数列-2014各地高考模拟压轴题大全
2014高考数列真题汇编

2014高考数列真题汇编一、选择题1.在等差数列{a n }中,若a 2+2a 6+a 10=120,则a 3+a 9等于 ( )A .30B .40C .60D .802.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4等于 ( )A .7B .8C .15D .163.等比数列{a n }中,a 1=512,公比q =-12,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n ,则Πn 中最大的是 ( )A .Π11B .Π10C .Π9D .Π84.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.n n -1D.n +1n 5.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2,n ∈N *),则这个数列的 第10项等于 ( ) A.1210 B.129 C.110 D.156.数列{a n }中,a 1=1,a n 、a n +1是方程x 2-(2n +1)x +1b n=0的两个根,则数列{b n }的前 n 项和S n = ( )A.12n +1B.1n +1C.n 2n +1D.n n +1二、填空题7.数列{a n }的构成法则如下:a 1=1,如果a n -2为自然数且该自然数之前未出现过,则 用递推公式a n +1=a n -2,否则用递推公式a n +1=3a n ,则a 6=________.8.已知数列{a n }满足a n +1a n=n +2n (n ∈N *),且a 1=1,则a n =________. 9.如图,它满足:(1)第n 行首尾两数均为n ;(2)图中的递推关系类似杨辉三角,则第n (n ≥2)行的第2个数是________.10.对正整数n ,设曲线y =x n (1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n +1的前n 项和的公式是________.三、解答题11.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列, b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求1S 1+1S 2+…+1S n的值.12.已知数列{a n }满足a 1=0,a 2=2,且对任意m ,n ∈N *都有a 2m -1+a 2n -1=2a m +n -1+2(m -n )2.(1)求a 3,a 5; (2)设b n =a 2n +1-a 2n -1(n ∈N *),证明:{b n }是等差数列;13.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.14.在等比数列{a n }中,a 2=3,a 5=81.(1)求a n ; (2)设b n =log 3a n ,求数列{b n }的前n 项和S n .15.已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式. (2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.16. 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.17. 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.18. 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.。
2014浙江省高考压轴卷 理科数学 Word版含答案

2014浙江省高考压轴卷理科数学一、选择题:本大题共10小题,每小题5分,共50分,在给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集U=R ,集合M=}032|{2≤--x x x ,N=}13|{2+=x y y ,则=)(N C M u ( )A .}11|{<≤-x xB .}11|{≤≤-x xC .}31|{≤≤x xD .}31|{≤<x x 2. 已知i 为虚数单位,则复数iiz 325+-=在复平面内表示的点位于( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限3. 已知函数⎪⎩⎪⎨⎧<-≥=0,0,2)(x x x x f x ,则“4)(=a f ”是“2=a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 已知21,e e 为互相垂直的单位向量,若向量21e e +λ与21e e λ+的夹角等于30,则实数λ等于( )A .32±B .3±C .33±D .333或 5. 执行如图所示的程序框图,若输出的值S=16,则输入自然数n 的最小值应等于( )A .7B .8C .9D .106. 若y x ,满足约束条件y kx y x y y x +=⎪⎩⎪⎨⎧≤-≥≥-+z 22201,且取得最小值时的点有无数个,则k=( )A .-1B .2C .-1或2D .1或 -27. 已知函数,,,⎪⎩⎪⎨⎧>+-≤<=10621100|lg |)(x x x x x f 若函数92)(2)(2-+-=b x bf x f y 有6个零点,则b 的取值范围是( ) A .⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛31,9297,32 B .⎪⎭⎫ ⎝⎛∞-⎪⎭⎫ ⎝⎛+∞31,,32 C .⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1,3231,0 D .⎪⎭⎫⎝⎛97,92 8. 设m ,n 是两条不同的直线,βα,是两个不同的平面,则下列命题不正确的是( )B .αα⊥⇒⊥n n m m //,C .βαβα⊥⇒⊂⊂⊥m n n m ,,D .n m n m m ////⇒=⊂βααβ ,,9. 设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F ,F ,如图,过2F 于双曲线一条渐近线平行的直线交另一条渐近线于点P ,若21PF F ∠为钝角,则该双曲线离心率的取值范围是( ) A .()∞+,2 B .()∞+,3 C .()21, D .()21,10. 设数字1,2,3,4,5,6的一个排列为654321,,,,,a a a a a a ,若对任意的)6,5,4,3,2(=i a i 总有)5,4,3,2,1(=<k i k a k ,满足,1||=-k i a a 则这样的排列共有( )A .36B .32C .28D .20 二、填空题:本大题共7小题,每小题4分,共28分 11. 若_____________2sin ),4sin(2cos 3),,2(=-=∈θθπθππθ则且.12. 一个几何体的三视图如右图所示,则该几何体的体积为_______________. 13. 若444332210)12()12()12()12(x x a x a x a x a a =-+-+-+-+,则=2a _______________. 14. 若正数的最小值,则满足y x xy y x y x +=+53,为_________________. 15. 已知数列{}n a 满足:)(11*11N n n a a a a n n n n ∈=+--+++,且284=a ,,则{}n a 的通项公式为n a =_____________. 16. 圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)。
2014年全国高考试卷数列部分汇编

