数列与圆锥曲线压轴题
(完整word版)高考数学圆锥曲线压轴题分类训练(精华)

卓越个性化教案 GFJW0901学生姓名 年级 高三 授课时间 教师姓名 课时02-圆锥曲线压轴题-分类训练【知识点】1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离0022Ax By C d A B++=+ ③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:2121AB kx x =+-221212(1)[()4]k x x x x =++- 或12211AB y y k=+- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且 距离式方程:2222()()2x c y x c y a +++-+= 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅< 距离式方程:2222|()()|2x c y x c y a ++--+= (3)抛物线22(0)y px p =>(4)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:3.方法(1)点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba43-(2)联立消元法:设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。
高中数学圆锥曲线压轴题大全

高中数学圆锥曲线压轴题大全(总25页)-本页仅作为预览文档封面,使用时请删除本页-数学压轴题圆锥曲线类一1.如图,已知双曲线C :x a yba b 2222100-=>>(),的右准线l 1与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.(I )求证:O M M F→⊥→; (II )若||MF →=1且双曲线C 的离心率e =62,求双曲线C 的方程;(III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P在A 、Q 之间,满足A P A Q →=→λ,试判断λ的范围,并用代数方法给出证明.2.已知函数f x x n x n f n n x n n N ()()[()]()(*)=≤--+--<≤∈⎧⎨⎩00111,, 数列{}a n 满足a f n nN n=∈()(*) (I )求数列{}a n 的通项公式; (II )设x 轴、直线x a =与函数y f x =()的图象所围成的封闭图形的面积为Sa a ()()≥0,求S nS n n N ()()(*)--∈1; (III )在集合M N N kkZ ==∈{|2,,且10001500≤<k }中,是否存在正整数N ,使得不等式a S n S n n->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.(IV )请构造一个与{}a n 有关的数列{}b n ,使得l i m ()n nb b b →∞+++12 存在,并求出这个极限值. 19. 设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程; (II )若A 、B 分别为l l 12、上的点,且2512||||A B F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线; (III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP O Q →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.3. 已知数列{}a n 的前n 项和为S n N n ()*∈,且S m m a n n=+-()1对任意自然数都成立,其中m 为常数,且m <-1. (I )求证数列{}a n 是等比数列;(II )设数列{}a n 的公比q f m =(),数列{}b n 满足:b a b f b n n 11113==-,() ()*n n N ≥∈2,,试问当m 为何值时,l i m (l g )l i m (n b a n b b b b b b n n →∞=→∞+++3122334…+-b b n n 1)成立?4.设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆和x 轴正半轴于P ,Q 两点,且P 分向量AQ 所成的比为8∶5.(1)求椭圆的离心率; (2)若过F Q A ,,三点的圆恰好与直线l :033=++y x 相切,求椭圆方程.5.(理)给定正整数n 和正数b ,对于满足条件b a a n ≥-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.(文)给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.6.垂直于x 轴的直线交双曲线2222=-y x 于M 、N 不同两点,A 1、A 2分别为双曲线的左顶点和右顶点,设直线A 1M 与A 2N 交于点P (x 0,y 0)(Ⅰ)证明:;2202为定值y x +(Ⅱ)过P 作斜率为02y x -的直线l ,原点到直线l 的距离为d ,求d 的最小值. 7.已知函数x x x f sin )(-= (Ⅰ)若;)(],,0[的值域试求函数x f x π∈(Ⅱ)若);32(3)()(2:),,0(],,0[xf x f f x +≥+∈∈θθπθπ求证(Ⅲ)若)32(3)()(2,),)1(,(],)1(,[xf x f f Z k k k k k x ++∈+∈+∈θθππθππ与猜想的大小关系(不必写出过程).数学压轴题圆锥曲线类二1.如图,设抛物线2:xy C=的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB. 2.设A 、B 是椭圆λ=+223y x上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图)3. 已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足 ,4,3,2,),0(111=+≤>=--n a n na a b b a n n n(Ⅰ)证明 ,5,4,3,][log 222=+<n n b ba n (Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N ,使得当N n>时,对任意b>0,都有.51<n a4.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.5.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =+.(Ⅰ)求函数()g x 的解析式;(Ⅱ)解不等式()()1g x f x x ≥--;(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围.数学压轴题圆锥曲线类三1.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca P F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.2.函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g += (Ⅰ)用0x 、)(0x f 、)(0x f '表示m ;(Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.3.已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈(I )证明数列{}1n a +是等比数列;(II )令212()nn f x a x a x a x=+++,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.4.已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程; (II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线AB 恒过定点,并求出该定点的坐标.5.椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程; (Ⅱ)若直线2:+=kx y l与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.6.数列{a n }满足)1(21)11(1211≥+++==+n a n n a a nn n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=….7.已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+ (1)证明;,21N n a a n n ∈<<+(2)求数列}{n a 的通项公式a n .1.解:(I ) 右准线l 12:x a c =,渐近线l 2:y bax =∴=+M a c a b cF c c a b()()22220,,,, ,∴→=O M a c a b c ()2, M F c a c a b c b c a bc →=--=-()()22,,O M M F a b c a bc O M M F →⋅→=-=∴→⊥→2222220 ……3分(II ) e b a e a b =∴=-=∴=621222222,,||()M F b c a b c b b a cb a →=∴+=∴+=∴==1111142222222222,,, ∴双曲线C 的方程为:x y 2221-= ……7分 (III )由题意可得01<<λ ……8分证明:设l 31:y k x =+,点P x y Q x y ()()1122,,, x =由x y y kx 22221-==+⎧⎨⎩得()1244022--+=kx k x l 3与双曲线C 右支交于不同的两点P 、Q∴-≠=+->+=->=-->⎧⎨⎪⎪⎪⎩⎪⎪⎪∴≠±<<-<⎧⎨⎪⎪⎪⎩⎪⎪⎪120161612041204120221012022212212222k k k x x k k x x k k k k k ∆() ∴-<<-122k ……11分 A P A Q x y x y →=→∴-=-λλ,,,()()112211,得x x 12=λ∴+=-=--∴+=--=-=+-()()()1412412116412421222122222222222λλλλx k k x kk k k k k , -<<-∴<-<∴+>12202111422k k ,,()λλ∴+>∴-+>()1421022λλλλ∴λ的取值范围是(0,1)……13分 2.解:(I ) nN ∈* ∴=--+-=+-f n n n n f nn f n ()[()]()()111 ∴--=f n f n n()()1 ……1分 ∴-=-=-=f f f f f f ()()()()()()101212323……fn fn n ()()--=1 将这n 个式子相加,得fnf n n n ()()()-=++++=+012312f f n n n ()()()0012=∴=+∴=+∈a n n n N n()(*)12……3分 (II )S n S n ()()--1为一直角梯形(n =1时为直角三角形)的面积,该梯形的两底边的长分别为fn f n ()()-1,,高为1∴--=-+⨯=+-S n S n f n f n a a n n()()()()112121=-++=12121222[()()]n n n n n……6分(III )设满足条件的正整数N 存在,则n n n nn ()+->⇔>⇔>12100522100520102 又M ={}200020022008201020122998,,,,,,,∴=N 201020122998,,……,均满足条件 它们构成首项为2010,公差为2的等差数列. 设共有m 个满足条件的正整数N ,则2010212998+-=()m ,解得m =495 ∴M 中满足条件的正整数N 存在,共有495个,N m i n =2010 ……9分(IV )设b a nn=1,即b n n n n n =+=-+212111()()则b b b n n n n 122112121313141112111+++=-+-+-++-+=-+ [()()()()]()显然,其极限存在,并且l i m ()l i m []n nn b b b n →∞→∞+++=-+=122112 ……10分 注:b c a n n=(c 为非零常数),b b q q n a n n a n n n ==<<++()(||)12012121,等都能使l i m ()n n b b b →∞+++12 存在. 19.解:(I ) ec a =∴=2422,c a a c 22312=+∴==,, ∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()Mx y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] O P O Q xx y y xx k x x xx k xx x x i →→=∴+=∴+--=∴+-++=·0110101212122121221212()()()()由得则,y k x y x k x k x k x x k k xx k k i i =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222 由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l . 14分3.解:(I )由已知S m m a n n ++=+-1111()()S m m a n n=+-()1 (2) 由()()12-得:a m a m a n n n ++=-11,即()m a m a n n+=+11对任意n N ∈*都成立 {} m m a a m m a n n n 为常数,且即为等比数列分<-∴=++1151(II )当n =1时,a m m a 111=+-() ∴====+∴==+≥∈---a b I q f m mm b f b bb n n N n n n n 11111113112,从而由()知,()()()* ∴=+-=∴⎧⎨⎩⎫⎬⎭∴=+-=+=+∈--1111111131212911b b b b b b n n b n n N n n n n n n n,即为等差数列,分()()*a m m n n =+⎛⎝ ⎫⎭⎪-11∴→∞=→∞-++=+→∞+++=→∞-+-+++-+⎛⎝ ⎫⎭⎪=-l i m (l g )l i m l g l g l i m ()l i m n b a n n n m m mm n bb bb b b n n n n nn n 121133131414151112112231·……由题意知lg mm +=11,∴+=∴=-m m m 110109, 13分4.解:(1)设点),0,(),0,(0c F x Q -其中),0(,22b A b a c -=.由P 分AQ 所成的比为8∶5,得)135,138(0b x P , 2分 ∴a x a x 231)135()138(022202=⇒=+.①, 4分 而AQ FA b x AQ b c FA ⊥-==),,(),,(0,∴0=⋅AQ FA .cb x b cx 2020,0==-∴.②, 5分由①②知0232,32222=-+∴=a ac c ac b .∴21.02322=∴=-+e e e . 6分(2)满足条件的圆心为)0,2(22cc b O -', )0,(,2222222c O c cc c a c c b '∴=--=-, 8分圆半径a ca cb r ==+=22222.10分由圆与直线l :033=++y x 相切得,a c =+2|3|, 又3,2,1,2===∴=b a c c a .∴椭圆方程为13422=+y x . 12分5.(理)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 dn a n nd a d a a a a a y n n n n n n n )21()1()()(11111221+++++=+++++=+++=+++++++d n n a n n 2)1()1(1+++=+ 4分)2)(1()2)(1(1111a a a n nda n n n n -++=++=+++)3(2111a a n n -+=+. 7分又211211,++--≤-∴≥-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-≤-++++,当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+≤-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=,∴y 的最大值为8)49)(1(b n -+. 14分(文)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 )2)(1(2)1()1()21()1()()(1111111221nda n d n n a n d n a n nd a d a a a a a y n n n n n n n n n ++=+++=+++++=++++=+++=+++++++++)3(21)2)(1(11111a a n a a a n n n n -+=-++=+++, 6分又211211,++--=-∴=-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-=-++++.当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+=-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=.