功能材料(形状记忆合金、人造肌肉等)来模拟鱼类的游动推进动作,在水中利用身体、尾鳍或胸鳍的摆动产生推进波,并作用于身体产生向前推力,从而实现运动的水下航行器。
三种模式根据推进模式访生机器鱼的推进方式可分为三类:身体波动式,(鱼+参)科及(鱼+参)科加新月形尾鳍模式和胸鳍模式。
身体波动式是模仿鳝鱼等鳗鲡目鱼类的游动方式,整个身体都参与大振幅波动运动,推进波的速度大于鱼的游动速度,并与鱼的游动方向相反地在身体上传播产生推进力。
此类仿生机器鱼多采用多关节机构,每个关节安装一个小型伺服电机配合作用进行扭转摆动推进。
也可采用形状记忆合金做鱼身,采用电激励或其他形式激励,控制合金的温度变化从而产生形变带动身体摆动。
其实人们所熟悉的机器蛇在水中若能浮起就变成了机器鱼。
此类机器鱼由于身体细长,柔韧性好,所以机动性极好,但一般只能飘浮,无法进行沉浮。
(鱼+参)科及(鱼+参)科加新月形尾鳍模式是大部分鱼类(如海豚、鲨鱼、金枪鱼等)采用的推进模式。
由于身体刚度较大,波动主要集中在身体后部分,推进力主要由具有一定刚度的尾鳍提供,其推进速度和推进效率比身体波动式高。
(鱼+参)科模式的推进部分是鱼体的后2/3部分,而(鱼+参)科加新月形尾鳍模式身体刚度更大,推进部分为身体后1/3部分,侧向位移主要产生在后颈部和尾鳍,尾鳍产生90%的推进力,身体前2/3部分保持刚性。
目前,(鱼+参)科及(鱼+参)科加新月形屋鳍模式的机器鱼研究较多,可以采用具有一定刚度的材料做前鱼体和尾鳍,鱼尾采用刚性或弹性材料,由电机驱动进行摆动。
其结构复杂程度不同,最简单的可以由电机直接驱动一根刚性杆状鱼尾摆动,复杂的可做成类似身体波动式的多关节或弹性鱼尾,由一部或多部电机配合驱动或采用形状记忆合金做鱼尾。
机器鱼装配介绍
世界上现存的鱼类约2万4千种。
为什么要研究仿生机器鱼
高效 灵活 低噪
什么是仿生机器鱼
仿生机器鱼(Biomimetic robotic fish,又 名机械鱼,人工鱼或鱼形机器人),顾名 思义,即参照鱼类游动的推进机理,利用 机械、电子元器件或智能材料来实现水下 推进的一种运动装置。
仿生机器鱼的研究价值
机器鱼硬件系统
硬件配置
控制系统:控制芯片采用贴片封装的8位 AVR单片机ATmege128,其内含128KB Flash、4KB EEPROM,产生6路PWM信号。 动力系统:采用Futaba S3003 舵机,扭矩 达4.1Kg/cm,提供可靠的动力支持。 通讯系统:通讯模块采用双工无线通讯模 块, 可以通过通讯检测来确保信号收发的正 确性,还可以向上位机反馈机器鱼的内部 状态信息,提高机器鱼控制的可靠性。 电源系统:可充电镍氢电池。
机械零件组装 开关安装 电池安装
头部组装
头部漏水测试:在头部灌水,看是否漏水 LED灯安装:AB胶粘,注意粘的外形。 天线安装:带有天线延长线。 AB胶粘 充气孔安装: AB胶粘 充电器安装: AB胶粘
接线(原则正接正,负接负)
3个舵机与控制板:从前到后舵机依次为1号2号3号 开关连接:开关中间连电池,左边(正对开关)接充电头,右边接线路板 LED连接 天线连接 测试 给接线部分打胶:打胶枪 接线整理:使多余的线尽量占用最小的空间,并且不能阻挡电池和线路板塞入鱼 头。 测试 调直
注意事项
机器鱼充电方法:关闭机器鱼电源开关,接通充电器电源,将充电器 的充电孔插到机器鱼头部的充电头上,充电约2个小时,充电状态在 充电器上有详细说明。 当机器鱼在水中下沉或上浮严重时可以通过机器鱼头部的吹气孔对鱼 体充气、放气来进行调节。 当通讯效果不理想时,请检查通讯模块和机器鱼的电池电量,当电池 电量不足时会影响通讯。机器鱼电压应大于4.8V,通讯模块电压应大 于4.8V。 充电器连线为红正黑负,连接为红色接红色,黑色接黑色。 机器鱼头部天线不能完全浸没在水面以下。 勿将机器鱼在关闭电源的状态下放入水中。 不使用时请将机器鱼从水中及时捞出,勿长时间将其浸泡在水中。 打开机器鱼电源开关后请等待3秒钟调直完毕后再进行控制。 长时间不使用时请将机器鱼上的充气孔帽取下。
仿生鱼
04年它是由北京航空航天大学机器人研究所和中国科学院自动化研究所共同研制的仿生机器鱼。
机器鱼系统由动力推进系统、图像采集和图像信号无线传输系统、计算机指挥控制平台3部分组成。