2014年全国高考试卷数列部分汇编1. (2014安徽理12)数列{}n a 是等差数列,若135135a a a +++,,构成公比为q 的等比数列,则q =________. 【解析】1 设{}n a 的公差为d ,则315131225144a a d a a d +=++++=+++,,由题意可得23(3)a+=15(1)(5)a a ++.∴2111[(1)2(1)](1)[(1)4(1)]a d a a d +++=++++,∴2221111(1)4(1)(1)[2(1)](1)4(1)(1)a d a d a a d ++++++=++++, ∴1d =-,∴3131a a +=+,∴公比31311a qa +==+. 2. (2014安徽文12)如图,在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1A C 的垂线,垂足为3A ;…,依此类推,设1BA a =,12123567AA a A A a A A a ===,,…,,则7a =______________.【解析】 14由22BC =得112123222212AB a AA a A A a ==Þ==Þ==´=,由此可归纳出{}n a 是以12a =为首项,22为公比的等比数列,因此667121224a a q æö=´=´=ç÷ç÷èø.3. (2014安徽文18)数列{}n a 满足111(1)(1)n n a na n a n n n *+=,=+++,ÎN .⑴证明:数列n a n ìüíýîþ是等差数列;是等差数列;⑵设3nnnb a =×,求数列{}nb 的前n 项和nS .【解析】 ⑴ 由已知可得111n n a a n n +=++,即111n n a a n n+-=-. 所以n a n ìüíýîþ是以111a =为首项,1为公差的等差数列. ⑵ 由⑴得()111na n n n=+-×=,所以2n a n =. 从而3nn b n =×. 1231323333nn S n =×+×+×++×,①()23131323133n nn S n n +=×+×++-×+×.② A 1A 4A 3A 2第(12)题图ABC①-②得12123333n n n S n +-=+++-×()()1131312333132nn nn n n ++×--×-=-×=-..所以()121334nn n S +-×+=.评析 本题考查等差数列定义的应用,错位相减法求数列的前n 项和,解题时利用题⑴提示对递推关系进行变形是关键.4. (2014北京理5)设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的(”为递增数列的( ) A .充分而不必要条件 B .必要而不充分条件.必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件.既不充分也不必要条件 【解析】D 对于等比数列{}na ,若1q >,则当10a <时有{}na 为递减数列.故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >. 综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D .5. (2014北京理12)若等差数列{}n a 满足7890a a a ++> ,7100a a +<,则当n =____时,{}n a 的前n 项和最大.最大.【解析】8 由等差数列的性质,78983a a a a ++=,71089a a a a +=+,于是有80a >,890a a +<,故90a <.故87S S >,98S S <,8S 为{}n a 的前n 项和n S 中的最大值6. (2014北京文15)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -为等比数列.为等比数列.⑴求数列{}n a 和{}n b 的通项公式;的通项公式; ⑵求数列{}n b 的前n 项和.项和.【解析】 ⑴ 设等差数列{}n a 的公差为d ,由题意得41123333a a d --===所以()()11312n a a n d n n =+-==,,.设等比数列{}n n b a -的公比为q ,由题意得344112012843b a qb a --===--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而()13212n n b n n -=+=,, ⑵ 由⑴知()13212n nn b n n -=+=,,.数列{}3n 的前n 项和为()312n n +,数列{}12n -的前n 项和为1212112nn -=--×.所以,数列{}n b 的前n项和为()31212n n n ++-.7. (2014大纲理10)等比数列{}n a 中,4525a a ==,,则数列{}lg n a 的前8项和等于(项和等于() A .6 B .5 C .4 D .3【解析】C8. (2014大纲理18)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤⑴求{}n a 的通项公式;的通项公式; ⑵设11n n n b a a +=,求数列{}n b 的前n 项和n T . 【解析】 ⑴ 由110a =,2a 为整数知,等差数列{}n a 的公差d 为整数.又4n S S … 故4500a a ,厔于是10301040d d ++≥,≤ 解得10532d --≤≤. 因此3d =-.数列{}n a 的通项公式为133n a n =-.⑵ ()()1111331033103133n b n n n n æö==-ç÷----èø1.于是12n T b b =++…nb 1111111371047103103n n éùæöæöæö=-+-+-ç÷ç÷ç÷êú--èøèøèøëû…+ 111310310n æö=-ç÷-èø()10103n n =-.9. (2014大纲文8)设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31 B .32 C .63 D .64 【解析】C 10. (2014大纲文17)数列{}n a 满足12211222n n na a a a a ++===-+,, ⑴设1nn nb a a +=-,证明{}nb 是等差数列;是等差数列;⑵求{}n a 的通项公式.的通项公式.【解析】 ⑴ 由2122n n n a a a ++=-+得2112n n n n a a a a +++-=-+ 即12n n b b +=+又1211b a a =-=所以{}n b 是首项为1,公差为2的等差数列. ⑵ 由⑴得12(-1)n b n =+ 即+121n n a a n -=- 于是111()(21)nnk k k k aa k +==-=-åå所以211n a a n +-=,即211n a n a +=+.又11a =,所以{}n a 的通项公式为222n a n n =-+.11. (2014福建理3)等差数列{}n a 的前n 项和n S ,若13212a S ==,,则6a =( ) A .8B .10C .12D .14【解析】C12. (2014福建文17)在等比数列{}n a 中,25381a a ==,.⑴求n a ;⑵设3log n n b a =,求数列{}n b 的前n 项和n S .【解析】 本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查化归与转化思想.⑴ 设{}n a 公比为q ,依题意得141381a q a q =ìïí=ïî,, 解得113a q =ìí=î,.因此,13nn a -=.⑵ 因为3log 1n n b a n ==-,所以数列{}n b 的前n 项和21()=22n nn b b n n S +-=.13. (2014广东理13)若等比数列{}n a 的各项均为正数,且510119122e a a a a +=,则1220l n l n l n a a a +++=__________.【解析】50. 由等比数列性质可知,51202193189121011e a a a a a a a a a a =====,可求得1220120219912l n l n l n l n l n l n l n 10550a a a a a a a a a a a +++=++++=´=. 14. (2014广东理19) 设数列{}n a 的前n 项和为n S ,满足21234n n S na n n +=--,*n ÎN ,且315S =.⑴求1a ,2a ,3a 的值;的值;⑵求数列{}n a 的通项公式.的通项公式.【解析】 ⑴ 取2n =得到23420S a =-,又233315S S a a =-=-,于是3342015a a -=-,得37a =取1n =得到11227a S a ==-,又1322158a a a a =--=-, 于是22212785,3a a a a -=-Þ==;⑵ 猜测21na n =+,用归纳法证明:1°1n =时,显然成立;2°假设n k =时,成立,即21k a k =+;3°由22111(1)23432234232k k k k k k S ka k k k ka k k a k +++-=--Þ+×=--Þ=+; 故结论成立,即21n a n =+.15. (2014广东文13)等比数列{}n a 的各项均为正数,且154a a =,则2122232425l og l o g l o g l o g l o g a a a a a ++++=_____.【解析】5. 16. (2014广东文19)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足满足222(3)3()0n n S n n S n n n *-+--+=ÎN ,.⑴求1a 的值;的值;⑵求数列{}n a 的通项公式;的通项公式;⑶证明:对一切正整数n ,有()()()112211111113nna a a a a a+++<+++. 【解析】 ⑴ ∵()()222330n n S n n S n n -+--+=,∴令1n =,得21160a a +-=,解得12a =得13a =-. 又0na >,∴12a =.⑵ 由()()222330n n S n n S n n -+--+=,得()()230n n S n n S éù-++=ëû, 又0n a >,所以30n S +≠,所以2n S n n =+,所以当2n ≥时,()221112n n n a S S n n n n n -éù=-=+--+-=ëû,又由⑴知,12a =,符合上式.