∴y 的最大值为8)49)(1(b n -+. 14分6.解(Ⅰ)证明:)0,2(),0,2(),,(),,(211111A A y x N y x M --- 则设)2(2111++=∴x x y y M A 的方程为直线①直线A 2N 的方程为)2(211---=x x y y ②……4分①×②,得)2(2221212---=x x y y分为定值的交点与是直线即822),(22),2(21,222020210022222121 =+∴=+--=∴=-y x N A M A y x P y x x y y x(Ⅱ)02222),(20020200000=-+=+--=-y y x x y x x x y x y y l 整理得结合的方程为22020201222242y yyx d +=+=+=于是……10分11221122220202020≥+=∴≤+∴≤∴=+y d y y y x 当1,1,1200取最小值时d y y =±=……12分7.解:(Ⅰ)为增函数时当)(,0cos 1)(,),0(x f x x f x ∴>-='∈π分的值域为即求得所以上连续在区间又4],0[)()(0),()()0(],0[)( ππππx f x f f x f fx f ≤≤≤≤(Ⅱ)设)32(3)()(2)(x f x f f x g +-+-=θθ,32sin3sin )(2)(xx f x g +++-=θθ即 )32cos cos (31)(xx x g ++-='θ……6分θπθπθπ=='∈+∴∈∈x x g xx 得由,0)(),0(32),0(],,0[ .)(,0)(,),0(为减函数时当x g x g x <'∈∴θ分为增函数时当8)(,0)(,),( x g x g x >'∈πθ 分因而有对的最小值为则上连续在区间10)32(3)()(20)()(],0[)()(],0[)( x f x f f g x g x x g g x g +≥+=≥∈θθθπθπ (Ⅲ)在题设条件下,当k 为偶数时)32(3)()(2xf x f f +≥+θθ 当k 为奇数时)32(3)()(2xf x f f +≤+θθ……14分 数学压轴题圆锥曲线类二1.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P=+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310, ,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x FB x x x x FP x x FA 由于P 点在抛物线外,则.0||≠FP∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠∴∠AFP=∠PFB. 方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(0414********=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB.(Ⅰ)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设212211,),,(),,(x x y x B y x A 则是方程①的两个不同的根, ∴,0])3(3)3([422>--+=∆k k λ ②且,3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λλ即,12>的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设),,(),,(2211y x B y x A 则有.0))(())((332121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ依题意,.)(3,212121y y x x k x x AB ++-=∴≠ ∵N (1,3)是AB 的中点, ∴.1,6,22121-==+=+AB k y y x x 从而又由N (1,3)在椭圆内,∴,1231322=+⨯>λ∴λ的取值范围是(12,+∞).直线AB 的方程为y -3=-(x -1),即x+y -4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0,代入椭圆方程,整理得 .04442=-++λx x又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根,∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且于是由弦长公式可得 .)3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程x+y -4=0,代入椭圆方程得016842=-+-λx x ⑤同理可得 .)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为 .2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即 ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边,212-=λ由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ∴⑧式成立,即A 、B 、C 、D 四点共圆.解法2:由(Ⅱ)解法1及λ>12, ∵CD 垂直平分AB , ∴直线CD 方程为13-=-x y ,代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程x+y -4=0,代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,21224,32,1-±-=-±=λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλDA计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD )3.本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想. (Ⅰ)证法1:∵当,111,0,211111na na a n a a n na a nn n n n n n n +=+≥∴+≤<≥-----时即,1111na a n n ≥-- 于是有.111,,3111,211112312na a a a a a n n ≥-≥-≥-- 所有不等式两边相加可得.13121111na a n +++≥- 由已知不等式知,当n ≥3时有,].[log 211121n a a n >- ∵.][log 22.2][log 2][log 2111,2221n b ba b n b n b a b a n n +<+=+>∴= 证法2:设n n f 13121)(+++= ,首先利用数学归纳法证不等式.,5,4,3,)(1 =+≤n bn f ba n(i )当n=3时, 由 .)3(11223313333112223b f ba a a a a a +=++⋅≤+=+≤知不等式成立.(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1bk f ba k+≤则1)(1)1(11)1(1)1()1(1++⋅++≤+++=+++≤+bb k f k k a k k a k a k a k k k k ,)1(1)11)((1)()1()1()1(bk f bbk k f b b b k f k k b k ++=+++=+++++=即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1 =+≤n bn f ba n又由已知不等式得 .,5,4,3,][log 22][log 21122 =+=+<n n b bb n ba n(Ⅱ)有极限,且.0lim =∞→n n a(Ⅲ)∵,51][log 2,][log 2][log 22222<<+n n n b b 令则有,10242,10][log log 1022=>⇒>≥n n n故取N=1024,可使当n>N 时,都有.51<n a4.解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则()2111222222,2242,1 1.43a MA a A F a cca a a c c a abc a b c x y =-=-⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩∴===+=由题意,得 故椭圆方程为 (Ⅱ)()004,,0P y y -≠设001122121102112212000121212350,22tan 115tan y y PF k PF k F PF PF M F PF y k k F PF k k y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤=++=±∠∠∠设直线的斜率,直线的斜率 为锐角。
(完整word版)圆锥曲线压轴解答题22题(含详细答案,可直接打印)

圆锥曲线压轴22题及答案一.解答题(共22小题)1.已知抛物线C :y 2=2px (p >0)的焦点是椭圆M :+=1(a >b >0)的右焦点,且两曲线有公共点(,).(1)求椭圆M 的方程;(2)O 为坐标原点,A ,B ,C 是椭圆M 上不同的三点,并且O 为△ABC 的重心,试探究△ABC 的面积是否为定值.若是,求出这个定值;若不是,请说明理由. 2.已知直线11:ax ﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l 2的交点为M,当a 变化时,求点M 的轨迹C 的方程:(2)已知点D (2,0),过点E (﹣2,0)的直线1与C 交于A ,B 两点,求△ABD 面积的最大值. 3.已知椭圆C:+=1(a >b >0)的四个顶点围成的菱形的面积为4,点M 与点F 分别为椭圆C 的上顶点与左焦点,且△MOF 的面积为(点O 为坐标原点).(1)求C 的方程;(2)直线l 过F 且与椭圆C 交于P ,Q 两点,点P 关于O 的对称点为P′,求△PP′Q 面积的最大值.4.如图所示,椭圆C 1:+y 2=1,抛物线C 2:y=x 2﹣1,其中C 2与y 轴的交点为M,过坐标原点O的直线l 与C 2相交于点A ,B,直线MA ,MB 分别与C 1相交于点D ,E . (Ⅰ)证明:MA ⊥MB;(Ⅱ)记△MAB ,△MDE 的面积分别是S 1,S 2.问:是否存在直线l ,使得=.若存在,求出直线l 的方程,若不存在,请说明理由.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B 两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围. 12.已知椭圆经过点,离心率为,过右焦点F 且与x 轴不垂直的直线l 交椭圆于P ,Q 两点. ( I )求椭圆C 的方程; ( II )当直线l 的斜率为时,求△POQ 的面积;( III )在椭圆C 上是否存在点M ,使得四边形OPMQ 为平行四边形?若存在,求出直线l 的方程;若不存在,请说明理由. 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD|=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由. 14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E(,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N 使=2,求以F 1P 为直径的圆面积取值范围. 15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A ,B 两点,且.(I )求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 16.已知椭圆C :(a >b >0)的离心率,抛物线E :的焦点恰好是椭圆C的一个顶点.(1)求椭圆C 的标准方程;(2)过点P (0,1)的动直线与椭圆C 交于A,B 两点,设O 为坐标原点,是否存在常数λ,使得恒成立?请说明理由.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G ,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN |的最大值,并判断此时△OMN 的形状. 18.已知抛物线C :y 2=2px (p >0),其内接△ABC 中∠A=90°. (I)当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II )当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 19.如图,已知F 1,F 2分别是椭圆的左、右焦点,点P (﹣2,3)是椭圆C上一点,且PF 1⊥x 轴. (1)求椭圆C 的方程;(2)设圆M :(x ﹣m )2+y 2=r 2(r >0).①设圆M 与线段PF 2交于两点A,B ,若,且AB=2,求r 的值;②设m=﹣2,过点P 作圆M 的两条切线分别交椭圆C 于G ,H 两点(异于点P ).试问:是否存在这样的正数r,使得G,H 两点恰好关于坐标原点O 对称?若存在,求出r 的值;若不存在,请说明理由.20.己知椭圆在椭圆上,过C 的焦点且与长轴垂直的弦的长度为.(1)求椭圆C 的标准方程;.(2)过点A (﹣2,0)作两条相交直线l 1,l 2,l 1与椭圆交于P ,Q 两点(点P 在点Q 的上方),l 2与椭圆交于M ,N 两点(点M 在点N 的上方),若直线l 1的斜率为,,求直线l 2的斜率.21.在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0),直线y=x 与C 交于O ,T 两点,|OT |=4.(Ⅰ)求C 的方程; (Ⅱ)斜率为k (0)的直线l 过线段OT 的中点,与C 交于A,B 两点,直线OA,OB 分别交直线y=x ﹣2于M ,N 两点,求|MN|的最大值.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.参考答案与试题解析一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.【解答】解:(1)抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,∴=c,∵两曲线有公共点(,),∴=2p•,+=1,解得p=2,∴c=1,∴c2=a2﹣b2=1,∴a2=4,b2=3,∴椭圆的方程为+=1;(2)设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,y1+y2=k(x1+x2)+2m=,由O为△ABC的重心,可得=﹣(+)=(,﹣),由C在椭圆上,则有3()2+4(﹣)2=12,化简可得4m2=3+4k2,|AB|=•=•=•==,C到直线AB的距离d═,S△ABC=|AB|•d=••=.当直线AB的斜率不存在时,|AB|=3,d=3,S△ABC=|AB|•d=.综上可得,△ABC的面积为定值.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.【解答】解:(1)由题意设M(x,y),M满足直线11、直线12:可得,消去a,可得x2+5y2=5,即点M的轨迹C的方程为:(2)设直线l的方程x=my﹣2.E(﹣2,0)在M的轨迹C内.ED=4,直线1与C交于A,B两点,A(x1,y1).B(x2,y2)∴,可得(m2+5)y2﹣4my﹣1=0.∴y1+y2=.y1y2=∴△ABD面积s=×|y1﹣y2|•|ED=×4×=2×==2×≤2×=2×=,当且仅当m=时,表达式取得最大值.△ABD面积的最大值:.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q面积的最大值.【解答】解:(1)∵△MOF的面积为,∴bc=,即bc=.又∵椭圆C的四个顶点围成的菱形的面积为4,∴=4,即ab=2.∴==,∴=,∴a=2,b=,∴C的方程为:=1.(2)由题意可知,点O为PP′的中点,则=2S△POQ.设直线l的方程为:x=my﹣1,P(x1,y1),Q(x2,y2),联立,可得(3m2+4)y2﹣6my﹣9=0,∴y1+y2=,y1y2=,∴|y1﹣y2|===,∴S△POQ =|OF|•|y1﹣y2|=.设=t≥1,=.∵函数g(t)=在[1,+∞)上单调递减,∴当t=1时,△PP′Q面积取得最大值=3.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.【解答】解:(Ⅰ)证明:由题得,直线l 的斜率存在,设为k,则直线l 的方程为:y=kx, 由y=kx 和y=x 2﹣1,得x 2﹣kx ﹣1=0.设A(x 1,y 1),B(x 2,y 2), 于是x 1+x 2=k ,x 1•x 2=﹣1,又点M 的坐标为(0,﹣1). 所以k MA •k MB =•====﹣1.故MA ⊥MB ,即MD ⊥ME;(Ⅱ)设直线MA 的斜率为k 1,则直线MA 的方程为y=k 1x ﹣1. 联立y=x 2﹣1可得或则点A 的坐标为(k 1,k 12﹣1). 又直线MB 的斜率为﹣,同理可得点B 的坐标为(﹣,﹣1).于是S 1=|MA |•|MB |=|k 1|•••|﹣|•=.由椭圆方程x 2+4y 2=4和y=k 1x ﹣1, 得(1+4k 12)x 2﹣8k 1x=0,解得,或,则点D的坐标为(,).又直线ME的斜率为﹣,同理可得点E的坐标为(﹣,).于是S2=|MD|•|ME|=.