只要将指令通过无线电信号传给机器鱼中的计算机,计算机就可以按指令控制机器鱼做出动作。
机器鱼同时装有卫星定位系统,也就是它头上的那个“小蘑菇”,如果启动该系统,机器鱼还可以自行按设定航线行进。
机器鱼的体表不是软的,非常坚硬,表面很光滑。
机器鱼没有眼睛和嘴,只是在嘴的位置有一个直径5厘米的玻璃圆孔,那是水下摄像的窗口。
让机器鱼在水中自由游动起来,花费了我国科学家4年多的时间,这充分说明了这项技术的复杂性和难度。
究人员想出了去掉尾柄减轻重量的办法,可是只留尾鳍又产生新的问题,这就是如何保证机器鱼要转弯时,尾鳍既能保持方向,又能摆动产生推进力。
总之,问题层出不穷,按下葫芦又浮起瓢。
13年欧盟应用于海上石油和天然气工业开采,虹鳟鱼(Rainbow Trout)是水下“混合泳”高手,研发团队开发的外形、大小、行为和动态类似虹鳟鱼的仿生鱼机器人模型,迄今为止最大的缺陷,是不能像虹鳟鱼一样感知周围的流速并变换游泳姿态。
研发团队的成功,也是最关键的技术突破,来自成功开发出可模仿动物毛发细胞感应生理学(Hair Cell Sensing Physiology)的人工毛发细胞。
研发团队开发的仿生虹鳟鱼,通过安装在鱼胸部的独立变速马达控制尾部摆动,摆动产生的波动波可促使仿生鱼后部摆动而前身基本平行,从而保证仿生鱼类似于虹鳟鱼的前行姿态。
感应装置和控制装置安装在密封不透水的鱼头部,通过控制并改变尾部材料特性改变仿生鱼的游泳姿态。
仿生鱼经过在实验室流体动力学流罐(Flow Tank)的反复试验和优化设计,不仅可以在急速变化的水流中,而且可以在涡流中保持类似虹鳟鱼前行的姿态。
07哈工程这款仿生鱼使用电磁感应方法,并采用多关节的复杂系统使其运动更加灵活,自由度更高,具有噪音低,运动灵活,高效节能等优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仿生机器鱼是通过模仿鱼类的游动方式来实现推进的,其分类可以依据 鱼类游动分类方式进行划分。根据鱼类游动使用的身体部位不同可以将 鱼类游动分为身体和尾鳍推进(BCF)模式、中鳍和对鳍推进( MPF)模式。
BCF模式:通过波动身体的某部分和尾鳍,形成向后的推进波,大多数 鱼类,都采用这种推进方式。该模式可实现连续、快速、高效率的游动。 M PF模式:多数鱼类的背鳍、臀鳍、胸鳍和腹鳍只用于辅助推进、调整 姿态,但是,占鱼类总数约15%的鱼类却以这些鳍作为主要推进部件。 该模式游动速度慢,但稳定性好、机动性高。
国
加拿大 日 本
南加州大学 东北大学 渥太华大学 东海大学,Kato实验室
东京工学院地,机械动力和控制实验室
运输省,船舶技术研究所(SRI)
仿生机器鱼研究现状
国 别 研究单位 研究内容 第一条机器鱼Robotuna(1994年) Robotuna改进版Pike(1995年) Robotuna最高版VCUUV(1998年) 拍动翼研究 微电子机器鱼(应用SMA技术) 仿生驱动材料研究
我们需要的仿生机器鱼需要具备哪 些功能
• 基本运动:直行、上升、下潜、左右转弯、 悬停 • 图像采集及传输 • 无线控制 • 电池可充电
仿生机器鱼获得途径
• • • • 智能机器人公司 淘宝玩具厂家 学校或科研机构 自己制作
资料推荐
• 中国知网:
• • • • • • • • 仿生机器鱼技术研究进展及关键问题探讨_梁建宏 水下仿生机器鱼的研究进展II_小型实验机器鱼的研制_梁建宏 水下仿生机器鱼的研究进展IV_多仿生机器鱼协调控制研究_梁建宏 仿生机器鱼玩具的机构设计_仿真与实现_张志刚 仿生机器鱼研究的进展与分析_喻俊志 仿生机器鱼研究进展及发展趋势_王扬威 基于STM32的双摄像头图像采集自主避障机器鱼设计_杨旭琼 基于红外传感器的仿生机器鱼自主避障控制_桑海泉
比利时 英国 日
Vrije大学 Heriot-Watt大学
名古屋大学
Takara公司 三菱重工
本
运输省,船舶技术研究所(SRI)
仿生机器鱼研究现状
研究单位
中国科技大学 华中理工大学
研究内容
三维波动板理论(3DWPT) (80年代后期) 柔性尾鳍推进装置及鱼形机构(1994年)
哈尔滨工程大学
哈尔滨工业大学 中科院沈阳自动化所 北航机器人所 中科院自动化所
仿生机器鱼
卢士强 2014.3.20
内容提纲