所以2n a n =.⑶ 由⑵知,()()111221n n a a n n =++, 所以()()()1122111111n n a a a a a a ++++++… ()1112345221n n =+++´´+…()()11112335572121n n <++++´´´-+…111111116235572121n n éùæöæöæö<+-+-++-ç÷ç÷ç÷êú-+èøèøèøëû… 111162321n æö=+-ç÷+èø11116233<+´=17. (2014湖北理18文19)已知等差数列{}n a 满足:12a =,且125a a a ,,成等比数列.成等比数列.⑴求数列{}n a 的通项公式.的通项公式.⑵记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+?若存在,求n 的最小值;若不存在,说明理由.小值;若不存在,说明理由.【解析】 ⑴ 设数列{}n a 的公差为d ,依题意,2224d d ++,,成等比数列,故有 2(2)2(24)d d +=+,化简得240d d -=,解得0d =或4d =.当0d =时,2na =;当4d =时,2(1)442n a n n =+-×=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-. ⑵ 当2na =时,2nS n =.显然260800n n +<,此时不存在正整数n ,使得60800n S n >+成立.当42na n =-时,[]22(42)22n n n S n +-==.令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),此时存在正整数n ,使得60nS n >+800成立,n 的最小值为41.综上,当2na =时,不存在满足题意的n ;当42na n =-时,存在满足题意的n ,其最小值为41.18. (2014湖南理20)已知数列{}n a 满足111||n n n a a a p +=-=,,*n ÎN .⑴若{}n a 是递增数列,且1a ,22a ,33a 成等差数列,求p 的值;的值;⑵若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.的通项公式. 【解析】 ⑴ 因为数列{}n a 为递增数列,所以10n n a a +-≥,则11n nn n n n a a p a a p ++-=Þ-=,分别令12n =,可得22132a a p a a p -=-=,22311a p a p p Þ=+=++,, 因为12323a a a ,,成等差数列, 所以21343a a a =+()()224113130p p p p p Þ+=+++Þ-=13p Þ=或0, 当0p =时,数列n a 为常数数列不符合数列{}n a 是递增数列,所以13p =.⑵ 由题可得122122212121111222n n n n n n n n n a a a a a a +-++-+-=Þ-=-=,, 因为{}21n a -是递增数列且{}2n a 是递减数列,所以2121n n a a +->且222n n a a +<,则有22222122212121n nn n n n n n a a a a a a a a +-++-+-<-ìÞ->-í<î, 又因为2212112n n n a a ---=22212112n n n a a +++>-=,所以2210n n a a -->,即2212112n n n a a ---=, 同理可得2322212n n n n a a a a +++->-且2322212n n n n a a a a +++-<-,所以212212n nn a a +-=-,则当2n m =()*m ÎN 时,21324322123211111,2222m m m a a a a a a a a ---=-=--=-=,,,,这21m -个等式相加可得2113212422111111222222m m m a a --æöæö-=+++-+++ç÷ç÷èøèø212222111111111224224113321144m m m ----×-×=-=+×--22141332m m a -Þ=+×. 当21n m =+时,2132432122321111,2222m m m a a a a a a a a +-=-=--=-=-,,,,这2m 个等式相加可得2111321242111111222222m m m a a +-æöæö-=+++-+++ç÷ç÷èøèø2122211111111224224113321144m m m--×-×=-=-×-- 21241332m m a +=-×,当0m =时,11a =符合,故212241332m m a --=-×综上()1141332nn n a --=+×. 19. (2014湖南文16)已知数列{}n a 的前n 项和22n n n S n *+=ÎN ,.⑴求数列{}n a 的通项公式;的通项公式;⑵设()21nna n nb a =+-,求数列{}n b 的前2n 项和.项和.【解析】 ⑴ 当1n =时,111a S ==;当2n ≥时,()()2211122n n n n n n n aS Sn--+-+=-=-=. 故数列{}n a 的通项公式为n a n =. ⑵ 由⑴知,()21nn nb n =+-,记数列{}n b 的前2n 项和为2nT ,则()()122222212342nn T n =++++-+-+-+.记122222nA =+++,12342B n =-+-+-+,则()2212122212nn A +-==--,()()()1234212B n n n=-++-+++--+=éùëû. 故数列{}n b 的前2n 项和21222n n T A B n +=+=+-.20. (2014江苏理7)在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值为_____.【解析】 4设公比为q (0)q >,则由8642a a a =+得266622a a q a q =+,解得22q =,故4624a a q ==21. (2014江苏理20)设数列{}n a 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”. ⑴若数列{}n a 的前n 项和*2()n nS n =ÎN ,证明:{}n a 是“H 数列”; ⑵设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值;的值;⑶证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}nc ,使得n n n a b c =+成立.成立.【解析】 ⑴ 当2n ≥时,111222n n n nnn a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ³时,1n n S a += ∴{}n a 是“H 数列”⑵1(1)(1)22n n n n n S na d n d --=+=+ 对*n "ÎN ,*m $ÎN 使n m S a =,即(1)1(1)2n n dn m d -+=+-取2n =得1(1)d m d +=-,12md =+∵0d <,∴2m <,又*m ÎN ,∴1m =,∴1d =- ⑶ 设{}na 的公差为d令111(1)(2)n b a n a n a =--=-,对*n "ÎN ,11n n b b a +-=-1(1)()n c n a d =-+,对*n "ÎN ,11n n c c a d +-=+则1(1)n n n b c a n d a +=+-=,且{}n b 、{}n c 为等差数列{}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =;当2n =时1m = 当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,*m ÎN 因此对n ",都可找到*m ÎN ,使n m T b =成立,即{}n b 为H 数列 {}n c 的前n 项和1(1)()2n n n R a d -=+,令1(1)()m n c m a d R =-+=,则(1)12n n m -=+ ∵对*n "ÎN ,(1)n n -是非负偶数,∴*m ÎN即对*n "ÎN ,都可找到*m ÎN ,使得n m R c =成立,即{}n c 为H 数列因此命题得证22. (2014江西理17)已知首项都是1的两个数列{}n a ,{}n b *0n b n ¹ÎN ,,满足11120n n n n n n a b a b b b +++-+=.⑴令n n na cb =,求数列{}nc 的通项公式;的通项公式;⑵若13n n b -=,求数列{}n a 的前n 项和n S .【解析】 ⑴ 因为()*111200n n n n n n n a ba b b b b n +++-+=¹ÎN ,, 所以112n n n na ab b ++-=,即12n nc c +-= 所以数列{}n c 是以1为首项,2为公差的等差数列. 