故=(4k12++17)=,解得k12=4,或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线l存在,且有两条,其方程为y=±x.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.【解答】解:(1)由题意可知:a=2……………………………………1分又椭圆的上顶点为(0,b)双曲线的渐近线为:2y±x=0由点到直线的距离公式有:得……………………3分所以椭圆的方程为.……………………4分(2)设直线线l的方程为y=kx+m,A(x1,y1)、B(x2,y2)联立得(3+4k2)x2+8kmx+4m2﹣12=0……………………5分则……………………7分由已知直线FA、FB的斜率之和为0,有,2kx1x2+(k+m)(x1+x2)+2m=0…………………9分所以化简得m=4k………………11分此时△=(8km)2﹣4×(3+4k2)(4m2﹣12)=(32k2)2﹣4×(3+4k2)(64k2﹣12)=16×64k4﹣16(4k2+3)(16k2﹣3)=16×9(1﹣4k2)显然△=16×9(1﹣4k2)>0有机会成立.所以直线l的方程为:y=kx+m=k(x+4)所以存在这样的定点(﹣4,0)符合题意.…………12分6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y 轴上是否存在异于点P 的定点Q,使得直线l 变化时,总有∠PQA=∠PQB?若存在,求出点Q 的坐标;若不存在,请说明理由. 【解答】解:(1)∵,∴a 2=2c 2=b 2+c 2,b=c,a 2=2b 2,椭圆方程化为:,由题意知,椭圆过点,∴,解得b 2=4,a 2=8,所以椭圆C 的方程为:;(2)当直线l 斜率存在时,设直线l 方程:y=kx+1, 由得(2k 2+1)x 2+4kx ﹣6=0,△=16k 2+24(2k 2+1)>0,设,假设存在定点Q (0,t)符合题意,∵∠PQA=∠PQB ,∴k QA =﹣k QB , ∴=,∵上式对任意实数k 恒等于零,∴4﹣t=0,即t=4,∴Q (0,4),当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点(0,﹣2),(0,2), 显然此时∠PQA=∠PQB ,综上,存在定点Q (0,4)满足题意. 7.已知椭圆,点在椭圆C 上,椭圆C 的四个顶点的连线构成的四边形的面积为.(1)求椭圆C 的方程;(2)设点A 为椭圆长轴的左端点,P 、Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP 、AQ 斜率分别为k 1、k 2,若k 1k 2=2,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由. 【解答】解:(1)由点在椭圆C 上可得:,整理为:9a 2+4b 2=4a 2b 2, 由椭圆C 的四个顶点的连接线构成的四边形的面积为可得:,即,可得,由a >b >0可解得:,故椭圆C 的方程为:.(2)设点P 、Q 的坐标分别为(x 1,y 1),(x 2,y 2),点A 的坐标为(﹣2,0), 故,可得y 1y 2=2(x 1+2)(x 2+2),设直线PQ 的方程为y=kx+m (直线PQ 的斜率存在), 可得(kx 1+m)(kx 2+m )=2(x 1+2)(x 2+2), 整理为:,联立,消去y 得:(4k 2+3)x 2+8kmx+(4m 2﹣12)=0,由△=64k 2m 2﹣4(4k 2+3)(4m 2﹣12)=48(4k 2﹣m 2+3)>0,有4k 2+3>m 2, 有,,故有:,整理得:44k 2﹣32km+5m 2=0,解得:m=2k 或,当m=2k 时直线PQ 的方程为y=kx+2k,即y=k(x+2),过定点(﹣2,0)不合题意, 当时直线PQ 的方程为,即,过定点.8.已知椭圆Γ:=1(0<b <2)的左右焦点分别为F 1、F 2,上顶点为B ,O 为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q (1,0),点P 是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B 的直线l 与椭圆Γ相交于M 、N 两点,且直线BM 、BN 的斜率之和为1,证明:直线l 过定点. 【解答】解:(1)椭圆Γ:=1(0<b <2)的a=2,向量与的夹角为,可得|BF 1|=|BF 2|=a==2b=2,即b=1,则椭圆方程为+y 2=1;(2)设P (m ,n ),可得+n 2=1,即n 2=1﹣,•=(1﹣m ,﹣n )•(﹣m ,﹣n )=m 2﹣m+n 2=m 2﹣m+1=(m ﹣)2+,由﹣2≤m ≤2可得m=时,上式取得最小值;m=﹣2时,取得最大值6, 则•的范围是[,6];(3)证明:当直线l 的斜率不存在时,设M (x 1,y 1),N(x 2,y 2), 由k BM +k BN =+==1,x 1=x 2,y 1=﹣y 2,得x 1=﹣2,此时M ,N 重合,不符合题意;设不经过点P 的直线l 方程为:y=kx+m ,M (x 1,y 1),N (x 2,y 2), 由得(1+4k 2)x 2+8ktx+4t 2﹣4=0,x 1+x 2=﹣,x 1x 2=,k BM +k BN =+==1,⇒(kx1﹣1+t)x2+(kx2﹣1+t)x1=x1x2⇒(2k﹣1)x1x2+(t﹣1)(x1+x2)=0⇒(t﹣1)(2k﹣t﹣1)=0,∵t≠1,∴t=2k﹣1,∴y=k(x+2)﹣1,直线l必过定点(﹣2,﹣1).9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,∵Q为AC的中点,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|AQ|2+|HQ|2为定值10.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,设AC的中点为Q,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|BH|为定值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.( I)求椭圆C的方程;( II)当直线l的斜率为时,求△POQ的面积;( III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(I) 根据题意,解得,故椭圆C的方程为.…(5分)( II) 根据题意,直线l的方程为.设P(x1,y1),Q(x2,y2).由得15x2﹣24x=0.解得.法一:.法二:,原点O到直线l的距离.所以…(10分)( III)设直线l的方程为y=k(x﹣1)(k≠0).设P(x1,y1),Q(x2,y2),由得(3+4k2)x2﹣8k2x+4k2﹣12=0.由韦达定理得,.所以PQ 的中点.要使四边形OPMQ 为平行四边形,则N 为OM 的中点,所以.要使点M 在椭圆C 上,则,即12k 2+9=0,此方程无解.所以在椭圆C 上不存在点M ,使得四边形OPMQ 为平行四边形.….(14分) 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B 两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD |=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT |是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)如图:AF 2⊥x 轴,|OD|=1, ∴AB ∥OD,∵O 为F 1F 2为的中点, ∴D 为BF 1的中点, ∵AD ⊥F 1B ,∴|AF 1|=|AB |=2|AF 2|=4|OD |=4, ∴2a=|AF 1|+|AF 2|=4+2=6, ∴a=3, ∴|F 1F 2|==2,∴c=,a=3,∴b2=a2﹣c2=6,∴+=1,(2)由(1)可知,A1(0,),A2(0,﹣).设点P(x0,y),直线PA1:y﹣=x,令y=0,得xM=;直线PA2:y+=x,令y=0,得xN=;|OM|•|ON|=,∵+=1,∴6﹣y02=x2,∴|OM|•|ON|=.由切割线定理得OT2=OM•ON=.∴OT=,即线段OT的长度为定值.14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E (,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M,N 使=2,求以F 1P 为直径的圆面积取值范围.【解答】解:(Ⅰ)由已知,c=, ∴2a=|EF 1|+|EF 2|=+=4,∴a=2,∴b 2=a 2﹣c 2=8﹣2=6, ∴椭圆方程为+=1,(Ⅱ)设点P 的坐标为(0,t),当直线MN 的斜率不存在时,可得M,N 分别是椭圆的两端点,可得t=±,当直线MN 的斜率存在时,设直线MN 的方程为y=kx+t ,M(x 1,y 1),N (x 2,y 2), 则由=2可得x 1=﹣2x 2,①,由,消y 可得(3+4k 2)x 2+8ktx+4t 2﹣24=0,由△>0,可得64k 2t 2﹣4(3+4k 2)(4t 2﹣24)>0,整理可得t 2<8k 2+6,由韦达定理可得x 1+x 2=﹣,x 1x 2=,②,由①②,消去x 1,x 2可得k 2=,由,解得<t 2<6, 综上得≤t 2<6,又以F 1P 为直径的圆面积S=π•,∴S 的范围为[,2π).15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A,B 两点,且.(I)求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 【解答】解:(Ⅰ)由题意可得:,∵平行于x 轴的直线交椭圆于A ,B 两点,且.∴,a=,∴c=2,b 2=a 2=﹣c 2=2. ∴椭圆C 的方程为(Ⅱ)设直线l 的方程为y=k (x ﹣2), 代入椭圆C 的方程,得(3k 2+1)x 2﹣12k 2x+12k 2﹣6=0,设M(x3,y3),N(x4,y4),则,,x3x4=.根据题意,假设x轴上存在定点E(t,0),使得是为定值,=(x3﹣t,y3)•(x4﹣t,y4)=(x3﹣t)•(x4﹣t)+y3y4,=(x3﹣t)•(x4﹣t)+k2(x3﹣2)•(x4﹣2),=(k2+1)x3x4﹣(2k2+t)(x3+x4)+4k2+t2,=要使上式为定值,即与k无关,则应3t2﹣12t+10=3(t2﹣6),即t=,故当点E的坐标为(,0)时,使得为定值.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C 的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.【解答】解:(1)由抛物线E:的焦点(0,),椭圆的C的焦点在x轴,由题意可知:b=,椭圆的离心率e===,则a=2,∴椭圆的标准方程:;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立,整理得(4k 2+3)x 2+8kx ﹣8=0.其判别式△>0,x 1+x 2=﹣,x 1x 2=﹣.∴•+λ•=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)],=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1==﹣2λ﹣3,当λ=2时,﹣2λ﹣3=﹣7,即•+λ•=﹣7为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN|的最大值,并判断此时△OMN 的形状. 【解答】解:(1)设F 1,F 2分别为(﹣c ,0),(c ,0) 可得,b 2=c 2﹣a 2=3a 2,又点(1,)在双曲线C 上,∴,解得,c=1.连接PQ ,∵OF 1=OF 2,OP=OQ ,∴四边形PF 1QF 2的周长为平行四边形. ∴四边形PF 1+PF 2=2>2,∴动点P 的轨迹是以点F 1、F 2分别为左右焦点的椭圆(除左右顶点),∴动点P 的轨迹方程(y ≠0);(2)∵x 12+x 22=2,,∴y 12+y 22=1.∴|OG |•|MN|=•=•=.∴当3﹣2x 1x 2﹣2y 1y 2=3+2x 1x 2+2y 1y 2⇒x 1x 2+y 1y 2=0时取最值, 此时OM ⊥ON ,△OMN 为直角三角形.18.已知抛物线C:y 2=2px (p >0),其内接△ABC 中∠A=90°. (I )当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II)当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 【解答】解:(I )设B (,y 1),C (,y 2),∵AB ⊥AC ,∴+y 1y 2=0,∴y 1y 2=﹣4p 2.∴设BC 的中点M (x ,y ),则=x ,y 1+y 2=2y ,∵y 12+y 22=(y 1+y 2)2﹣2y 1y 2, ∴px=4y 2+8p 2,∴M 的轨迹方程为:y 2=(x ﹣8p ). (II )A (,t 0),设直线BC 的方程为y=kx+b,B (,y 1),C (,y 2),∴k AB ==,k AC ==,∵AB⊥AC,∴•=﹣1.即y1y2+t(y1+y2)+t2+4p2=0.联立方程组,消去x可得y2﹣y+=0,∴y1y2=,y1+y2=,∴+t0+t2+4p2=0.解得b=﹣t﹣﹣2pk,∴直线BC的方程为:y=kx﹣t0﹣﹣2pk=k(x﹣2p﹣)﹣t,∴直线BC过定点(2p+,﹣t).19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.【解答】解:(1)因点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴,所以椭圆的半焦距c=2,由,得,所以,……(2分)化简得a2﹣3a﹣4=0,解得a=4,所以b2=12,所以椭圆C的方程为.……(4分)(2)①因,所以,即,所以线段PF2与线段AB的中点重合(记为点Q),由(1)知,……(6分)因圆M与线段PF2交于两点A,B,所以,所以,解得,……(8分)所以,故.……(10分)②由G,H两点恰好关于原点对称,设G(x0,y),则H(﹣x,﹣y),不妨设x<0,因P(﹣2,3),m=﹣2,所以两条切线的斜率均存在,设过点P与圆M相切的直线斜率为k,则切线方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,由该直线与圆M相切,得,即,……(12分)所以两条切线的斜率互为相反数,即kGP =﹣kHP,所以,化简得x0y=﹣6,即,代入,化简得,解得x=﹣2(舍),,所以,……(14分)所以,,所以,所以.故存在满足条件的,且.……(16分)20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.【解答】解:(1)由已知得:,…………………………(2分)解得a=6,b=1.故椭圆C的方程为.………………………(4分)(2)由题设可知:l1的直线方程为x=﹣7y﹣2.联立方程组,整理得:85y2+28y﹣32=0..…………………………(6分)∴.…………………………………………(7分)∵,∴,即.…………………………………………(8分)设l2的直线方程为x=my﹣2(m≠0).将x=my﹣2代入+y2=1得(m2+36)y2﹣4my﹣32=0.设M(x1,y1),N(x2,y2),则.……………………………………(10分)又∵,∴.解得m2=4,∴m=±2.故直线l2的斜率为.………………………(12分)21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.【解答】解:(Ⅰ)由方程组得x2﹣2px=0,解得x1=0,x2=2p,所以O(0,0),T(2p,2p),则|OT|=2p,又|OT|=2p=4,所以p=2.故C的方程为x2=4y.(Ⅱ)由(Ⅰ)O(0,0),T(4,4),则线段OT的中点坐标(2,2).故直线l的方程为y﹣2=k(x﹣2).由方程组得x2﹣4kx+8k﹣8=0.设A(x1,x12),B(x2,x22),则x1+x2=4k,x1x2=8k﹣8,直线OA的方程y=x,代入y=x﹣2,解得x=,所以M(,),同理得N(,),所以|MN|=•|﹣|=||=×|=4•因为0<k≤,所以8<|MN|≤4.当k=时,|MN|取得最大值4.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.【解答】(本小题满分12分)解:(1)依题意可设椭圆方程为(a>b>0),由2c=4,c=2,e==,则a=2,b2=a2﹣c2=4,∴椭圆C的方程为:.(2)由题意可知直线l的斜率存在,设l的方程为:y=kx﹣1,A(x1,y1),B(x2,y2),由,整理得(2k2+1)x2﹣4kx﹣6=0,且△>0,则x1+x2=,x1x2=﹣,由,即(﹣x1,﹣1﹣y1)=2(x2,y2+1),x1=﹣2x2,,消去x2并解关于k的方程得:k=±,∴l的方程为:y=±x﹣1.。
圆锥曲线高考压轴题(精心整理)

A. 2: BB. 1: 2C. 1:D. 1: 3 园锥曲线单元检测卷迭様题(共10小陋)1. 椭圆ax2+by2=l 与直线y=l-x 交于A 、B 两点,过原点与銭段AB 中点的直线的斜率为车,则?的值为< ) 2 bA.更B.生C.距D.生 2 3 2 27 2. 点F 为椭圆W-J=l (a>b>0)的一个焦点,若棉圆上存在点A 使△AOF 为正三角形,那么棉圆的离心率为() A.亭 B.学 C.早 0. JJ-11 23. 已知P 是以F|, F2为焦点的棉圖(・>b>0)上的一点,若PFilPFj, tanZPF,F 24,则此神圖的码心率为() a l 戸 2A. -B. -C. -D.亞 2 3 3 3 4. 设F2是戏曲线力>°)的左、右两个焦点,若双曲线右支上存在一点P ,使(乔十折)•和=。