• • • • • • • 仿生机器鱼研究意义 仿生机器鱼研究现状 仿生机器鱼鱼模型和推进机理 应用实例 基本要求 模型获得途径 资料推荐
研究意义
海洋中蕴藏着丰富的生物资源和矿产资源。人类开发海洋和利用海洋 的脚步,随着科技的发展逐渐加快。 具有海洋勘测、海底探查、海洋救捞、海底管道检测、以及水下侦查 和跟踪功能的水下机器人,已成为探索海洋、开发海洋和海洋防卫的重要 工具。 采用传统螺旋桨推进器的水下机器人,在螺旋桨旋转推进过程中会产 生侧向的涡流,增加能量消耗、降低推进效率,且有噪声。
仿生机器章鱼
仿鱼鳍推进机理 两关节仿生机器鱼 机器鳗鱼(1999年)、机器海豚(2001年) 鲹科类机器鱼设计、控制与协作研究(2001年)
美国MIT研制的机器鱼(1994,1995,1998)
美国东北大学机器鳗鱼
英国Essex大学G系列机器鱼
英国埃塞克斯大学机器鱼
瑞士技术学院BoxyBot机器鱼
仿生机器鱼研究现状
国 别 研究单位 MIT, M.Triantallou研究组 美 北亚利桑那州大学,生物系 Vasaar学院,生物力学实验室 加州大学动物系 Lafayette大学,数学系 康涅狄格大学 鱼类推进数学模型 鱼类推进数学模型 鱼类游动的结构和功能 游动和飞行的研究 鳗鲡目推进 电子鱼研究项目 胸鳍推进 驱动装置、机动性研究 研究内容 涡流控制和减阴机制 鱼类游动行为
日本运输省船舶技术研究所PF系列
仿生-Ⅱ
北航机器人研究所
哈尔滨工业大学
其他外形的机器鱼
有待完善的方面
• 随着机电一体化技术、训一算机技术、流体力学 和仿生学等相关学科的发展,研究人员研制出了 多种仿生机器鱼。现有的机器鱼已经可以模仿鱼 类的多种运动模式。但是,现有的仿生机器鱼还 难以满足实用性的要求。仿生机器鱼难以实现完 全柔性的推进运动,推进效率难以与鱼类媲关, 机动性和稳定性还存在不足,操纵性、智能控制、 通讯等问题还有待解决。
海洋生物中的鱼类,种类繁多、形态各异,经过亿万年的进化,使其 具有了非凡的游动能力。鱼类通过身体运动推动周围的水,以此来获得推 进力,对于涡流的精确控制使得鱼类游动推进效率高、机动性好。模仿鱼 类的游动推进模式,研制出高效低噪、灵活机动的仿生机器鱼,用以进行 水下复杂环境作业,已经成为研究人员追求的口标。
功能扩展
• • • • • • 测距(红外测距,超声波测距) 图像采集 自主导航 自主避障 无线通信 各类传感器
智能仿生机器鱼
• 装备多种传感器的智能仿生机器鱼系统
基于视觉的仿生机器鱼控制
• 装备摄像头的仿生机器鱼
应用实例
• 2012年5月22日,一批“机器鱼”在西班牙北部港口城市希洪开始“服 役”,它们的主要任务是检测水质的污染状况,将污染地点报告给相关部 门。这种新技术可以将检测污染物的时间从数周缩减至数秒,而且还能大 大减少处理污染所需的费用,每年节约的成本可超过20亿美元。 (/hqzx/2012-05/24/content_15371785.htm)
2004年8月,我国科学家曾使用“SPC-II”仿生机器鱼(北航机 器人研究所和中科院自动化研究所研制)对福建东山海域郑成功古战舰 遗址进行了水下考古探测试验。机器鱼对4000平方米的水域进行了摄像 考察,有关图像即时传送到水面指挥部。在两天的实验中,机器鱼累计 在水中工作约6小时。这是中国考古工作者首次利用机器人辅助水下考古 工作。(/2004/1214pt 智能机器鱼(机械设计课程设计).docx
谢谢!
美
MIT
中佛罗里达大学 德州农工大学 国
东北大学
波士顿大学 加州理工学院
仿生水下机器人项目(鳗鲡目推进)
机器鱼推进建模 鱼类推进的传感和控制 机器鱼智能体研究 人工胸鳍黑鲈(Blackbass) 微型水下仿胸鳍模式浮游机器人(PZT) 微型身体波动式水下推进器(SMA) 机器鱼,机器水母 机器鱼“Mitsubishi Animatronics” PF-300, PF-600, F-FP09
仿生机器鱼的总体设计思路
实验模型基本构成
• • • • 控制系统(包括电池) 执行机构(伺服舵机,联结架等) 鱼骨架(鱼头,鱼皮,尾鳍) 功能扩展模块(摄像头,传感器等)
模型简图
机 械 设 计 课 程 设 计
基本运动
• • • • • • • • 直行 上升 下潜 左转 右转 加速 减速 悬停