故21nc n =-.⑵ 由13n nb -=知()1213n n n n a c b n -==-,于是数列{}n a 的前n 项和()0121133353213n n S n -=×+×+×++-×…. ()()12131333233213n n n S n n -=×+×+-×+-×…+. 相减得()()()1212123332132223n n nn S n n --=+×++--×=---…+, 所以()131nn S n =-+.23. (2014江西文13)在等差数列{}n a 中,17a =,公差为d ,前n 项和为n S ,当且仅当8n =时n S 取最大值,取最大值,则则d 的取值范围_________. 【解析】 718æö--ç÷èø, 24. (2014江西文17) 已知数列{}n a 的前n 项和232n n nS n *-=ÎN ,. ⑴求数列{}n a 的通项公式;的通项公式;⑵证明:对任意1n >,都有m *ÎN ,使得1n m a a a ,,成等比数列.成等比数列.【解析】 ⑴ 由232n n nS -=得111a S ==,当2n ≥时,132n n n a S S n -=-=-.所以数列{}na 的通项公式为32na n =-.⑵ 要使1n m a a a ,,成等比数列,只需要21n m a a a =×,即()()232132n m-=×-,即2342m n n =-+,而因此时m *ÎN ,且m n >,所以对任意的1n >,都存在m *ÎN ,使得1n m a a a ,,成等比数列.25. (2014辽宁理8文9) 设等差数列{}n a 的公差为d .若数列{}12n a a 为递减数列,则()为递减数列,则()A .0d <B .0d >C .10a d <D .10a d >【解析】C 26. (2014山东理19)已知等差数列{}n a 的公差为2,前n 项和为n S ,且124S S S ,,成等比数列.⑴求数列{}n a 的通项公式;的通项公式;⑵令114(1)n n n n n b a a -+=-,求数列{}n b 的前n 项和n T . 【解析】 ⑴ 1121412S S 246d a a d S a d ===+=+,,,124S S S ,,成等比数列,2214S S S \=解得1121n a a n =\=-,⑵111411(1)(1)()2121n n n n n n b a a n n --+=-=-+-+ 当n 为偶数时,111111111(1)()()()()3355723212121nT n n n n =+-+++-++-+---+1212121n nT n n \=-=++ 当n 为奇数时,111111111(1)()()()()3355723212121n T n n n n =+-+++--+++---+12212121n n T n n +\=+=++2212221n n n n T n n n ìïï+\=í+ï+î,为偶数,为奇数27. (2014山东文19)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项.的等比中项.⑴求数列{}na 的通项公式;的通项公式;⑵设(1)2n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .【解析】 ⑴ 由题意知{}n a 为等差数列,设1(1)n a a n d =+-,2a 为1a 与4a 的等比中项2214a a a \=´且()()2111103a a d a a d ¹Þ+=+,2d =解得:12a =()2122n a n n \=+-´=.⑵ 由⑴知:2n a n =,∴()()121n n n b a n n +==+①当n 为偶数时:()()()()()()()()()()2122334+1213435+11224262+22246+222222n T n n n n n n n nn n n=-´+´-´++=´-++-++--++éùëû=´+´+´+´=´++++×+=´=②当n 为奇数时:()()()()()()()()()()()()()21223341213435+(1)21224262+(1)212246+111212122122n T n n n n n n n n n n n n n n n n n n n =-´+´-´+-+=´-++-++---+-+éùëû=´+´+´+-´-+=´+++--+-+-×++=´-+=-综上:2221222n n n n T n n n ì++-ïï=í+ïïî为为数,奇数,偶.28. (2014陕西文8) 原命题为“若12n n n a aa ++<,+n N ∈”,则{}n a 为递减数列,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) A .真,真,真.真,真,真 B .假,假,真.假,假,真 C .真,真,假.真,真,假 D .假,假,假.假,假,假【解析】A 29. (2014上海理23)已知数列{}n a 满足1133n n n a a a +≤≤,*n ÎN ,11a =。
2014全国各地高考真题 ——数列专题及答案解析

2014全国各地高考数列真题山东:(19) (本小题满分12分)在等差数列{}n a 中,已知公差为2,2a 是1a 与4a 的等比中项. (I)求数列{}n a 的通项公式;(II )设(1)2n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .(19)解:(I )由题意知2111()(3)a d a a d +=+, 即2111(2)(6)a a a +=+, 解得12a =,所以数列{}n a 的通项公式为2n a n =. (II )由题意知(1)2(1)n n n b a n n +==+.所以122334(1)(1)n n T n n =-⨯+⨯-⨯++-⨯+. 因为12(1)n n b b n +-=+. 可得,当n 为偶数时,12341()()()n n n T b b b b b b -=-++-+++-+48122n =++++(42)22nn += (2)2n n +=当n 为奇数时,1()n n n T T b -=+-(1)(1)(1)2n n n n -+=-+2(1)2n +=-所以2(1),2(2)2n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数,为偶数. 上海:23.(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=. (1)若2342,,9a a x a ===,求x 的取值范围; (2)若{}n a 是等比数列,且11000m a =,求正整数m 的最小值, 以及m 取最小值时相应{}n a 的公比;(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.23.解:(1)由题得,263[3,6]933x x x x ⎧≤≤⎪⎪⇒∈⎨⎪≤≤⎪⎩ (文科)(2)∵1133n n n a a a +≤≤,且数列{}n a 是等比数列,11a =,∴11133n n n q q q --≤≤,∴111()03(3)0n n q q q q --⎧-≥⎪⎨⎪-≤⎩,∴1[,3]3q ∈。
2014高考题分类-(文科)数列(含答案)

2014高考题分类-(文科)数列(含答案)1、(2014年高考重庆卷文2)在等差数列{a n}中,a i 2 , a3 a5 10,则a7 ( )A. 5B. 8 C . 10 D. 141、解:.••数列{a n}是等差,a3 a5 10 ,・°・ 5 , a? 2a4 a 8 , •••选B.2、(2014年高考天津卷文5)设a…是首项为3 ,公差为1 的等差数列,S”为其前n项和,若S,S2, S4成等比数列,则 & =( )A. 2B. - 2C. - D .222、解:• a”是首项为a,,公差为1的等差数列,S”为其前”项和,又• S” S2, S4 成等比数列,...佝a2)2= a1(a a2 a3 a«),即2(2a1 1) = a1 (4a1 6),解得a1 —2,••选D3、(2014年高考新课标2卷文5)等差数列a n的公差为2,若a2,a4,a8成等比数列,贝廿a.的前n项S.= ( )B. n n 1C.D.23、解:.•.等差数列a”的公差为2,且a2 , a4 , 成等比数列,二a42= a?a8 ,即(印6)2=⑻2)⑻14),解得a 2,则a n 2n,二选A4、(2014年高考全国卷文8).设等比数列©}的前n项和为S n,若S2 3,S4 15,则S6 ()A . 31 B. 32 C. 63 D ・644、解:••由等比数列{a n}的前n项和S,的性质得:S2 , S4 -S2, S6 —S4成等比数列,即3,12,S6—15 成等比数列,••• 122= 3(S—15), 解得:S e = 63,二选C5、(2014年高考辽宁卷文9).设等差数列{a n}的公差为d, 若数列0an}为递减数列,则()DA・d 0 B・d 0 C・a-|d 0 D . qd 06、(2014年高考江苏卷文7)在各项均为正数的等比数列,则a6的值是▲.