(0为坐a 1标原点),且1戶尸11 = 51”2|,则双曲线的离心率为( )A.罕B.「+lC.擊D.网5. 如圍所示,A, B, C 是双曲线打土=1 <*>0, b>0>上的三个点,AB 经过原点0, AC 经过右焦点F,若 \ [ / BF 丄AC 目|BF| = |CF|,则该双曲线的高心率是< ) \mA.罗B. J10C. ID. 3 6. 已知点F“ F2分别是双曲线W~4=l(a>0, d>0)的左、右焦点,ilFifi 垂直于x 轴的宜线与双曲线交于A, B 两点,若 a 2 b 2F2是锐角三角形,则该戏曲线高心率的取值范围是( )A. (1, JI) 7.设双曲线日-4=1仏>0, 6>0)的右焦点为F (c, 0),方程«x 2-bx-c=0的两支根分别为x“ x 2,则P (x o x 2A 2 b 2A.必在Sx 2-y 2=2内 C.必在Sx 2-y 2=Z± 8.已知点A (2, 0),抛物线C: x 2=4y 的焦点为F,射銭FA 与抛物銭C 相交于点II,与其准线相交于点N,则|FM|: |MN|9. 已知点A (-1, 0) , B (1, 0)及抛物线円2x,若抛物銭上点P 淆足iPAdlPBl,则m 的最大値为( )A. 3B. 2C.D. J2 B.(卩,2j) D. (1,1+41) B.必在圖x2+y2=2外D.以上三种情况都有可能10.已知抛物技C:y2=8x与点M (-2, 2> ,过C的焦点,且斜率为k的直线与C交于A, B两点,若島而“,则k=( )A. }B.手C. J2D. 2二.岫空as (共外顎)11.已知F|、F2分别为双曲线c:§-普=1的左、右焦点,点A€C,点H的坐标为(2, 0) , AM为匕Fg2的平分线,则IW12.已知F为双曲线C:己-己=1的左焦点,P, Q为C上的点,若PQ的长等于虚轴长的2倍,点A (5, 0)在线段PQ上,则^PQF9 16的周长为—.13.已知欄国C:^-+4=l(a>^>0)的高心率为尊,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若a2 b2 27? = 3 荷,则.14.设自姓x-3y-・=0 (-ifcO)与双曲线三书=1 <*>0, b>0)的两条渐近线分别交于点A, B.若点P (», 0)満足|PA|=|PB I ,则该双曲线的高心率是_.15.P是双曲线的右支上一点,M、N分别是圆(X-5) 2-y2=4和(x-5) 2_y2=i上的点,则| PM| | PN |的最大值9 16为—.三.《共6小第〉16.已知欄圜亨t/ = i上两个不同的点A, B关于且线尸皿对称. \f>co求实数■的取值范围;<2)求ZiAOB面积的最大值(0为坐标原点〉. -L——x17.如图,椭斷:1*4=1 (a>b>0)经过S A(O,-1),且离心率为手.A2b2 2< I )求棉圖E的方程;(ID经过点<1, 1> ,且斜牵为k的直线与椭應E交于不同的两点P, Q (均羟于点A〉,证明:直线AP 与AQ斜率之和为2.18.平面直甬坐标系xOy中,已知棉圈C; 4+4=1 (a>b>0>的离心率为华,目点(卩,在棉糜上. a1 b1 2 z< I >求棉圆c的方程j(I】)设椭圆E:土+J=1, P为椭圆C上任意一点,过点P的直线y=kx-m交椭圆E与A, B两点,射线P0交椭圆E于点Q. 4/ 4b2(I)求器的值;(D)求△"()面积的最大值.19.如圈,棉圖E:4+4=1(a>b>0)的陶心辜是孚,点P<o, 1)在短轴CD上,且无吨=T a2 b1 2(I)求欄圖E的方程;<D )设。
高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)

高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)1.(2022·浙江·统考高考真题)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =−+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求||CD 的最小值.【解析】(1)设,sin )H θθ是椭圆上任意一点,(0,1)P ,222221144144||12cos (1sin )1311sin 2sin 11sin 111111PH θθθθθ⎛⎫=+−=−−=−+≤⎭+ ⎪⎝,当且仅当1sin 11θ=−时取等号,故PH(2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++−= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=−⎪+⎪⎪⎨⎪=−⎛⎫⎪+ ⎪⎪⎝⎭⎩, 因为直线111:1y PA y x x −=+与直线132y x =−+交于C , 则111114422(21)1C x x x x y k x ==+−+−,同理可得,222224422(21)1D x x x x y k x ==+−+−.则224||(21)1C D x CD x k x −=+−====≥=当且仅当316k=时取等号,故CD2.(2022·全国·统考高考真题)已知双曲线2222:1(0,0)x yC a ba b−=>>的右焦点为(2,0)F,渐近线方程为y=.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点()()1122,,,P x y Q x y在C上,且1210,0x x y>>>.过P且斜率为Q M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ AB∥;③||||MA MB=.注:若选择不同的组合分别解答,则按第一个解答计分.【解析】(1)右焦点为(2,0)F,∴2c=,∵渐近线方程为y=,∴ba=∴b=,∴222244c a b a=+==,∴1a=,∴b=∴C的方程为:2213yx−=;(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而12x x=,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为()2y k x=−,则条件①M在AB上,等价于()()2000022y k x ky k x=−⇔=−;两渐近线的方程合并为2230x y−=,联立消去y 并化简整理得:()22223440k x k x k −−+=设()()3344,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===−=−−, 设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y −+−=−+−, 移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤−−++−−+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x −⎡⎤⎡⎤−++−+=⎣⎦⎣⎦−,即()000N N x x k y y −+−=,即200283k x ky k +=−;由题意知直线PM的斜率为直线QM∴由))10102020,y y x x y y x x −=−−=−,∴)121202y y x x x −=+−, 所以直线PQ的斜率)1201212122x x x y y m x x x x +−−==−−,直线)00:PM y x x y =−+,即00y y =, 代入双曲线的方程22330x y −−=,即)3yy +−=中,得:()()00003y y ⎡⎤−=⎣⎦, 解得P的横坐标:100x y ⎛⎫+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎫−=++−=−−⎪−−⎭∴03x m y =, ∴条件②//PQ AB 等价于003m k ky x =⇔=, 综上所述:条件①M 在AB 上,等价于()2002ky k x =−;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283k x ky k +=−;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==−−,∴③成立; 选①③推②:由①③解得:20223k x k =−,20263k ky k =−,∴003ky x =,∴②成立; 选②③推①:由②③解得:20223k x k =−,20263k ky k =−,∴02623x k −=−,∴()2002ky k x =−,∴①成立.3.(2022·全国·统考高考真题)设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ−取得最大值时,求直线AB 的方程.【解析】(1)抛物线的准线为2px =−,当MD 与x 轴垂直时,点M 的横坐标为p , 此时=32pMF p +=,所以2p =, 所以抛物线C 的方程为24y x =;(2)[方法一]:【最优解】直线方程横截式设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my −−=,120,4y y ∆>=−,由斜率公式可得12221212444MN y y k y y y y −==+−,34223434444AB y y k y y y y −==+−, 直线112:2x MD x y y −=⋅+,代入抛物线方程可得()1214280x y y y −−⋅−=, 130,8y y ∆>=−,所以322y y =,同理可得412y y =,所以()34124422MN AB k k y y y y ===++ 又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===, 若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++, 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=, 34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x +. [方法二]:直线方程点斜式 由题可知,直线MN 的斜率存在.设()()()()11223344,,,,,,,M x y N x y A x y B x y ,直线():1MN y k x =− 由 2(1)4y k x y x=−⎧⎨=⎩得:()2222240k x k x k −++=,121x x =,同理,124y y =−.直线MD :11(2)2y y x x =−−,代入抛物线方程可得:134x x =,同理,244x x =. 代入抛物线方程可得:138y y =−,所以322y y =,同理可得412y y =,由斜率公式可得:()()21432143212121.22114AB MN y y y y y y k k x x x x x x −−−====−−⎛⎫− ⎪⎝⎭(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=,34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x =+. [方法三]:三点共线设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,设(),0P t ,若 P 、M 、N 三点共线,由221212,,44y y t y t PM PN y ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭,所以22122144y y t y t y ⎛⎫⎛⎫−=− ⎪ ⎪⎝⎭⎝⎭,化简得124y y t =-, 反之,若124y y t =-,可得MN 过定点(),0t 因此,由M 、N 、F 三点共线,得124y y =−,由M 、D 、A 三点共线,得138y y =−, 由N 、D 、B 三点共线,得248y y =−,则3412416y y y y ==−,AB 过定点(4,0)(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即2k =时,等号成立,所以当αβ−最大时,AB k =:4AB x =+. 【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线,MN AB的斜率关系,由基本不等式即可求出直线AB 的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;法二:常规设直线方程点斜式,解题过程同解法一;法三:通过设点由三点共线寻找纵坐标关系,快速找到直线AB 过定点,省去联立过程,也不失为一种简化运算的好方法.4.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛−−⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P −的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛−−⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B −−,所以2:23+=AB y x ,①若过点(1,2)P −的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,N ,代入AB 方程223y x =−,可得(3,T ,由MT TH =得到(5,H −.求得HN 方程:(22y x =−,过点(0,2)−. ②若过点(1,2)P −的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y −−+=. 联立22(2)0,134kx y k x y −−+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +−+++=, 可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧−++=⎪+⎪⎨+−⎪=⎪+⎩,且1221224(*)34kx y x y k −+=+联立1,223y y y x =⎧⎪⎨=−⎪⎩可得111113(3,),(36,).2y T y H y x y ++− 可求得此时1222112:()36y y HN y y x x y x x −−=−+−−, 将(0,2)−,代入整理得12121221122()6()3120x x y y x y x y y y +−+++−−=, 将(*)代入,得222241296482448482436480,k k k k k k k +++−−−+−−= 显然成立,综上,可得直线HN 过定点(0,2).−5.(2022·全国·统考高考真题)已知点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,直线l 交C于P ,Q 两点,直线,AP AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【解析】(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,所以224111a a −=−,解得22a =,即双曲线22:12x C y −=.易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y , 联立2212y kx m x y =+⎧⎪⎨−=⎪⎩可得,()222124220k x mkx m −−−−=, 所以,2121222422,2121mk m x x x x k k ++=−=−−,()()222222Δ16422210120m k m k m k =−+−>⇒−+>且≠k .所以由0AP AQk k +=可得,212111022y y x x −−+=−−, 即()()()()122121210x kx m x kx m −+−+−+−=, 即()()()1212212410kx x m k x x m +−−+−−=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+−−−−−= ⎪−−⎝⎭, 化简得,()2844410k k m k +−++=,即()()1210k k m +−+=,所以1k =−或12m k =−,当12m k =−时,直线():21l y kx m k x =+=−+过点()2,1A ,与题意不符,舍去, 故1k =−.(2)[方法一]:【最优解】常规转化不妨设直线,PA AQ 的倾斜角为π,2αβαβ⎛⎫<< ⎪⎝⎭,因为0AP AQ k k +=,所以παβ+=,由(1)知,212220x x m =+>,当,A B 均在双曲线左支时,2PAQ α∠=,所以tan 2α=2tan 0αα+,解得tan α=(负值舍去) 此时P A 与双曲线的渐近线平行,与双曲线左支无交点,舍去; 当,A B 均在双曲线右支时,因为tan PAQ ∠=()tan βα−=tan 2α=−2tan 0αα−,解得tan α,于是,直线):21PA y x =−+,直线):21QA y x =−+,联立)222112y x x y ⎧=−+⎪⎨−=⎪⎩可得,)23241002x x ++−,因为方程有一个根为2,所以P x =,P y=,同理可得,103Q x +=,Q y=53−. 所以5:03PQ x y +−=,163PQ =,点A 到直线PQ的距离d = 故PAQ △的面积为11623⨯=. [方法二]:设直线AP 的倾斜角为α,π02α⎛⎫<< ⎪⎝⎭,由tan PAQ ∠=tan 2PAQ ∠由2PAQ απ+∠=,得tan AP k α=1112y x −−,联立1112y x −=−221112x y −=得1x1y ,同理,2x 2y =12203x x +=,12689x x =而1||2|AP x −,2||2|AQ x −,由tan PAQ ∠=sin PAQ ∠故12121||||sin 2()4|2PAQSAP AQ PAQ x x x x =∠=−++= 【整体点评】(2)法一:由第一问结论利用倾斜角的关系可求出直线,PA PB 的斜率,从而联立求出点,P Q 坐标,进而求出三角形面积,思路清晰直接,是该题的通性通法,也是最优解;法二:前面解答与法一求解点,P Q 坐标过程形式有所区别,最终目的一样,主要区别在于三角形面积公式的选择不一样.。