{a n}中,a2 1, a8 a6 2a4【答累】A【解析】设公上匕为哲因为?刚由陽=令+纠得字"二『+2亍* -1?'2— 2 = 0(解得叨'二2 * 所园盹-n才=4・【着点】等比数列餉通项公式7、(2014年高考江西卷文13)在等差数列a n中,a1 7 ,公差为d ,前n 项和为S n,当且仅当n 8时&取最大值,则d 的取值范围 __________ .7、解:因为a i7 0,当且仅当n 8时Sn 取最大值,可知d 0且同时满足a 80,a 90,二a 87 If 0,解得1 d 7,・••答案1 d 1& (2014年高考广东卷 文13).等比数列a n的各项均为正数,且a ’a s4,贝Ulog 2 a 1 +log 2a 2+log 2a 3+log 2a 4+log 2 a 5= _________________.答案:5 提示: 设 Slog 2 a 1 log 2 a 2 log 2 a 3 log 2 a 4 log 2a 5,则 S log 2a 5 log 2a 4log 2 a 3 log 2 a 2 log 2 a 1,5log 2 4 10,a 9 7 8d 02S 5log 2(a i a s ) S 5.9、(2014年高考新课2卷文16)数列{a n}满足a”1[1 a na 2= 2,则a1 = ___________9、解:由已知得10、(2014年高考北京卷 已知a n是等差数列,满足 b 420,且b n a ”是等比数列.(1) 求数列a n和h 的通项公式; (2) 求数列0的前n 项和.文15) a 13,a(本小题满分13分)12,数列b n满足b i4 ,2项公式及其前n 项和T n.(15) f 共 13 分 >«t ( I )设聲筈数列扫」的分建为# +由题倉需所以 u n -Vi t i (N -1)(/ 3n)*设事比数列他-碍}的总比为「V^.1=2£zl£=g r 無% 岛一打I 4-3从丽氏=抑+ 2* 1 5工12- (11J 曲(1 ) + (fl = l31 . 1 -2*艸如伽"和吟仞0犠輸科潤鼬项和环—=r所乩数囲世」的前"顶櫛为]附小心I,11、 (I : (2014年高考重庆卷 文16)(本小题满分 小问6分,(II )小问5分)已知a n是首相为1,公差为2的等差数列,S13分. 表示an的前n 项和. (I )求aII )设 a 41 q S 40 及5 ;b n是首相为2的等比数列,公比 求S 的通q满足I )因为2」垦苗顶眄訂扭蛙"2的零養敦列[析民12、_ ・i 喊眄 *口J n(l<2rt"l> 2K 5, = 3 +3 + ■-■ + (I FI亠I J 工 - ; ---- = --- 二片・CH)*( 1)^^=7.5^ 讥18为孑-心咖*Sj =o t即『-阳416 =o tBrijtfi -4)a =fi,从■而电=址3t® 6."・I妬f屋公比厂目的舗塩融列,所瓯虹胡厂'=2 - 4*_, =2fc_L从阿血丨的枫M和町帀啤二住=寻仟-I )■(2014年高考湖南卷文16).(本小题满分12分)2已知数列a n的前n项和S n亍,n N(I)求数列a n的通项公式;(II )设b 2an1n a n,求数列b n的前2n项和.I )当” I 时* H,V;an[上肾(用・】)*4(jr・|)7 1当用荒2吐d, = 5故盟蚪{% J的划顶公式为匹■ e im由HA灿‘才•(“衍础姗{耐的诃斟顶和为g剧Tj, = C21 + 2^+■*■■+■ I s*)+(—I 4 2- 3+4 —+ 2h),启斗-【*2・3 + £—半加"财-|>-ISlJS捌他}的曲舸段和乙旷口丹7-13、(2014年高考福建卷文17). 已知等比数列{a n}中,a2 3,a5 81.(I )求数列{臥}的通项公式;求数列的前项和(本小题满分12分)a2(II )若数列 6IOg3a n ,13、考查等差、等比数列等基础知识,考查运算求解能力,考查化归与转化思想解:(I )设{a n}的公比为q ,依题意得3 a 1q 481,解得n(d 2 因此,a n3n1(II ) V 数列 b nb n ) = n 2n2 'log 3a n= n 1,・°・数列{b n}的前n 项和S =14、(2014年高考江西卷 文17) 2已知数列a n的前n 项和S n詈(1) 求数列a n的通项公式;(2) 证明:对任意n 1,都有m比数列.解析: 14、 (本小题满分12分)N,使得a 1, a n, a m成等(1 )当 n 1 时 a ,S 1 当n 2时 % S S 检验当n 1时a 1a”使印,a n, a m成等比数列.则 a n2= a 1a m3n 2"=3m 23m 3n 2 2 2 9n 2 12n 6所以m 3n 24n 221 n 1 3n2 23n 2 (2) 即满足则对任意n 1 ,都有3n 24n 2 N所以对任意n 1 ,都有m N ,使得a” a n, a ”成等比数列.15、(2014年高考全国卷 文 仃).(本小题满分10分)数列{a n}满足 印 2,a 22,an 22a . 1 a . 2(1) 设bn a n 1 a n,证明{bn}是等差数列;(2) 求{a n}的通项公式.(17) t *汕仆)T ; J A 小=LHi = 2&n » I "1T I J 可匪t 九甘[曹用觌列I(n ) 如的逍顼笛亠W J [ I ) th j: = m ■ 1 -日"2 褐- art*i *4fnt+i - ti> + 2-X 枷匸出g 曲=11巧旦內}!上门卷X 处…2的带•岸歌吩hl[-应I xjiJ E9 乔[五X + ■f.・1 *蹄以細増強武为-分)已知a n是递增的等差数列,a 2, a 4是方程x 25x 6根。
14年高考数学压轴题系列训练含答案及解析详解

14年高考数学压轴题系列训练含答案及解析详解1.(本小题满分14分)如图,设抛物线的焦点为F,动点P在直线上运动,过P 作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求△APB的重心G的轨迹方程.(2)证明∠PFA=∠PFB.解:(1)设切点A、B坐标分别为,∴切线AP的方程为:切线BP的方程为:解得P点的坐标为:所以△APB的重心G的坐标为,所以,由点P在直线l上运动,从而得到重心G的轨迹方程为:(2)方法1:因为由于P点在抛物线外,则∴同理有∴∠AFP=∠PFB.方法2:①当所以P点坐标为,则P点到直线AF的距离为:即所以P点到直线BF的距离为:所以d1=d2,即得∠AFP=∠PFB.②当时,直线AF的方程:直线BF的方程:所以P点到直线AF的距离为:,同理可得到P点到直线BF的距离,因此由d1=d2,可得到∠AFP=∠PFB. 2.(本小题满分12分)设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(Ⅰ)确定的取值范围,并求直线AB的方程;(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由.(此题不要求在答题卡上画图)本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(Ⅰ)解法1:依题意,可设直线AB的方程为,整理得①设是方程①的两个不同的根,∴②且由N(1,3)是线段AB的中点,得解得k=-1,代入②得,的取值范围是(12,+∞).于是,直线AB的方程为解法2:设则有依题意,∵N(1,3)是AB的中点,∴又由N(1,3)在椭圆内,∴∴的取值范围是(12,+∞).直线AB的方程为y-3=-(x-1),即x+y-4=0.(Ⅱ)解法1:∵CD垂直平分AB,∴直线CD的方程为y-3=x-1,即x-y+2=0,代入椭圆方程,整理得又设CD的中点为是方程③的两根,∴于是由弦长公式可得④将直线AB的方程x+y-4=0,代入椭圆方程得⑤同理可得⑥∵当时,假设存在>12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.点M到直线AB的距离为⑦于是,由④、⑥、⑦式和勾股定理可得故当>12时,A、B、C、D四点匀在以M为圆心,为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A、B、C、D共圆△ACD为直角三角形,A为直角|AN|2=|CN|·|DN|,即⑧由⑥式知,⑧式左边由④和⑦知,⑧式右边∴⑧式成立,即A、B、C、D四点共圆.解法2:由(Ⅱ)解法1及λ>12,∵CD垂直平分AB,∴直线CD方程为,代入椭圆方程,整理得③将直线AB的方程x+y-4=0,代入椭圆方程,整理得⑤解③和⑤式可得不妨设∴计算可得,∴A在以CD为直径的圆上.又B为A关于CD的对称点,∴A、B、C、D四点共圆.(注:也可用勾股定理证明AC⊥AD)3.(本小题满分14分)已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足(Ⅰ)证明(Ⅱ)猜测数列是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N,使得当时,对任意b>0,都有本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想.(Ⅰ)证法1:∵当即于是有所有不等式两边相加可得由已知不等式知,当n≥3时有,∵证法2:设,首先利用数学归纳法证不等式(i)当n=3时,由知不等式成立.(ii)假设当n=k(k≥3)时,不等式成立,即则即当n=k+1时,不等式也成立.由(i)、(ii)知,又由已知不等式得(Ⅱ)有极限,且(Ⅲ)∵则有故取N=1024,可使当n>N时,都有4.如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P为l上的动点,求∠F1PF2最大值.本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.解:(Ⅰ)设椭圆方程为,半焦距为,则(Ⅱ)5.已知函数和的图象关于原点对称,且.(Ⅰ)求函数的解析式;(Ⅱ)解不等式;(Ⅲ)若在上是增函数,求实数的取值范围.本题主要考查函数图象的对称、二次函数的基本性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力.满分14分.解:(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则∵点在函数的图象上∴(Ⅱ)由当时,,此时不等式无解.当时,,解得.因此,原不等式的解集为.(Ⅲ)①②ⅰ)ⅱ)6.(本题满分16分)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.对定义域分别是D f、D g的函数y=f(x) 、y=g(x),(1) 若函数f(x)=,g(x)=x2,x∈R,写出函数h(x)的解析式;(2) 求问题(1)中函数h(x)的值域;(3)若g(x)=f(x+α), 其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.[解] (1)h(x)= x∈(-∞,1)∪(1,+∞)1 x=1(2) 当x≠1时, h(x)= =x-1++2,若x>1时, 则h(x)≥4,其中等号当x=2时成立若x<1时, 则h(x)≤ 0,其中等号当x=0时成立∴函数h(x)的值域是(-∞,0] {1}∪[4,+∞)(3)令f(x)=sin2x+cos2x,α=则g(x)=f(x+α)= sin2(x+)+cos2(x+)=cos2x-sin2x,于是h(x)= f(x)·f(x+α)= (sin2x+co2sx)( cos2x-sin2x)=cos4x.另解令f(x)=1+sin2x, α=,g(x)=f(x+α)= 1+sin2(x+π)=1-sin2x,于是h(x)= f(x)·f(x+α)= (1+sin2x)( 1-sin2x)=cos4x.7.(本题满分18分)本题共有3个小题,第1小题满分4分, 第2小题满分8分, 第3小题满分6分.在直角坐标平面中,已知点P1(1,2),P2(2,22),┄,P n(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点, A2为A1关于点P2的对称点, ┄, A N为A N-1关于点P N的对称点.(1)求向量的坐标;(2)当点A0在曲线C上移动时, 点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式;(3)对任意偶数n,用n表示向量的坐标.[解](1)设点A0(x,y), A0为P1关于点的对称点A0的坐标为(2-x,4-y),A1为P2关于点的对称点A2的坐标为(2+x,4+y),∴={2,4}.(2) ∵={2,4},∴f(x)的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此, 曲线C是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x∈(-2,1]时,g(x)=lg(x+2)-4.于是,当x∈(1,4]时,g(x)=lg(x-1)-4.另解设点A0(x,y), A2(x2,y2),于是x2-x=2,y2-y=4,若3< x2≤6,则0< x2-3≤3,于是f(x2)=f(x2-3)=lg(x2-3).当1< x≤4时, 则3< x2≤6,y+4=lg(x-1).∴当x∈(1,4]时,g(x)=lg(x-1)-4.(3) =,由于,得=2()=2({1,2}+{1,23}+┄+{1,2n-1})=2{,}={n,}。
2014年高考数学压轴卷及答案

绝密★启用前 试卷类型:A2014年高考数学压轴卷22()x x -++第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、定义集合运算:A ⊙B ={z ︳z =xy ,x ∈A ,y ∈B },设集合A ={—2013,0,2013},B ={ln a ,e a },则集合A ⊙B 的所有元素之和为 【 】 A. 2013 B. 0 C. —2013 D. ln2013+e 20132、奇函数f (x )在(0,+∞)上的解析式是f (x )= x (1—x ),则在(-∞,0)上,f (x )的函数解析式是【 】A. f (x )= —x (1—x )B. f (x )= x(1+x ) C. f (x )= —x (1+x ) D. f (x )= x (x —1) 3、若复数221z i i=++,其中i 是虚数单位,则复数z 的模为 【 】 A.2B.C. D. 24、设a ∈R ,则“a =1”是“直线l 1:ax +2y —1=0与直线l 2:x +(a +1)y +4=0平行的【 】A.充分不必要条件B.必要不充分条件 C. 充分必要条件 D. 既不充分不必要条件 5、若一个螺栓的底面是正六边形,它的主视图和俯视图如图所示,则它的体 积是 【 】 A . B . π C .D .6、为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像 【 】 A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位 D .向右平移5π6个长度单位7、若程序框图如图所示,则该程序运行后输出k 的值是( ) A. 4 B. 5C. 6D. 7容器8、从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程0.56y x a =+,据此模型预报身高为172 cm 的高三男生的体重为【 】A . 70.09B . 70.12C . 70.55D . 71.059、在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选 的概率相同,则选到两个顶点的距离大于3的概率为 【 】A.47 B.37 C.27 D.31410、设等差数列{}n a 满足:22222233363645sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差(1,0)d ∈-. 若当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是 【 】 A. 74,63ππ⎛⎫ ⎪⎝⎭B. 43,32ππ⎛⎫⎪⎝⎭ C. 74,63ππ⎡⎤⎢⎥⎣⎦D.43,32ππ⎡⎤⎢⎥⎣⎦第Ⅱ卷(非选择题 共100分)二、填空题:(本大题共5小题,每小题5分,共25分.把答案值填在答题卡的相应位置) 11、给n 个自上而下相连的正方形着黑色或白色,当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如图1所示,由此推断,当n=6时,黑色正方形互不相邻的着色方案共有____________种,至少有两个黑色正方形相邻的着色方案共有____________.(结果用数值表示) 12、设(5nx 的展开式的各项系数之和为M ,二项式系数之和为N ,若M —N=240,则展开式中3x 的系数为13、如图是一种加热水和食物的太阳灶,上面装有可旋转的抛物面形的反光镜,镜的轴截面是抛物线的一部分,盛水和食物的容器放在抛物线的焦点处,容器由若干 根等长的铁筋焊接在一起的架子支撑。
专题06 数列-2014年高考数学试题分项版解析(原卷版)(2)