圆锥曲线压轴小题(含答案 )

圆锥曲线压轴小题(含答案)1. 已知点 O 为双曲线 C 的对称中心,过点 O 的两条直线 l 1 与 l 2 的夹角为 60∘,直线 l 1 与双曲线 C 相交于点 A 1,B 1,直线 l 2 与双曲线 C 相交于点 A 2,B 2,若使 ∣A 1B 1∣=∣A 2B 2∣ 成立的直线 l 1 与 l 2 有且只有一对,则双曲线 C 离心率的取值范围是 ( )A. (2√33,2] B. [2√33,2) C. (2√33,+∞) D. [2√33,+∞)2. 已知椭圆 E:x 25+y 24=1 的一个顶点为 C (0,−2),直线 l 与椭圆 E交于 A ,B 两点,若 E 的左焦点为 △ABC 的重心,则直线 l 的方程为 ( )A. 6x −5y −14=0B. 6x −5y +14=0C. 6x +5y +14=0D. 6x +5y −14=03. 设双曲线 x 2a2−y 2b2=1(a >0,b >0) 的右焦点为 F ,过点 F 作与 x 轴垂直的直线 l 交两渐近线于 A ,B 两点,且与双曲线在第一象限的交点为 P ,设 O 为坐标原点,若 OP ⃗⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ (λ,μ∈R ),λ⋅μ=316,则双曲线的离心率为 ( )A. 2√33 B. 3√55 C. 3√22 D. 984. 双曲线 x 2a2−y 2b2=1 的左,右焦点分别为 F 1,F 2,过 F 1 作圆 x 2+y 2=a 2 的切线交双曲线的左,右支分别于点 B ,C ,且 ∣BC ∣=∣CF 2∣,则双曲线的渐近线方程为 ( )A. y =±3xB. y =±2√2xC. y =±(√3+1)xD. y =±(√3−1)x5. 已知“若点 P (x 0,y 0) 在双曲线 C:x 2a2−y 2b2=1(a >0,b >0) 上,则C 在点 P 处的切线方程为 C:xx 0a 2−yy 0b 2=1”,现已知双曲线 C:x 24−y212=1和点Q(1,t)(t≠±√3),过点Q作双曲线C的两条切线,切点分别为M,N,则直线MN过定点( )A. (0,2√3)B. (0,−2√3)C. (4,0)D. (−4,0)6. 设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,∣MF∣= 5,若以MF为直径的圆过点(0,2),则C的方程为( )A. y2=4x或y2=8xB. y2=2x或y2=8xC. y2=4x或y2=16xD. y2=2x或y2=16x7. 设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60∘的直线A1B1和A2B2,使∣A1B1∣=∣A2B2∣,其中A1,B1和A2,B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是( )A. (2√33,2] B. [2√33,2) C. (2√33,+∞) D. [2√33,+∞)8. 如图,双曲线x 2a2−y2b2=1(a,b>0)的右顶点为A,左右焦点分别为F1,F2,点P是双曲线右支上一点,PF1交左支于点Q,交渐近线y=bax于点R.M是PQ的中点,若RF2⊥PF1,且AM⊥PF1,则双曲线的离心率是( )A. √2B. √3C. 2D. √59. 已知m,n,s,t∈R∗,m+n=3,ms +nt=1,其中m,n是常数且m<n,若s+t的最小值是3+2√2,满足条件的点(m,n)是椭圆x2 4+y216=1一弦的中点,则此弦所在的直线方程为( )A. x−2y+3=0B. 4x−2y−3=0C. x+y−3=0D. 2x+y−4=010. 设双曲线x 2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2=( )A. 1+2√2B. 4−2√2C. 5−2√2D. 3+2√211. 已知抛物线y2=2px(p>0)的焦点F恰为双曲线x2a2−y2b2=1(a>0,b>0)的右焦点,且两曲线的交点连线过点F,则双曲线的离心率为( )A. √2B. √2+1C. 2D. 2+√212. 如图,斜线段AB与平面α所成的角为60∘,B为斜足,平面α上的动点P满足∠PAB=30∘,则点P的轨迹是( )A. 直线B. 抛物线C. 椭圆D. 双曲线的一支13. 已知定点M(1,54),N(−4,−54),给出下列曲线方程:① 4x+2y−1=0;② x2+y2=3;③ x22+y2=1;④ x22−y2=1.在曲线上存在点P满足∣MP∣=∣NP∣的所有曲线方程是( )A. ①③B. ②④C. ①②③D. ②③④14. 双曲线x 2a2−y2b2=1(a>0,b>0)的左右焦点为F1,F2,P是双曲线上一点,满足∣PF2∣=∣F1F2∣,直线PF1与圆x2+y2=a2相切,则双曲线的离心率为( )A. 54B. √3 C. 2√33D. 5315. 过双曲线x 2a2−y2b2=1(a>0,b>0)的左焦点F1,作圆x2+y2=a2的切线交双曲线右支于点P,切点为T,PF1的中点M在第一象限,则以下结论正确的是( )A. b−a=∣MO∣−∣MT∣B. b−a>∣MO∣−∣MT∣C. b−a<∣MO∣−∣MT∣D. b−a=∣MO∣+∣MT∣16. 在椭圆x 216+y29=1内,通过点M(1,1)且被这点平分的弦所在的直线方程为( )A. 9x−16y+7=0B. 16x+9y−25=0C. 9x+16y−25=0D. 16x−9y−7=017. 已知椭圆C1:x2m2+y2=1(m>1)与双曲线C2:x2n2−y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则( ) A. m>n且e1e2>1 B. m>n且e1e2<1 C. m<n且e1e2>1 D. m<n且e1e2<118. 已知点P为双曲线x 2a2−y2b2=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左右焦点,且∣F1F2∣=b2a,I为三角形PF1F2的内心,若S△IPF1=S△IPF2+λS△IF1F2成立,则λ的值为( )A. 1+2√22B. 2√3−1C. √2+1D. √2−119. 已知F1,F2为双曲线C:x2−y2=1的左、右焦点,点P在C上,∠F1PF2=60∘,则点P到x轴的距离为( )A. √32B. √62C. √3D. √620. 直线4kx−4y−k=0与抛物线y2=x交于A,B两点,若∣AB∣=4,则弦AB的中点到直线x+12=0的距离等于( )A. 74B. 2 C. 94D. 421. 设A为双曲线x 216−y29=1的右支上一动点,F为该双曲线的右焦点,连AF交双曲线于点B,过点B作直线BC垂直于双曲线的右准线,垂足为C,则直线AC必过定点( )A. (4110,0) B. (185,0) C. (4,0) D. (225,0)22. 已知抛物线y2=2px(p>0),△ABC的三个顶点都在抛物线上,O为坐标原点,设△ABC三条边AB,BC,AC的中点分别为M,N,Q,且M,N,Q的纵坐标分别为y1,y2,y3.若直线AB,BC,AC的斜率之和为−1,则1y1+1y2+1y3的值为( )A. −12p B. −1pC. 1pD. 12p23. 设点P(x,y)是曲线a∣x∣+b∣y∣=1(a≥0,b≥0)上任意一点,其坐标(x,y)均满足√x2+y2+2x+1+√A2+y2−2x+1≤2√2,则√2a+b取值范围为( )A. (0,2]B. [1,2]C. [1,+∞)D. [2,+∞)24. 若直线mx+ny=4和⊙O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆x29+y24=1的交点个数为( )A. 至多1个B. 2个C. 1个D. 0个25. 平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于点C,则动点C的轨迹是( )A. 一条直线B. 一个圆C. 一个椭圆D. 双曲线的一支26. 直线y=x+3与曲线y 29−x∣x∣4=1( )A. 没有交点B. 只有一个交点C. 有两个交点D. 有三个交点27. 直线y=2k与曲线9k2x2+y2=18k2∣x∣(k∈R,且k≠0)的公共点的个数为( )A. 1B. 2C. 3D. 428. 已知双曲线C:x 2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2作平行于C的渐近线的直线交C于点P.若PF1⊥PF2,则C的离心率为( )A. √2B. √3C. 2D. √529. 已知椭圆x 24+y2b2=1(0<b<2),左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若∣BF2∣+∣AF2∣的最大值为5,则b的值是( )A. 1B. √2C. 32D. √330. 若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的"自公切线".下列方程:① x2−y2=1,② y= x2−∣x∣,③ y=3sinx+4cosx,④ ∣x∣+1=√4−y2,对应的曲线中存在"自公切线"的有( )A. ①③B. ①④C. ②③D. ②④31. 设直线l与抛物线y2=4x相交于A,B两点,与圆(x−5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )A. (1,3)B. (1,4)C. (2,3)D. (2,4)32. 椭圆a2x2+y2=a2(0<a<1)上离顶点A(0,a)距离最大的点恰好是另一个顶点Aʹ(0,−a),则a的取值范围是( )A. (√22,1) B. [√22,1) C. (0,√22) D. (0,√22]33. 已知集合 M ={(x,y )∣x 2+y 2≤1},若实数 λ,μ 满足:对任意的(x,y )∈M ,都有 (λx,μy )∈M ,则称 (λ,μ) 是集合 M 的“和谐实数对”.则以下集合中,存在“和谐实数对”的是 ( )A. {(λ,μ)∣λ+μ=4}B. {(λ,μ)∣λ2+μ2=4}C. {(λ,μ)∣λ2−4μ=4}D. {(λ,μ)∣λ2−μ2=4}34. 已知两点 M (1,54) 、 N (−4,−54),给出下列曲线方程:① 4x +2y −1=0;② x 2+y 2=3;③x 22+y 2=1;④x 22−y 2=1.曲线上存在点 P 满足 ∣MP ∣=∣NP ∣ 的所有曲线方程是 ( ) A. ①②③ B. ②④ C. ①③ D. ②③④35. 过点 (√2,0) 引直线 l 与曲线 y =√1−x 2 相交于 A ,B 两点,O为坐标原点,当 △AOB 的面积取最大值时,直线 l 的斜率等于 ( )A. √33 B. −√33 C. ±√33D. −√336. 如图,一条直线与抛物线 y 2=2px (p >0) 交于 A ,B 两点,且OA ⊥OB ,OD ⊥AB 于 D ,若点 D 的坐标为 (2,1),则抛物线方程为 ( )A. y 2=54xB. y 2=52x C. y 2=5x D. y 2=10x37. 已知 F 是抛物线 y 2=x 的焦点,点 A,B 在该抛物线上且位于 x轴的两侧,OA ⃗⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =2(其中 O 为坐标原点),则 △ABO 与 △AFO 面积之和的最小值是 ( )A. 2B. 3C.17√28D. √1038. 已知点 C 在以 O 为圆心的圆弧 A B 上运动(含端点).OA⃗⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =0,OC⃗⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗⃗ +2yOB ⃗⃗⃗⃗⃗⃗ (x,y ∈R ),则 x 2+y 的取值范围是 ( )A. [−√22,√22]B. [12,√22]C. [−12,12]D. [−√22,12]39. 已知抛物线 y 2=4x 的焦点为 F ,点 P (x,y ) 为该抛物线上的动点,若点 A (−1,0),则 |PF ||PA | 的最小值为 ( )A. 12 B. √22 C. √32 D. 2√2340. P 是抛物线 y =x 2 上任意一点,则当 P 和直线 x +y +2=0 上的点距离最小时,P 与该抛物线的准线距离是 ( )A. 19 B. 12C. 1D. 241. 已知直线 l:y =k (x −2)(k >0) 与抛物线 C:y 2=8x 交于 A ,B两点,F 为抛物线 C 的焦点,若 ∣AF ∣=2∣BF ∣,则 k 的值是 ( )A. 13 B. 2√23 C. 2√2 D. √2442. 如图所示是一个正方体的表面展开图,A,B,C 均为棱的中点,D 是顶点,则在正方体中,异面直线 AB 和 CD 的夹角的余弦值为 ( )A. √25B. √35C.√105D. √5543. 如图,M ,N 是焦点为 F 的抛物线 y 2=4x 上的两个不同的点,且线段 MN 的中点 A 的横坐标为 3,直线 MN 与 x 轴交于 B 点,则点 B 的横坐标的取值范围是 ( )A. (−3,3]B. (−∞,3]C. (−6,−3)D. (−6,−3)∪(−3,3]44. 已知椭圆 M:x 24+y 2=1 的上、下顶点为 A ,B ,过点 P (0,2) 的直线 l 与椭圆 M 相交于两个不同的点 C ,D (C 在线段 PD 之间),则 OC⃗⃗⃗⃗⃗⃗ ⋅OD ⃗⃗⃗⃗⃗⃗ 的取值范围为 ( ) A. (−1,16)B. [−1,16]C. (−1,134) D. [−1,134)45. 若抛物线 y =4x 2 的焦点是 F ,准线是 l ,则过点 F 和点 M (4,4)且与准线 l 相切的圆有 ( )A. 0 个B. 1 个C. 2 个D. 4 个46. 如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线 AC ,BD ,设内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),若直线 AC与 BD 的斜率之积为 −14,则椭圆的离心率为 ( )A. 12B. √22C. √32D. 3447. 已知P1(x1,y1)是直线l:f(x,y)=0上的一点,P2(x2,y2)是直线l外一点,则方程f(x,y)+f(x1,y1)+f(x2,y2)=0表示的直线与直线l的位置关系是( )A. 平行B. 重合C. 垂直D. 斜交48. 已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为( )A. 4B. 3C. 2D. 149. 已知双曲线x 2a2−y2b2=1(a>0,b>0)上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=−12,则m的值为( )A. 34B. 32C. 54D. 5250. 已知抛物线M:y2=4x,圆N:(x−1)2+y2=r2(r>0),过点(1,0)的直线l与圆N交于C,D两点,交抛物线M于A,B两点,则满足∣AC∣=∣BD∣的直线l只有三条的必要条件是( )A. r∈(0,1]B. r∈(1,2]C. r∈(32,4) D. r∈[32,+∞)51. 已知P为抛物线y=12x2上的动点,点P在x轴上的射影为Q,点A的坐标是(6,172),则∣PA∣+∣PQ∣的最小值是( )A. 8B. 192C. 10 D. 21252. 已知双曲线x 2a2−y2b2=1(a>0,b>0)的左焦点为F1,左、右顶点分别为A1,A2,P为双曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为( )A. 相切B. 相交C. 相离D. 以上情况都有可能53. 已知 F 1,F 2 分别是椭圆 x 2A+y 23=1 的左,右焦点,A 是椭圆上一动点,圆 C 与 F 1A 的延长线,F 1F 2 的延长线以及线段 AF 2 相切,若 M (t,0) 为其中一个切点,则 ( )A. t =2B. t >2C. t <2D. t 与 2 的大小关系不确定54. 已知点 A ,B 是双曲线 x 2−y 22=1 上的两点,O 为坐标原点,且满足 OA ⃗⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =0,则点 O 到直线 AB 的距离等于 ( ) A. √2 B. √3 C. 2 D. 2√255. 已知椭圆 x 24+y 2b2=1(0<b <2),左右焦点分别为 F 1,F 2,过 F 1的直线 l 交椭圆于 A ,B 两点,若 ∣∣BF 2⃗⃗⃗⃗⃗⃗⃗⃗ ∣∣+∣∣AF 2⃗⃗⃗⃗⃗⃗⃗⃗ ∣∣ 的最大值为 5,则 b 的值是 ( )A. 1B. √2C. 32D. √356. 抛物线 y 2=2px (p >0) 的准线交 x 轴于点 C ,焦点为 F ,A ,B是抛物线的两点.已知 A ,B ,C 三点共线,且 ∣AF ∣,∣AB ∣,∣BF ∣ 成等差数列,直线 AB 的斜率为 k ,则有 ( ) A. k 2=14B. k A =√34C. k 2=12D. k 2=√3257. 已知椭圆 C:x 2a2+y 2b 2=1(a >b >0) 的离心率为 √32,过右焦点 F 且斜率为 k (k >0) 的直线与 C 相交于 A 、 B 两点.若 AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则 k = ( ) A. 1B. √2C. √3D. 258. 