专题6 数列1. 【2014高考安徽卷文第12题】如图,在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =________.2. 【2014高考大纲卷文第8题】设等不数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( )A. 31B. 32C. 63D. 643. 【2014高考广东卷文第13题】等比数列{}n a 的各项均为正数,且154a a =,则212223242l o g l o g l o g l o g l o g a a a a a ++++= .4. 【2014高考江苏卷第7题】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是 .5. 【2014高考江西卷文第13题】在等差数列{}n a 中,71=a ,公差为d ,前n 项和为n S ,当且仅当8=n 时n S 取最大值,则d 的取值范围_________.6. 【2014高考辽宁卷文第9题】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >7. 【2014高考全国2卷文第5题】等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C.(1)2n n + D. (1)2n n - 8. 【2014高考全国2卷文第16题】数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________.9.【2014高考陕西卷文第8题】原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )真,真,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 10. 【2014高考陕西卷文第14题】已知0,1)(≥+=x xxx f ,若++∈==N n x f f x f x f x f n n )),(()(),()(11,则)(2014x f 的表达式为________.11. 【2014高考天津卷卷文第5题】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .12- 12. 【2014高考重庆卷文第2题】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ) .5A .8B .10C .14D 13. 【2014高考安徽卷文第18题】 数列{}n a 满足111,(1)(1),n n a na n a n n n N ++==+++∈(1) 证明:数列{}na n是等差数列; (2) 设3nn n b a =⋅,求数列{}n b 的前n 项和n S14. 【2014高考北京卷文第15题】已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.15. 【2014高考大纲卷文第17题】数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.16. 【2014高考福建卷文第17题】在等比数列{}n a 中,253,81a a ==.(1)求n a ; (2)设3log nn b a =,求数列{}n b 的前n 项和n S .17. 【2014高考广东卷文第19题】设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()223n n S n n S -+--()230n n +=,n N *∈.(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.18. 【2014高考湖北卷文第19题】已知等差数列}{n a 满足:21=a ,且1a 、2a 、5a 成等比数列. (1)求数列}{n a 的通项公式.(2)记n S 为数列}{n a 的前n 项和,是否存在正整数n ,使得?80060+>n S n 若存在,求n 的最小值;若不存在,说明理由.19. 【2014高考湖南卷文第16题】已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.20. 【2014高考江苏第20题】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和为*2()n n S n N =∈,证明:{}n a 是“H 数列”.(2)设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列” {}n b 和{}n c ,使得n n n a b c =+*()n N ∈成立.21. 【2014高考江西文第17题】已知数列{}n a 的前n 项和*∈-=N n nn S n ,232. (1)求数列{}n a 的通项公式;(2)证明:对任意1>n ,都有*∈N m ,使得m n a a a ,,1成等比数列. 22. 【2014高考全国1文第17题】已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知,且对任意的,,且(1)求的解析式;(2)设,求证:;(3)若,是否存在实数x,使得,说明理由。
2、设,圆:与轴正半轴的交点为,与曲线的交点为,直线与轴的交点为.(1)用表示和;(2)求证:;(3)设,,求证:.3、函数的定义域为R,数列满足(且).(Ⅰ)若数列是等差数列,,且(k为非零常数,且),求k的值;(Ⅱ)若,,,数列的前n项和为,对于给定的正整数,如果的值与n无关,求k的值.4、数列,()由下列条件确定:①;②当时,与满足:当时,,;当时,,.(Ⅰ)若,,求,,,并猜想数列的通项公式(不需要证明);(Ⅱ)在数列中,若(,且),试用表示,;(Ⅲ)在(Ⅰ)的条件下,设数列满足,, (其中为给定的不小于2的整数),求证:当时,恒有.5、如果一个数列的各项都是实数,且从第二项起,每一项与它的前一项的平方差是同一个常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.(Ⅰ)若数列既是等方差数列,又是等差数列,求证:该数列是常数列;(Ⅱ)已知数列是首项为,公方差为的等方差数列,数列的前项和为,且满足.若不等式对恒成立,求的取值范围.6、(理)对数列和,若对任意正整数,恒有,则称数列是数列的“下界数列”.(1)设数列,请写出一个公比不为1的等比数列,使数列是数列的“下界数列”;(2)设数列,求证数列是数列的“下界数列”;(3)设数列,构造,,求使对恒成立的的最小值.7、函数,数列和满足:,,函数的图像在点处的切线在轴上的截距为.(1)求数列{}的通项公式;(2)若数列的项中仅最小,求的取值范围;(3)若函数,令函数数列满足:且其中.证明:.8、定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列.对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”,.(1)已知是首项为2,公差为1的等差数列,若是数列的“保三角形函数”,求k的取值范围;(2)已知数列的首项为2010,是数列的前n项和,且满足,证明是“三角形”数列;(3) 若是(2)中数列的“保三角形函数”,问数列最多有多少项.9、已知点P n(a n,b n)都在直线:y=2x+2上,P1为直线与x轴的交点,数列成等差数列,公差为1.(n∈N+)(1)求数列,的通项公式;(2)若f(n)=问是否存在k,使得f(k+5)=2f(k)-2成立;若存在,求出k的值,若不存在,说明理由。
(3)求证:(n≥2,n∈N+)10、设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为(1)求的值及的表达式;(2)记,试比较的大小;若对于一切的正整数,总有成立,求实数的取值范围;(3)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由。
11、已知数列与满足:, ,且.(Ⅰ)求的值;(Ⅱ)设,证明:是等比数列;(III )设证明:.12、有个首项都是1的等差数列,设第个数列的第项为,公差为,并且成等差数列.(Ⅰ)证明 (,是的多项式),并求的值;(Ⅱ)当时,将数列分组如下:(每组数的个数构成等差数列).设前组中所有数之和为,求数列的前项和.(Ⅲ)设是不超过20的正整数,当时,对于(Ⅱ)中的,求使得不等式成立的所有的值.13、己知数列满足:,(1) 求a2,a3;(2) 设,求证是等比数列,并求其通项公式;(3) 在(2)条件下,求数列前100项中的所有偶数项的和S。
14、(本题满分16分,第1小题 4分,第2小题6分,第3小题6分)设函数,数列满足.⑴求数列的通项公式;⑵设,若对恒成立,求实数的取值范围;⑶是否存在以为首项,公比为的数列,,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由.15、 (本小题满分14分)已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前n项和.(1)求、和;(2)若对任意的,不等式恒成立,求实数的取值范围;(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.16、已知数列首项,公比为的等比数列,又,常数,数列满足,(1)、求证为等差数列;(2)、若是递减数列,求的最小值;(参考数据:)(3)、是否存在正整数,使重新排列后成等比数列,若存在,求的值,若不存在,说明理由。
17、对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是“M类数列”.(I)若,,,数列、是否为“M类数列”?若是,指出它对应的实常数,若不是,请说明理由;(II)若数列满足,.(1)求数列前项的和.(2)已知数列是“M类数列”,求.18、已知定义在上的奇函数满足,且对任意有.(Ⅰ)判断在上的奇偶性,并加以证明.(Ⅱ)令,,求数列的通项公式.(Ⅲ)设为的前项和,若对恒成立,求的最大值.19、(本小题14分)设函数y=f(x)的定义域为(0,+∞),且在(0,+∞)上单调递增,若对任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,数列{a n}满足:a1=f(1)+1,(1)求数列{a n}的通项公式,并求S n关于n的表达式;(2)设函数g(x)对任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正项数列{b n}满足:,T n 为数列{b n}的前n项和,试比较4S n与T n的大小。
20、 (本小题共13分)对数列,规定为数列的一阶差分数列,其中N*).对正整数k,规定为的k阶差分数列,其中.(Ⅰ)若数列的首项,且满足,求数列的通项公式;(Ⅱ)对(Ⅰ)中的数列,若数列是等差数列,使得对一切正整数N*都成立,求;(Ⅲ)在(Ⅱ)的条件下,令设若成立,求最小正整数的值.21、已知点,,,都在函数的图像上.(1)若数列是等差数列,求证:数列是等比数列;(2)若数列的前项和是,设过点的直线与坐标轴所围成的三角形面积为,求的最大值;(3)若存在一个常数,使得对任意的正整数都有且,则称为“左逼近”数列,为该数列的“左逼近”值. 若数列的前项和是设数列的前项和是,且,,试判断数列是否为“左逼近”数列,如果是,求出“左逼近”值;如果不是,说明理由.22、设二次函数,对任意实数,有恒成立;数列满足.(1)求函数的解析式和值域;(2)证明:当时,数列在该区间上是递增数列;(3)已知,是否存在非零整数,使得对任意,都有恒成立,若存在,求之;若不存在,说明理由.23、已知等比数列的公比为,是的前项和.(1)若,,求的值;(2)若,,有无最值?并说明理由;(3)设,若首项和都是正整数,满足不等式:,且对于任意正整数有成立,问:这样的数列有几个?24、设项数均为()的数列、、前项的和分别为、、. 已知集合=.(1)已知,求数列的通项公式;(2)若,试研究和时是否存在符合条件的数列对(,),并说明理由;(3)若,对于固定的,求证:符合条件的数列对(,)有偶数对.25、如图,在轴的正半轴上依次有点,其中点、,且,在射线上依次有点,点的坐标为,且.(1)求点、的坐标;(2)设四边形面积为,解答下列问题:①问中是否存在连续的三项,,()恰好成等差数列?若存在,求出所有这样的三项;若不存在,请说明理由;②求满足不等式的所有自然数.26、已知函数(其中且),是的反函数.(1)已知关于的方程在区间上有实数解,求实数的取值范围;(2)当时,讨论函数的奇偶性和增减性;(3)设,其中.记,数列的前项的和为(),求证:.27、设数列的前项和为,(1)求的值(2)求的通项公式(3)证明:对一切正整数有28、设数列{a n}的首项a1=1,前n项和S n满足关系式:3tS n﹣(2t+3)S n﹣1=3t(t>0,n=2,3,4,…)(1)求证:数列{a n}是等比数列;(2)设数列{a n}是公比为f(t),作数列{b n},使(n=2,3,4,…),求和:b1b2﹣b2b3+b3b4﹣…+b2n﹣1b2n﹣b2n b2n+1;(3)若t=﹣3,设c n=log3a2+log3a3+log3a4+…+log3a n+1,T n=++…+,求使k≥(7﹣2n)T n(n∈N+)恒成立的实数k的范围.29、( 理科生做)、设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为(1)求的值及的表达式;( 4分)(2)记,试比较的大小;若对于一切的正整数,总有成立,求实数的取值范围;( 4分 )(3)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由(4分 )30、已知数列的前n 项和为,且(1)求证:数列是等比数列;(2)设恰有5个元素,求实数的取值范围.31、若数列满足:对于,都有(常数),则称数列是公差为的准等差数列.如:若 则是公差为的准等差数列.(1)求上述准等差数列的前项的和;(2)设数列满足:,对于,都有.求证:为准等差数列,并求其通项公式;(3)设(2)中的数列的前项和为,试研究:是否存在实数,使得数列有连续的两项都等于.若存在,请求出的值;若不存在,请说明理由.32、对于数列:,若不改变,仅改变中部分项的符号,得到的新数列称为数列的一个生成数列.如仅改变数列的第二、三项的符号可以得到一个生成数列.已知数列为数列的生成数列,为数列的前项和.⑴写出的所有可能值;⑵若生成数列满足:,求的通项公式;⑶证明:对于给定的,的所有可能值组成的集合为:.33、已知以a1为首项的数列{a n}满足:a n+1=⑴当a1=1,c=1,d=3时,求数列{a n}的通项公式⑵当0<a1<1,c=1,d=3时,试用a1表示数列{a n}的前100项的和S100⑶当0<a1<(m是正整数),c=,d≥3m时,求证:数列a2-,a3m+2-,a6m+2-,a9m+2-成等比数列当且仅当d=3m34、若无穷数列满足:①对任意,;②存在常数,对任意,,则称数列为“数列”.(Ⅰ)若数列的通项为,证明:数列为“数列”;(Ⅱ)若数列的各项均为正整数,且数列为“数列”,证明:对任意,;(Ⅲ)若数列的各项均为正整数,且数列为“数列”,证明:存在,数列为等差数列.35、已知函数定义在区间,对任意,恒有成立,又数列满足(I)在(-1,1)内求一个实数t,使得(II)求证:数列是等比数列,并求的表达式;(III)设,是否存在,使得对任意,恒成立?若存在,求出m的最小值;若不存在,请说明理由。
参考答案一、计算题1、解:(1),即,令,上式可化为,,(2),(3)==设则…①…②① -②得不在实数x,使得2、解:(1)由点在曲线上可得, …………1分又点在圆上,则, ……………2分从而直线的方程为, ………………4分由点在直线上得: ,将代入化简得: .……………………6分(2),…………7分又,……………9分(3)先证:当时,.事实上, 不等式后一个不等式显然成立,而前一个不等式.故当时, 不等式成立., ……………………11分(等号仅在n=1时成立)求和得:……………………14分3、解:(Ⅰ)当时,因为,,所以.因为数列是等差数列,所以.因为,所以.……………6分(Ⅱ)因为,,且,所以.所以数列是首项为2,公比为的等比数列,所以.所以.因为,所以是首项为,公差为的等差数列.所以.因为,又因为的值是一个与n无关的量,所以,解得.……………………13分(若用其他方法解题,请酌情给分)4、(Ⅰ)解:因为,所以,. ……1分因为,则,. ………………2分. ……………………………………………………3分猜想当时,. 则…………………………………………………………4分(Ⅱ)解:当时,假设,根据已知条件则有,与矛盾,因此不成立,……………………5分所以有,从而有,所以. ……………………6分当时,,,所以; …………………………8分当时,总有成立.又,所以()是首项为,公比为的等比数列,……9分,,又因为,所以. …………………………10分(Ⅲ)证明:由题意得.因为,所以.所以数列是单调递增数列. ………………………………………………11分因此要证,只须证.由,则<,即. …12分因此.所以.故当,恒有. …………………………………14分5、(1)解:依题又为等差数列,设公差为,则故是常数列. 4分(2)由是首项为2,公方差为2的等方差数列.即为首项为4,公差为2的的等差数列, 6分由得①②10分不等式即也即,即恒成立由于时,;时,;假设时,,那么,由归纳法原理知:时,,所以,故的取值范围为 14分6、(1)等,答案不唯一;……………4分(2),当时最小值为9,;……………6分,则,因此,时,最大值为6,……………9分所以,,数列是数列的“下界数列”;……………10分(3),…11分,……………12分不等式为,,,…13分设,则,…………15分当时,单调递增,时,取得最小值,因此,……………17分的最小值为……………18分7、解:(1) ,得是以2为首项,1为公差的等差数列,故…………3分(2) ,,在点处的切线方程为令得仅当时取得最小值,∴的取值范围为………6分(3)所以又因则显然…………8分………12分…………14分8、解:(1)显然,对任意正整数都成立,即是三角形数列.因为k>1,显然有,由得,解得.所以当时,是数列的“保三角形函数”.(2) 由得,两式相减得所以,,经检验,此通项公式满足显然,因为,所以是“三角形”数列.(3) 因为是单调递减函数,所以,由得化简得,解得,即数列最多有26项.9、解:(1) P∴∴(2) 若k为奇数若k为偶数则f(k)=则f(k)=2k-2f(k+5)=b f(k+5)=k+32k+8=2k-4-2 k+3=4k-4-2无解: 9=3k这样的k不存在 k=3(舍去)无解(3)= n10、解:⑴ ------------------2分当时,取值为1,2,3,…,共有个格点当时,取值为1,2,3,…,共有个格点∴- ------------------4分(2)记,试比较的大小;若对于一切的正整数,总有成立,求实数的取值范围;解:由则-------------------5分当时,当时,-------------------6分∴时,时,时,∴中的最大值为-------------------8分要使对于一切的正整数恒成立,只需∴-------------------9分(3)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由。