设直线 l:2x +y +2=0 关于原点对称的直线为 l ′,若 lʹ 与椭圆 x 2+y 24=1 的交点为 A 、 B ,点 P 为椭圆上的动点,则使 △PAB 的面积为12的点 P 的个数为 ( )A. 1B. 2C. 3D. 459. 已知抛物线y2=−x与直线y=k(x+1)相交于A、B两点,则△AOB的形状是( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 钝角三角形60. 已知点F为抛物线y2=−8x的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且∣AF∣=4,则∣PA∣+∣PO∣的最小值为( )A. 6B. 2+4√2C. 2√13D. 4+2√561. 椭圆x 225+y216=1的左、右焦点分别为F1、F2,弦AB过F1,若△ABF2的内切圆周长为π,A、B两点的坐标分别为(x1,y1)和(x2,y2),则∣y2−y1∣的值是( )A. √53B. 103C. 203D. 5362. 点P在直线l:y=x−1上,若存在过P的直线交抛物线y=x2于A,B两点,且∣PA∣=∣AB∣,则称点P为“ A点”,那么下列结论中正确的是( )A. 直线l上的所有点都不是“ A点”B. 直线l上仅有有限个点是“ A点”C. 直线l上的所有点都是“ A点”D. 直线l上有无穷多个点(点不是所有的点)是“ A点”63. 过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则1p +1q等于( )A. 2aB. 12a C. 4a D. 4a64. 已知椭圆C:x 22+y2=1,点M1,M2,⋯,M5为其长轴AB的6等分点,分别过这五点作斜率为k(k≠0)的一组平行线,交椭圆C于P1,P2,⋯,P10,则10条直线AP1,AP2,⋯,AP10的斜率乘积为( )A. 14B. 116C. −18D. −13265. 椭圆4x2+9y2=144内有一点P(3,2),过点P的弦恰好以P为中点,那么这条弦所在直线的方程为( )A. 3x+2y−12=0B. 2x+3y−12=0C. 4x+9y−144=0D. 9x+4y−32=066. 如图,等腰梯形ABCD中,AB∥CD且AB=2AD,设∠DAB=θ,θ∈(0,π2),以A、B为焦点,且过点D的双曲线的离心率为e1;以C、D为焦点,且过点A的椭圆的离心率为e2,则( )A. 当θ增大时,e1增大,e1e2为定值B. 当θ增大时,e1减小,e1e2为定值C. 当θ增大时,e1增大,e1e2增大D. 当θ增大时,e1减小,e1e2减小67. 已知a>0,过M(a,0)任作一条直线交抛物线y2=2px(p>0)于P,Q两点,若1∣MP∣2+1∣MQ∣2为定值,则a=( )A. √2pB. 2pC. p2D. p68. 在抛物线y=x2+ax−5(a≠0)上取横坐标为x1=−4,x2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为( )A. (−2,−9)B. (0,−5)C. (2,−9)D. (1,−6)69. 椭圆C的两个焦点分别为F1(−1,0)和F2(1,0),若该椭圆C与直线x+y−3=0有公共点,则其离心率的最大值为( )A. √612B. √66C. √55D. √51070. 已知抛物线y=−x2+3上存在关于直线x+y=0对称的相异两点A、B,则∣AB∣等于( )A. 3B. 4C. 3√2D. 4√271. 记椭圆x 24+ny24n+1=1围成的区域(含边界)为Ωn(n=1,2,⋯),当点(x,y)分别在Ω1,Ω2,⋯上时,x+y的最大值分别是M1,M2,⋯,则limn→∞M n=( )A. 0B. 14C. 2D. 2√272. 已知曲线f(x)=x3+x2+x+3在x=−1处的切线恰好与抛物线y=2px2相切,则过该抛物线焦点且垂直于对称轴的直线与抛物线相交所得的线段长为( )A. 18B. 14C. 8D. 473. 已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且∣AK∣=√2∣AF∣,则△AFK的面积为( )A. 4B. 8C. 16D. 3274. 已知直线x+2y−3=0与圆x2+y2+x−6y+m=0相交于P,Q两点,O为坐标原点,若OP⊥OQ,则m等于( )A. 3B. −3C. 1D. −175. 中心在原点,焦点坐标为(0,±5√2)的椭圆被直线3x−y−2=0截得的弦的中点的横坐标为12,则椭圆方程为( )A. 2x 225+2y275=1 B. 2x275+2y225=1 C. x225+y275=1 D. x275+y225=176. 若方程√x2+1=a(x−1)恰有两个不同的实根,则实数a的取值范围是( )A. −1<a<−√22B. a<−√22或a>√22C. −1<a<−√22或√22<a<1 D. a<−1或−1<a<−√2277. 已知直线 y =k (x +2) (k >0) 与抛物线 C :y 2=8x 相交 A 、B 两点,F 为 C 的焦点.若 ∣FA ∣=2∣FB ∣,则 k = ( ) A. 13B. √23C. 23D. 2√2378. 已知抛物线 M :y 2=4x ,圆 N :(x −1)2+y 2=r 2(其中 r 为常数,r >0),过点 (1,0) 的直线 l 交圆 N 于 C 、 D 两点,交抛物线 M 于 A 、 B 两点,且满足 ∣AC∣=∣BD∣ 的直线 l 只有三条的必要条件是 ( ) A. r ∈(0,1]B. r ∈(1,2]C. r ∈(32,4)D. r ∈[32,+∞)79. 已知 O 是平面上的一个定点,A,B,C 是平面上不共线的三个点,动点 P满足 OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗∣∣AB ⃗⃗⃗⃗⃗ ∣∣+AC⃗⃗⃗⃗⃗∣∣AC ⃗⃗⃗⃗⃗ ∣∣),λ∈(0,+∞),则点 P 的轨迹一定通过△ABC 的 ( )A. 外心B. 内心C. 重心D. 垂心80. 点 P 在直线 l:y =x −1 上,若存在过 P 的直线交抛物线 y =x 2 于 A ,B 两点,且 ∣PA∣=∣AB∣,则称点 P 为" A 点",那么下列结论中正确的是 ( ) A. 直线 l 上的所有点都是" A 点" B. 直线 l 上仅有有限个点是" A 点" C. 直线 l 上的所有点都不是" A 点"D. 直线 l 上有无穷多个点(但不是所有的点)是" A 点"答案第一部分1. A2. B 【解析】设 A (x 1,y 1),B (x 2,y 2),椭圆x 25+x 24=1 的左焦点为(−1,0),因为点 C (0,−2),且椭圆左焦点 F 1 恰为 △ABC 的重心,所以x 1+x 2+03=−1,y 1+y 2−23=0,所以 x 1+x 2=−3,y 1+y 2=2, ⋯⋯① 因为x 125+y 124=1,x 225+y 224=1,所以两式相减得:(x 1+x 2)(x 1−x 2)5+(y 1+y 2)(y 1−y 2)4=0,将 ① 代入得:y 1−y 2x 1−x 2=65,即直线 l 的斜率为 k =y 1−y 2x 1−x 2=65,因为直线 l 过AB 中点 (−32,1),所以直线 l 的方程为 y −1=65(x +32),故答案为 6x −5y +14=0.3. A 【解析】双曲线的渐近线为:y =±ba x ,设焦点 F (c,0),则A (c,bc a ),B (c,−bca ),P (c,b 2a ), 因为 OP⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗ , 所以 (c,b 2a )=((λ+μ)c,(λ−μ)bca ), 所以 λ+μ=1,λ−μ=bc ,解得:λ=c+b 2c ,μ=c−b 2c , 又由 λμ=316,得:c 2−b 24c 2=316,解得:a 2c 2=34,所以,e =c a=2√33.4. C5. C【解析】设 M (x 1,y 1),N (x 2,y 2),则切点分别为 M ,N 的切线方程为x 1x 4−y 1y 12=1,x 2x 4−y 2y 12=1.因为点 Q (1,t ) 在两条切线上, 所以x 14−y 1t 12=1,x 24−y 2t 12=1.所以M,N两点均在直线x4−ty12=1上,即直线MN的方程为x4−ty12=1,显然直线过点(4,0).6. C7. A 【解析】先考虑焦点在x轴上的双曲线,由双曲线的对称性知,满足题意的这一对直线也关于x轴(或y轴)对称,又由题意知有且只有一对这样的直线,故该双曲线在第一象限的渐近线的倾斜角范围是大于30∘且小于等于60∘,即tan30∘<ba ≤tan60∘,所以13<b2a2≤3.又e2=(ca)2=c2a2=1+b2a2,所以43<e2≤4,解得2√33<e≤2.焦点在y轴上的双曲线与焦点在x轴上的双曲线的开口宽窄要求完全相同,所以离心率的范围一致.8. C 【解析】设PF1的方程为y=k(x+c),k>0,与渐近线方程y=ba x联立,可得R(ackb−ka,bckb−ka),把直线y=k(x+c)代入双曲线x 2a2−y2b2=1,可得(b2−a2k2)x2−2ca2k2x−a2c2k2−a2b2=0,设P(x1,y1),Q(x2,y2),可得x1+x2=2ca2k2b2−a2k2,即有中点M(ca 2k2b2−a2k2,cb2kb2−a2k2),由A(a,0),F2(c,0),RF2⊥PF1,可得k RF2=bck2ack−bc=−1k,即有bk2+2ak−b=0,解得k=c−ab(负的舍去),由AM⊥PF1,可得k AM=cb2kca2k2−ab2+a3k2=−1k,即为(c3+a3)k2=a(c2−a2),即有(c3+a3)(c−a)2=ab2(c2−a2)=a(c2−a2)2,化为c=2a,即e=ca=2.9. D 【解析】因为 m ,n ,s ,t 为正数,m +n =3,m s+nt=1,s +t 的最小值是 3+2√2,所以 (s +t )(ms +nt ) 的最小值是 3+2√2,所以 (s +t )(ms +nt )=m +n +mt s+ns t≥m +n +2√mn ,满足mt s=ns t时取最小值,此时最小值为 m +n +2√mn =3+2√2,得:mn =2,又:m +n =3,所以,m =1,n =2. 设以 (1,2) 为中点的弦交椭圆x 24+y 216=1 于 A (x 1,y 1),B (x 2,y 2),由中点坐标公式知 x 1+x 2=2,y 1+y 2=4,把 A (x 1,y 1),B (x 2,y 2) 分别代入 4x 2+y 2=16,得 {4x 12+y 12=16,4x 22+y 22=16,两式相减得 2(x 1−x 2)+(y 1−y 2)=0,所以 k =y 2−y 1x 2−x 2=−2.所以此弦所在的直线方程为 y −2=−2(x −1),即 2x +y −4=0.10. C【解析】如图,设 ∣AF 1∣=m ,则 ∣BF 1∣=√2m ,∣AF 2∣=m −2a ,∣BF 2∣=√2m −2a ,所以 ∣AB ∣=∣AF 2∣+∣BF 2∣=m −2a +√2m −2a =m ,得 m =2√2a ,又由 ∣AF 1∣2+∣AF 2∣2=∣F 1F 2∣2,可得 m 2+(m −2a )2=4c 2,即得 (20−8√2)a 2=4c 2,所以 e 2=c 2a 2=5−2√2.11. B 【解析】根据题意 p 2=c ,设抛物线与双曲线的一个交点为 A ,则有 A (c,2c ),因为点 A 在双曲线上,所以有 c 2a 2−4c 2b 2=1,整理得 e 2−2e −1=0,所以双曲线的离心率 e =1+√2.12. C 13. D 【解析】提示:对于①,可得 MN 的中点为 O (−32,0) 不在直线l:4x +2y −1=0 上,k MN =12,又直线 4x +2y −1=0 的斜率为 k l =−2,即 k l k MN =−1,所以线段 MN 的中垂线 y =−2x −3 不与 4x +2y −1=0 相交,所以①不成立;对于②,因为 (−32)2+02<3,所以 MN 的中点为 O (−32,0) 在圆 x 2+y 2=3 的内部,所以线段 MN 的中垂线与圆相交,所以②正确;对于③和④,只需联立线段 MN 的中垂线 y =−2x −3 与曲线方程,判断判别式即可,可得③和④都成立.14. D 【解析】设 PF 1 与圆相切于点 M ,因为 ∣PF 2∣=∣F 1F 2∣,所以 △PF 1F 2 为等腰三角形,设 N 为 PF 1 中点,则 F 2N ⊥PF 1,又 OM ⊥PF 1,O 为 F 1F 2 中点,所以 ∣F 1M ∣=12∣F 1N ∣=14∣PF 1∣,又因为在直角三角形 F 1MO 中,∣F 1M ∣2=∣F 1O ∣2−a 2=c 2−a 2=b 2,所以 ∣F 1M ∣=b =14∣PF 1∣ ⋯⋯①,又 ∣PF 1∣=∣PF 2∣+2a =2c +2a ⋯⋯②,c 2=a 2+b 2 ⋯⋯③,由①②③解得 e =c a=53.15. A【解析】连 OT ,则 OT ⊥F 1T ,在直角三角形 OTF 1 中,∣F 1T ∣=√∣OF 1∣2−∣OT∣2=b .连 PF 2,M 为线段 F 1P 的中点,O 为坐标原点,所以 ∣OM∣=12∣PF 2∣,所以∣MO∣−∣MT∣=12∣PF 2∣−(12∣PF 1∣−∣F 1T ∣)=12(∣PF 2∣−∣PF 1∣)+b =12×(−2a )+b =b −a.16. C 【解析】设以点 M (1,1) 为中点的弦两端点为 P 1(x 1,y 1),P 2(x 2,y 2), 则 x 1+x 2=2,y 1+y 2=2. 又 x 1216+y 129=1, ⋯⋯①x 2216+y 229=1, ⋯⋯②①−② 整理得:y 1−y 2x 1−x 2=−916,所以以点 M (1,1) 为中点的弦所在直线的斜率 k =−916. 所以中点弦所在直线方程为 y −1=−916(x −1),即 9x +16y −25=0.17. A 【解析】由题意知 m 2−1=n 2+1,即 m 2=n 2+2, (e 1e 2)2=m 2−1m 2⋅n 2+1n 2=(1−1m 2)(1+1n 2), 代入 m 2=n 2+2,得 m >n ,(e 1e 2)2>1. 18. D 19. B 20. C【解析】直线 4kx −4y −k =0,即 y =k (x −14),即直线 4kx −4y −k =0 过抛物线 y 2=x 的焦点 (14,0),设A (x 1,y 1),B (x 2,y 2),则 ∣AB ∣=x 1+x 2+12=4,故 x 1+x 2=72,则弦 AB 的中点的横坐标是 74,弦 AB 的中点到直线 x +12=0 的距离是 74+12=94.21. A 【解析】设 AB:x =my +5,与双曲线方程联立得 (9m 2−16)y 2+90my +81=0,设 A (x 1,y 1),B (x 2,y 2),则 y 1+y 2=−90m 9m 2−16,y 1y 2=819m 2−16.右准线方程为 x =165,所以 C (165,y 2),则 AC:y −y 2=y 2−y 1165−x 1(x −165),令y =0,化简可得 x =4110.特殊法:设 A (5,94),则 B (5,−94),C (165,−94).故 k AC =94−(−94)5−165=52,直线AC 为 y −94= 52(x −5),即:10x −4y −41=0,与 x 轴交点为 (4110,0),可得答案.22. B 23. D 【解析】因为 √x 2+y 2+2x +1+√x 2+y 2−2x +1=√(x +1)2+y 2+√(x −1)2+y 2≤2√2,所以一动点 P (x,y ) 的轨迹是以点 (−1,0) 和点 (1,0) 为焦点椭圆及其内部,椭圆的方程为x 22+y 2=1,又曲线a ∣x ∣+b ∣y ∣=1 表示的区域为一平行四边形,因为曲线 a∣x∣+b ∣y ∣=1(a ≥0,b ≥0) 上任意一点,其坐标 (x,y ) 均满足 √x 2+y 2+2x +1+√x 2+y 2−2x +1≤2√2,即平行四边形在椭圆的内部,所以有 {1b ≤1,1a≤√2解得 {b ≥1,√2a ≥1, 所以 √2a +b ≥2.24. B 【解析】由直线与圆没有交点可得 ∣−4∣√m 2−n 2>2,即 m 2+n 2<4,n 2<4−m 2, 所以n 29+m 29+4−m 24=1−5m 236<1,所以点 (m,n ) 在椭圆x 29+y 24=1 的内部,故经过点 (m,n ) 的直线与椭圆由 2 个交点. 25. A26. D 【解析】当 x >0 时,曲线为 y 29−x 24=1,将直线 y =x +3 代入曲线方程得 x =0(舍)或 x =245,故此时有一个交点;当 x ≤0 时,曲线为y 29+x 24=1,将直线 y =x +3 代入曲线方程得 x =0 或x =−2413,故此时有两个交点. 因此共有 3 个交点.27. D 【解析】将 y =2k 代入 9k 2x 2+y 2=18k 2∣x∣ 得:9k 2x 2+4k 2=18k 2∣x∣⇒9∣x∣2−18∣x∣+4=0,显然该关于∣x∣的方程有两正解,即x有四解,所以交点有4个.28. D 【解析】设点P坐标为(x P,y P),由已知,直线PF2的方程为y=b a (x−c),代入双曲线方程得x P=a2+c22c,y P=−b32ac,因为PF1⊥PF2,所以k PF1⋅k PF2=−1,即−b32aca2+c22c+c⋅ba=−1,化简得b4=a4+3a2c2,即(c2−a2)2=a4+3a2c2,即c2=5a2,所以e2=5,e=√5.29. D 【解析】由椭圆的方程可知a=2,由椭圆的定义可知,∣AF2∣+∣BF2∣+∣AB∣=4a=8,所以∣AB∣=8−(∣AF2∣+∣BF2∣)≥3,由椭圆的性质可知过椭圆焦点的弦中,通径最短,则2b 2a=3.所以b2=3,即b=√3.30. C【解析】①中x2−y2=1是一个等轴双曲线,它不存在"自公切线";②如图所示,曲线在点(−12,−14)和点(12,−14)处的切线重合;③y=3sinx+4cosx=5sin(x+φ)(tanφ=43).如图,在所有的最高点处的切线重合,所以③存在"自公切线";④中曲线如图所示,不存在"自公切线".31. D 【解析】设 A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则 {y 12=4x 1,y 22=4x 2,所以(y 1+y 2)(y 1−y 2)=4(x 1−x 2)⋯∗.①当 x 1=x 2,即直线 l 斜率不存在时,此时一定存在 2 条满足题意的直线,如图:②当 x 1≠x 2 时,设直线 l 的斜率为 k ,∗ 式化为 2y 0⋅y 1−y 2x 1−x 2=4,即 ky 0=2.由直线与圆相切得y 0−0x 0−5⋅k =−1,即 ky 0=5−x 0=2,所以 x 0=3,即点M 在直线 x =3 上.而 x =3 与抛物线交点为 N(3,±2√3),与 x 轴的交点为 P (3,0), 圆心到 N 、 P 的距离分别为 4、2.当 r =4 时,点 N 在圆上,没有对应的直线满足要求;当 r =2 时,点 M 在 x 轴上,没有对应的直线满足要求;当 2<r <4 时,过点 M 作圆的切线即可满足要求,如图所示:这样的切线恰有两条,从而直线 l 恰有 4 条,则 2<r <4.32. B 【解析】提示:由对称性,可设椭圆上任意一点 P 的坐标为 (x 0,y 0),所以 x 02=1−y 02a2,∣AP ∣2=1−y 02a2+(y 0−a )2=(a 2−1a 2)y 02−2ay 0+a 2+1.因为 0<a <1,所以 a 2−1a 2<0,关于 y 0 的二次函数图象开口向下,所以对称轴 y 0=a 3a 2−1≥−a .解得 √22≤a <1.33. C 【解析】由实数 λ,μ 满足:对任意的 (x,y )∈M ,都有 (λx,μy )∈M ,即 λ2x 2+μ2y 2≤1 ,所以 ∣λ∣≤1 , ∣μ∣≤1 .而 {∣λ∣≤1,∣μ∣≤1.构成的区域如图:A 、B 、D 选项的集合所表示的曲线均与 (λ,μ) 所表示的区域无交点,C 选项所表示的抛物线与区域有交点,符合题意.34. D 【解析】由题意,知 P 点必在线段 MN 的垂直平分线上. ∵ MN 的中点为 (−32,0),直线 MN 斜率为 12,∴ MN 的垂直平分线方程是 y =−2x −3,它显然与①中的直线平行,∴ 排除A 、C ;注意到选项B 、D 的区别,联立垂直平分线方程与椭圆方程,解得③中曲线上存在符合题设条件下的 P 点. 35. B【解析】如图,设直线 AB 的方程为 x =my +√2 (显然 m <0 ),A (x 1,y 1),B (x 2,y 2),P(√2,0),联立 {x =my +√2,y =√1−x 2. 消去 x 得 (1+m 2)y 2+2√2my +1=0,由题意得 Δ=8m 2−4(1+m 2)>0,所以 m 2>1,由根与系数的关系得 y 1+y 2=−2√2m1+m 2,y 1⋅y 2=11+m 2,所以 S △AOB =S △POB −S △POA =12⋅∣OP ∣⋅∣y 2−y 1∣=√22⋅√8m 2(1+m2)2−41+m 2=√22⋅√4(m 2−1)(1+m 2)2令 t =1+m 2(t >2), 所以 S △AOB=√2⋅√t−2t 2=√2⋅√−2(1t −14)2+18, 所以当 1t=14,即 t =4,m =−√3 时,△AOB 的面积取得最大值,此时,直线l 的斜率为 −√33. 36. B 【解析】设 A (x 1,y 1),B (x 2,y 2),依题意,k OD =12,k AB =−2, 所以直线 AB 方程为 y −1=−2(x −2),即 y =−2x +5, 代入抛物线方程得 4x 2−(20+2p )x +25=0, 所以 {x 1+x 2=10+p 2,x 1x 2=254. ⋯⋯①又因为 OA ⊥OB ,所以 x 1x 2+y 1y 2=5x 1x 2−10(x 1+x 2)+25=0, ⋯⋯②, 将 ① 代入 ② 得 5×254−10×10+p 2+25=0,解得 p =54,所以抛物线方程为 y 2=52x .来自QQ 群33944496337. B 【解析】我们设 A (x 1,y 1),B (x 2,y 2),直线 AB 方程为 x =my +t .直线 AB 交 x 轴于点 M (t,0). 联立直线和抛物线的方程消去 x 得y 2−my −t =0,因为 OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗ =2,所以 x 1x 2+y 1y 2=y 12y 22+y 1y 2=2,解得 y 1y 2=−2,即 t =2,所以 AB 过 x 轴上定点 M (2,0).S △ABO =12∣OM ∣∣y 1−y 2∣=∣y 1−y 2∣,S △AFO =12∣OF ∣∣y 1∣=18∣y 1∣,所以S △ABO +S △AFO =∣y 1−y 2∣+18∣y 1∣=98∣y 1∣+2∣y 1∣≥3,当且仅当 98∣y 1∣=2∣y 1∣,即 ∣y 1∣=43时,等号成立.38. B 【解析】建立如图所示的坐标系,可设 A (1,0),B (0,1),设 ∠AOC =α(0≤α≤π2),则 OC⃗⃗⃗⃗⃗ (cosα,sinα), 所以 OC⃗⃗⃗⃗⃗ =(x,2y )=(cosα,sinα),所以 x 2+y =12(cosα+sinα)=√22sin (α+π4)(0≤α≤π2). 由 π4≤α+π4≤3π4,可得 sin (α+π4)∈[√22,1],即 x2+y ∈[12,√22].来自QQ 群33944496339. B 【解析】抛物线 y 2=4x 的准线方程为 l:x =−1. 过点 P 作 PFʹ⊥l ,垂足为 Fʹ,由抛物线的定义,得 |PF |=|PFʹ|, 故 |PF ||PA|=|PFʹ||PA |=cos∠PAF ,即求 cos∠PAF 的最小值,又 0≤∠PAF <π2,故需使 ∠PAF 最大. 当直线 PA 与抛物 y 2=4x 相切时,∠PAF 最大,|PF ||PA |取得最小值,这时,设直线 PA 的方程为 y =k (x +1), 联立 {y =k (x +1),y 2=4x,消去 y 得,k 2x 2+(2k 2−4)x +k 2=0, 则 Δ=(2k 2−4)2−4k 4=0, 所以 k 2=1, 解得 k =±1.故此时 tan∠PAF =1,∠PAF =π4,所以 cos∠PAF =√22.40. B41. C 【解析】法一 据题意画图,作 AA 1⊥lʹ,BB 1⊥lʹ,BD ⊥AA 1 .设直线 l 的倾斜角为 θ,∣AF ∣=2∣BF ∣=2r , 则 ∣AA 1∣=2∣BB 1∣=2∣AD ∣=2r , 所以有 ∣AB ∣=3r ,∣AD ∣=r ,则 ∣BD ∣=2√2r ,k =tanθ=tan∠BAD =∣BD∣∣AD∣=2√2 .法二 直线 y =k (x −2) 恰好经过抛物线 y 2=8x 的焦点 F (2,0),由 {y 2=8x,y =k (x −2).可得 ky 2−8y −16k =0,因为 ∣FA ∣=2∣FB ∣,所以 y A =−2y B .则 y A +y B =−2y B +y B =8k,所以 y B =−8k,y A ⋅y B =−16,所以−2y B 2=−16,即 y B =±2√2,又 k >0,故 k =2√2 .42. C 【解析】如图,还原正方体,连接 A 1B 1,B 1D 1,A 1D 1 . ∠D 1B 1A 1 即为所求角.设正方形的边长为 2,则 A 1B 1=2√2,A 1D 1=B 1D 1=√5. 在 △D 1B 1A 1 中用余弦定理,得 AB 和 CD 的夹角的余弦值为√105. 43. A 【解析】(i )若直线 MN 的斜率不存在,则点 B 的坐标为 (3,0). (ii )若直线 MN 的斜率存在,设 A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2).则由 {y 12=4x 1,y 22=4x 2,得 y 12−y 22=4(x 1−x 2),所以y 1−y 2x 1−x 2(y 1+y 2)=4,即 k MN =2t ,所以直线 MN 的方程为 y −t =2t(x −3), 所以点 B 的横坐标 x B =3−t 22.由 {y −t =2t (x −3),y 2=4x, 消去 x 得 y 2−2ty +2t 2−12=0.由 Δ>0 得 t 2<12,又 t ≠0, 所以 x B =3−t 22∈(−3,3).综上,点 B 的横坐标的取值范围为 (−3,3].44. D 【解析】当直线斜率不存在时,直线方程为 x =0,C (0,1),D (0,−1),此时 OC ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =−1; 当直线斜率存在时,设斜率为 k ,C (x 1,y 1),D (x 2,y 2),则直线方程为 y =kx +2,与椭圆方程联立得 (1+4k 2)x 2+16kx +12=0,Δ=(16k )2−48(1+4k 2)=64k 2−48>0,得 k 2>34,x 1+x 2=−16k 1+4k2,x 1x 2=121+4k 2,所以OC ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+2k (x 1+x 2)+4=(1+k 2)⋅121+4k 2+2k ⋅−16k 1+4k2+4=−4k 2+161+4k 2=−1+171+4k 2,因为 k 2>34,所以 1+4k 2>4,0<171+4k2<174,所以 −1<OC ⃗⃗⃗⃗⃗ ⋅OD ⃗⃗⃗⃗⃗⃗ <134. 综上,OC ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ 的取值范围是 [−1,134). 45. C【解析】由已知,过点 F 和点 M (4,4) 且与准线 l 相切的圆的圆心在抛物线 y =4x 2 上,又因为此圆过 F 和 M ,所以圆心在 MF 的垂直平分线上,抛物线 y =4x 2 与 MF 的垂直平分线的交点有两个,故过点 F 和点 M (4,4) 且与准线 l 相切的圆有 2 个.46. C 【解析】因为内外两个椭圆的离心率相同,不妨设 B 点坐标为 (0,tb ),A 点坐标为 (ta,0),设直线 BD 斜率为 k 1,AC 斜率为 k 2,则 BD 的方程为 y =k 1x +tb ,AC 的方程为 y =k 2x −k 2ta .由 BD 、 AC 与椭圆相切易得k 12a 2+b 2=t 2b 2 ⋯⋯① k 22a 2+b 2=k 22t 2a 2 ⋯⋯② 由①得 k 12=(t 2−1)b 2a 2 ⋯⋯③ 由②得 k 22=b 2a 2(t 2−1) ⋯⋯④又因为 k 1k 2=−14,所以 a =2b ,从而椭圆的离心率为 √32.47. A 【解析】P 1(x 1,y 1) 是直线 l 上的一点,故有 f (x 1,y 1)=0,P 2(x 2,y 2) 是直线 l 外一点,故 f (x 2,y 2)≠0,是一个非零实数,从而 f (x,y )+f (x 1,y 1)+f (x 2,y 2)=0 表示的直线与直线 l 平行且不重合. 48. A 【解析】根据题意,S △ABC =12×∣AB∣×ℎ=12×2√2×ℎ=2, 解得 ℎ=√2,即点 C 到直线 AB 的距离为 √2.问题转化为与直线 AB 距离为 √2 的直线与抛物线交点的个数. 由两平行线间的距离公式,得与直线 AB 距离为 √2 的直线方程为y =−x 或 y =−x +4,分别将直线与抛物线方程联立,解得这两直线与抛物线分别有 2 个交点,因此,共有 4 个不同的 C 点满足条件.49. B 【解析】∵ 双曲线上的一点到双曲线左、右焦点的距离之差为 4,∴a =2.∵ A (x 1,2x 12),B (x 2,2x 22) 关于直线 y =x +m 对称,∴{2x 12−2x 22x 1−x 2=−1,x 1+x 22+m =2x 12+2x 222,整理得 x 1+x 2=−12,m =32.50. D【解析】(i ) 当 l 与 x 轴垂直时,直线 l:x =1 与抛物线 M 交于点 (1,±2),与圆 N 交于点 (1,±r ),显然满足 ∣AC ∣=∣BD ∣.(ii ) 当 l 与 x 轴不垂直时,设直线 l 的方程为 x =my +1.由 {x =my +1,y 2=4x, 消去 x ,得 y 2−4my −4=0.设 A (x 1,y 1),B (x 2,y 2),且 y 1<y 2,则 y 1+y 2=4m,y 1y 2=−4, 所以 (y 1−y 2)2=(y 1+y 2)2−4y 1y 2=16(m 2+1). 由 {x =my +1,(x −1)2+y 2=r 2, 解得 y =±√r 2m 2+1. 设 C (x 3,y 3),D (x 4,y 4),且 y 3<y 4,则 (y 3−y 4)2=4r 2m 2+1.由 ∣AC ∣=∣BD ∣,得 ∣y 3−y 1∣=∣y 4−y 2∣,即 ∣y 1−y 2∣=∣y 3−y 4∣. 由此,16(m 2+1)=4r 2m 2+1,解得 r =2(m 2+1),来自QQ 群339444963显然,当 r >2 时,m 有两解,对应的直线 l 有两条.又当 r =2 时,m =0,此时直线 l 斜率不存在,即为第一种情况 综合(i )(ii ),当 r ≥2 时,对应的直线 l 有三条,故D 适合.51. B 【解析】抛物线的准线方程为 y =−12,设抛物线焦点为 F ,则点 F 坐标为 (0,12).根据抛物线的定义可得 ∣PQ ∣=∣PF ∣−12,所以 ∣PA∣+∣PQ ∣=∣PF ∣+∣PQ ∣−12.所以 ∣PA∣+∣PQ ∣ 的最小值为 ∣FQ ∣−12=192.52. A 【解析】提示:如图,设 PF 1 的中点为 M ,因为 OM 为 △PF 1F 2 的中位线,所以 ∣OM ∣=12∣PF 2∣,设以线段 PF 1 、A 1A 2 为直径的两圆的半径分别是 r 、 a ,则两圆的圆心距为 ∣OM ∣=12∣PF 2∣=12(2a−∣PF 1∣)=12(2a −2r )=a −r ,所以两圆的位置关系是内切.53. A 【解析】由已知得圆 C 是 △AF 1F 2 的旁切圆, 点 M 是圆 C 与 x 轴的切点,设圆 C 与直线 F 1A 的延长线,AF 2 分别相切于点 P ,Q ,则由切线的性质可知:∣AP ∣=∣AQ ∣,∣F 2Q ∣=∣F 2M ∣,∣F 1M ∣=∣F 1P ∣, 所以∣MF 2∣=∣QF 2∣=(∣F 1A ∣+∣AF 2∣)−(∣AF 1∣+∣AQ ∣)=2a−∣AF 1∣−∣AP ∣=2a−∣F 1P ∣=2a−∣F 1M ∣,所以 ∣MF 1∣+∣MF 2∣=2a , 所以 t =a =2.54. A 【解析】由于双曲线为中心对称图形,为此可考察特殊情况,设 A 为 y =x 与双曲线在第一象限的交点,则不妨设 B 为直线 y =−x 与双曲线在第四象限的一个交点,因此直线 AB 与 x 轴垂直,点 O 到 AB 的距离即为点 A 或点 B 的横坐标的值,联立直线与双曲线的方程,求出 x 的值即可. 55. D【解析】由椭圆的定义得 ∣AF 1∣+∣AF 2∣=2a =4,∣BF 1∣+∣BF 2∣=2a =4,所以 ∣AF 1∣+∣BF 1∣=4a −(∣BF 2∣+∣BF 1∣),因为 ∣∣BF 2⃗⃗⃗⃗⃗⃗⃗ ∣∣+∣∣AF 2⃗⃗⃗⃗⃗⃗⃗ ∣∣ 的最大值为 5,所以 ∣AF 1∣+∣BF 1∣ 的最小值为 3,当直线 l 与 x 轴垂直的时候,∣AF 1∣+∣BF 1∣ 最小,所以此时 A (−c,32),代入椭圆方程解得 b =√3.56. D 【解析】设直线 AB 的方程为 y =k (x +p2),A (x 1,y 1),B (x 2,y 2) ,联立直线与抛物线得 k 2x 2+(k 2p −2p )x +p 2k 24=0,所以 x 1+x 2=2p−k 2p k 2,x 1x 2=p 24,又 ∣AF ∣,∣AB ∣,∣BF ∣ 成等差数列,所以 2∣AB ∣=∣AF ∣+∣。
圆锥曲线压轴解答题22题(含详细答案,可直接打印)

圆锥曲线压轴22题及答案一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q 面积的最大值.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.9.椭圆E:的左、右焦点分别为、,过F且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.10.椭圆E:的左、右焦点分别为、且斜率为的直线与椭圆的一个交点在x轴上的射影恰,过F好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.(I)求椭圆C的方程;(II)当直线l的斜率为时,求△POQ的面积;(III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.13.已知F1、F2是椭圆C:(a>b>0)的左、右焦点,过F2作x轴的垂线与C交于A、B两点,F1B与y轴交于点D,AD⊥F1B,且|OD|=1,O为坐标原点.(1)求C的方程;(2)设P为椭圆C上任一异于顶点的点,A1、A2为C的上、下顶点,直线PA1、PA2分别交x轴于点M、N.若直线OT与过点M、N的圆切于点T.试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由.14.已知椭圆C:+=1的两个焦点分别是F1(﹣,0),F2(,0),点E(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是y轴上的一点,若椭圆C上存在两点M,N使=2,求以F1P 为直径的圆面积取值范围.15.已知椭圆的右焦点为F,离心率为,平行于x轴的直线交椭圆于A,B两点,且.(I)求椭圆C的方程;(Ⅱ)过点F且斜率不为零的直线l与椭圆C交于M,N两点,在x轴上是否存在定点E,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.17.在平面直角坐标系中,点F1、F2分别为双曲线C:的左、右焦点,双曲线C的离心率为2,点(1,)在双曲线C上.不在x轴上的动点P与动点Q关于原点O对称,且四边形PF1QF2的周长为.(1)求动点P的轨迹方程;(2)在动点P的轨迹上有两个不同的点M(x1,y1)、N(x2,y2),线段MN的中点为G,已知点(x1,x2)在圆x2+y2=2上,求|OG|•|MN|的最大值,并判断此时△OMN的形状.18.已知抛物线C:y2=2px(p>0),其内接△ABC中∠A=90°.(I)当点A与原点重合时,求斜边BC中点M的轨迹方程;(II)当点A的纵坐标为常数t0(t0∈R)时,判断BC所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由.19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P 在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.参考答案与试题解析一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.【解答】解:(1)抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,∴=c,∵两曲线有公共点(,),∴=2p•,+=1,解得p=2,∴c=1,∴c2=a2﹣b2=1,∴a2=4,b2=3,∴椭圆的方程为+=1;(2)设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,y1+y2=k(x1+x2)+2m=,由O为△ABC的重心,可得=﹣(+)=(,﹣),由C在椭圆上,则有3()2+4(﹣)2=12,化简可得4m2=3+4k2,|AB|=•=•=•==,C到直线AB的距离d═,S△ABC=|AB|•d=••=.当直线AB的斜率不存在时,|AB|=3,d=3,S=|AB|•d=.△ABC综上可得,△ABC的面积为定值.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.【解答】解:(1)由题意设M(x,y),M满足直线11、直线12:可得,消去a,可得x2+5y2=5,即点M的轨迹C的方程为:(2)设直线l的方程x=my﹣2.E(﹣2,0)在M的轨迹C内.ED=4,直线1与C交于A,B两点,A(x1,y1).B(x2,y2)∴,可得(m2+5)y2﹣4my﹣1=0.∴y1+y2=.y1y2=∴△ABD面积s=×|y1﹣y2|•|ED=×4×=2×==2×≤2×=2×=,当且仅当m=时,表达式取得最大值.△ABD面积的最大值:.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q 面积的最大值.【解答】解:(1)∵△MOF的面积为,∴bc=,即bc=.又∵椭圆C的四个顶点围成的菱形的面积为4,∴=4,即ab=2.∴==,∴=,∴a=2,b=,∴C的方程为:=1..(2)由题意可知,点O为PP′的中点,则=2S△POQ设直线l的方程为:x=my﹣1,P(x1,y1),Q(x2,y2),联立,可得(3m2+4)y2﹣6my﹣9=0,∴y1+y2=,y1y2=,∴|y1﹣y2|===,∴S=|OF|•|y1﹣y2|=.△POQ设=t≥1,=.∵函数g(t)=在[1,+∞)上单调递减,∴当t=1时,△PP′Q面积取得最大值=3.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.【解答】解:(Ⅰ)证明:由题得,直线l的斜率存在,设为k,则直线l的方程为:y=kx,由y=kx和y=x2﹣1,得x2﹣kx﹣1=0.设A(x1,y1),B(x2,y2),于是x1+x2=k,x1•x2=﹣1,又点M的坐标为(0,﹣1).所以k MA•k MB=•====﹣1.故MA⊥MB,即MD⊥ME;(Ⅱ)设直线MA的斜率为k1,则直线MA的方程为y=k1x﹣1.联立y=x2﹣1可得或则点A的坐标为(k1,k12﹣1).又直线MB的斜率为﹣,同理可得点B的坐标为(﹣,﹣1).于是S1=|MA|•|MB|=|k1|•••|﹣|•=.由椭圆方程x2+4y2=4和y=k1x﹣1,得(1+4k12)x2﹣8k1x=0,解得,或,则点D的坐标为(,).又直线ME的斜率为﹣,同理可得点E的坐标为(﹣,).于是S2=|MD|•|ME|=.故=(4k12++17)=,解得k12=4,或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线l存在,且有两条,其方程为y=±x.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.【解答】解:(1)由题意可知:a=2……………………………………1分又椭圆的上顶点为(0,b)双曲线的渐近线为:2y±x=0由点到直线的距离公式有:得……………………3分所以椭圆的方程为.……………………4分(2)设直线线l的方程为y=kx+m,A(x1,y1)、B(x2,y2)联立得(3+4k2)x2+8kmx+4m2﹣12=0……………………5分则……………………7分由已知直线FA、FB的斜率之和为0,有,2kx1x2+(k+m)(x1+x2)+2m=0…………………9分所以化简得m=4k………………11分此时△=(8km)2﹣4×(3+4k2)(4m2﹣12)=(32k2)2﹣4×(3+4k2)(64k2﹣12)=16×64k4﹣16(4k2+3)(16k2﹣3)=16×9(1﹣4k2)显然△=16×9(1﹣4k2)>0有机会成立.所以直线l的方程为:y=kx+m=k(x+4)所以存在这样的定点(﹣4,0)符合题意.…………12分6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵,∴a2=2c2=b2+c2,b=c,a2=2b2,椭圆方程化为:,由题意知,椭圆过点,∴,解得b2=4,a2=8,所以椭圆C的方程为:;(2)当直线l斜率存在时,设直线l方程:y=kx+1,由得(2k2+1)x2+4kx﹣6=0,△=16k2+24(2k2+1)>0,设,假设存在定点Q(0,t)符合题意,∵∠PQA=∠PQB,∴k QA=﹣k QB,∴=,∵上式对任意实数k恒等于零,∴4﹣t=0,即t=4,∴Q(0,4),当直线l斜率不存在时,A,B两点分别为椭圆的上下顶点(0,﹣2),(0,2),显然此时∠PQA=∠PQB,综上,存在定点Q(0,4)满足题意.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由点在椭圆C上可得:,整理为:9a2+4b2=4a2b2,由椭圆C的四个顶点的连接线构成的四边形的面积为可得:,即,可得,由a>b>0可解得:,故椭圆C的方程为:.(2)设点P、Q的坐标分别为(x1,y1),(x2,y2),点A的坐标为(﹣2,0),故,可得y1y2=2(x1+2)(x2+2),设直线PQ的方程为y=kx+m(直线PQ的斜率存在),可得(kx1+m)(kx2+m)=2(x1+2)(x2+2),整理为:,联立,消去y得:(4k2+3)x2+8kmx+(4m2﹣12)=0,由△=64k2m2﹣4(4k2+3)(4m2﹣12)=48(4k2﹣m2+3)>0,有4k2+3>m2,有,,故有:,整理得:44k2﹣32km+5m2=0,解得:m=2k或,当m=2k时直线PQ的方程为y=kx+2k,即y=k(x+2),过定点(﹣2,0)不合题意,当时直线PQ的方程为,即,过定点.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.【解答】解:(1)椭圆Γ:=1(0<b<2)的a=2,向量与的夹角为,可得|BF1|=|BF2|=a==2b=2,即b=1,则椭圆方程为+y2=1;(2)设P(m,n),可得+n2=1,即n2=1﹣,•=(1﹣m,﹣n)•(﹣m,﹣n)=m2﹣m+n2=m2﹣m+1=(m﹣)2+,由﹣2≤m≤2可得m=时,上式取得最小值;m=﹣2时,取得最大值6,则•的范围是[,6];(3)证明:当直线l的斜率不存在时,设M(x1,y1),N(x2,y2),由k BM+k BN=+==1,x1=x2,y1=﹣y2,得x1=﹣2,此时M,N重合,不符合题意;设不经过点P的直线l方程为:y=kx+m,M(x1,y1),N(x2,y2),由得(1+4k2)x2+8ktx+4t2﹣4=0,x1+x2=﹣,x1x2=,k BM+k BN=+==1,⇒(kx1﹣1+t)x2+(kx2﹣1+t)x1=x1x2⇒(2k﹣1)x1x2+(t﹣1)(x1+x2)=0⇒(t﹣1)(2k﹣t﹣1)=0,∵t≠1,∴t=2k﹣1,∴y=k(x+2)﹣1,直线l必过定点(﹣2,﹣1).9.椭圆E:的左、右焦点分别为、且斜率为的直线与椭圆的一个交点在x轴上的射影恰,过F好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,∵Q为AC的中点,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|AQ|2+|HQ|2为定值10.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)10.椭圆E:的左、右焦点分别为、且斜率为的直线与椭圆的一个交点在x轴上的射影恰,过F好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,设AC的中点为Q,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|BH|为定值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.(I)求椭圆C的方程;(II)当直线l的斜率为时,求△POQ的面积;(III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(I)根据题意,解得,故椭圆C的方程为.…(5分)(II)根据题意,直线l的方程为.设P(x1,y1),Q(x2,y2).由得15x2﹣24x=0.解得.法一:.法二:,原点O到直线l的距离.所以…(10分)(III)设直线l的方程为y=k(x﹣1)(k≠0).设P(x1,y1),Q(x2,y2),由得(3+4k2)x2﹣8k2x+4k2﹣12=0.由韦达定理得,.所以PQ的中点.要使四边形OPMQ为平行四边形,则N为OM的中点,所以.要使点M在椭圆C上,则,即12k2+9=0,此方程无解.所以在椭圆C上不存在点M,使得四边形OPMQ为平行四边形.….(14分)13.已知F1、F2是椭圆C:(a>b>0)的左、右焦点,过F2作x轴的垂线与C交于A、B两点,F1B与y轴交于点D,AD⊥F1B,且|OD|=1,O为坐标原点.(1)求C的方程;(2)设P为椭圆C上任一异于顶点的点,A1、A2为C的上、下顶点,直线PA1、PA2分别交x轴于点M、N.若直线OT与过点M、N的圆切于点T.试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)如图:AF2⊥x轴,|OD|=1,∴AB∥OD,∵O为F1F2为的中点,∴D为BF1的中点,∵AD⊥F1B,∴|AF1|=|AB|=2|AF2|=4|OD|=4,∴2a=|AF1|+|AF2|=4+2=6,∴a=3,∴|F1F2|==2,∴c=,a=3,∴b2=a2﹣c2=6,∴+=1,(2)由(1)可知,A1(0,),A2(0,﹣).设点P(x0,y0),直线PA1:y﹣=x,令y=0,得x M=;直线PA2:y+=x,令y=0,得x N=;|OM|•|ON|=,∵+=1,∴6﹣y02=x02,∴|OM|•|ON|=.由切割线定理得OT2=OM•ON=.∴OT=,即线段OT的长度为定值.14.已知椭圆C:+=1的两个焦点分别是F1(﹣,0),F2(,0),点E(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是y轴上的一点,若椭圆C上存在两点M,N使=2,求以F1P 为直径的圆面积取值范围.【解答】解:(Ⅰ)由已知,c=,∴2a=|EF1|+|EF2|=+=4,∴a=2,∴b2=a2﹣c2=8﹣2=6,∴椭圆方程为+=1,(Ⅱ)设点P的坐标为(0,t),当直线MN的斜率不存在时,可得M,N分别是椭圆的两端点,可得t=±,当直线MN的斜率存在时,设直线MN的方程为y=kx+t,M(x1,y1),N(x2,y2),则由=2可得x1=﹣2x2,①,由,消y可得(3+4k2)x2+8ktx+4t2﹣24=0,由△>0,可得64k2t2﹣4(3+4k2)(4t2﹣24)>0,整理可得t2<8k2+6,由韦达定理可得x1+x2=﹣,x1x2=,②,由①②,消去x1,x2可得k2=,由,解得<t2<6,综上得≤t2<6,又以F1P为直径的圆面积S=π•,∴S的范围为[,2π).15.已知椭圆的右焦点为F,离心率为,平行于x轴的直线交椭圆于A,B两点,且.(I)求椭圆C的方程;(Ⅱ)过点F且斜率不为零的直线l与椭圆C交于M,N两点,在x轴上是否存在定点E,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由题意可得:,∵平行于x轴的直线交椭圆于A,B两点,且.∴,a=,∴c=2,b2=a2=﹣c2=2.∴椭圆C的方程为(Ⅱ)设直线l的方程为y=k(x﹣2),代入椭圆C的方程,得(3k2+1)x2﹣12k2x+12k2﹣6=0,设M(x3,y3),N(x4,y4),则,,x3x4=.根据题意,假设x轴上存在定点E(t,0),使得是为定值,=(x3﹣t,y3)•(x4﹣t,y4)=(x3﹣t)•(x4﹣t)+y3y4,=(x3﹣t)•(x4﹣t)+k2(x3﹣2)•(x4﹣2),=(k2+1)x3x4﹣(2k2+t)(x3+x4)+4k2+t2,=要使上式为定值,即与k无关,则应3t2﹣12t+10=3(t2﹣6),即t=,故当点E的坐标为(,0)时,使得为定值.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.【解答】解:(1)由抛物线E:的焦点(0,),椭圆的C的焦点在x轴,由题意可知:b=,椭圆的离心率e===,则a=2,∴椭圆的标准方程:;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立,整理得(4k2+3)x2+8kx﹣8=0.其判别式△>0,x1+x2=﹣,x1x2=﹣.∴•+λ•=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)],=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣2λ﹣3,当λ=2时,﹣2λ﹣3=﹣7,即•+λ•=﹣7为定值.当直线AB斜率不存在时,直线AB即为直线CD,此时•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.17.在平面直角坐标系中,点F1、F2分别为双曲线C:的左、右焦点,双曲线C的离心率为2,点(1,)在双曲线C上.不在x轴上的动点P与动点Q关于原点O对称,且四边形PF1QF2的周长为.(1)求动点P的轨迹方程;(2)在动点P的轨迹上有两个不同的点M(x1,y1)、N(x2,y2),线段MN的中点为G,已知点(x1,x2)在圆x2+y2=2上,求|OG|•|MN|的最大值,并判断此时△OMN的形状.【解答】解:(1)设F1,F2分别为(﹣c,0),(c,0)可得,b2=c2﹣a2=3a2,又点(1,)在双曲线C上,∴,解得,c=1.连接PQ,∵OF1=OF2,OP=OQ,∴四边形PF1QF2的周长为平行四边形.∴四边形PF1+PF2=2>2,∴动点P的轨迹是以点F1、F2分别为左右焦点的椭圆(除左右顶点),∴动点P的轨迹方程(y≠0);(2)∵x12+x22=2,,∴y12+y22=1.∴|OG|•|MN|=•=•=.∴当3﹣2x1x2﹣2y1y2=3+2x1x2+2y1y2⇒x1x2+y1y2=0时取最值,此时OM⊥ON,△OMN为直角三角形.18.已知抛物线C:y2=2px(p>0),其内接△ABC中∠A=90°.(I)当点A与原点重合时,求斜边BC中点M的轨迹方程;(II)当点A的纵坐标为常数t0(t0∈R)时,判断BC所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由.【解答】解:(I)设B(,y1),C(,y2),∵AB⊥AC,∴+y1y2=0,∴y1y2=﹣4p2.∴设BC的中点M(x,y),则=x,y1+y2=2y,∵y12+y22=(y1+y2)2﹣2y1y2,∴px=4y2+8p2,∴M的轨迹方程为:y2=(x﹣8p).(II)A(,t0),设直线BC的方程为y=kx+b,B(,y1),C(,y2),∴k AB==,k AC==,∵AB⊥AC,∴•=﹣1.即y1y2+t0(y1+y2)+t02+4p2=0.联立方程组,消去x可得y2﹣y+=0,∴y1y2=,y1+y2=,∴+t0+t02+4p2=0.解得b=﹣t0﹣﹣2pk,∴直线BC的方程为:y=kx﹣t0﹣﹣2pk=k(x﹣2p﹣)﹣t0,∴直线BC过定点(2p+,﹣t0).19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.【解答】解:(1)因点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴,所以椭圆的半焦距c=2,由,得,所以,……(2分)化简得a2﹣3a﹣4=0,解得a=4,所以b2=12,所以椭圆C的方程为.……(4分)(2)①因,所以,即,所以线段PF2与线段AB的中点重合(记为点Q),由(1)知,……(6分)因圆M与线段PF 2交于两点A,B,所以,所以,解得,……(8分)所以,故.……(10分)②由G,H两点恰好关于原点对称,设G(x0,y0),则H(﹣x0,﹣y0),不妨设x0<0,因P(﹣2,3),m=﹣2,所以两条切线的斜率均存在,设过点P与圆M相切的直线斜率为k,则切线方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,由该直线与圆M相切,得,即,……(12分)所以两条切线的斜率互为相反数,即k GP=﹣k HP,所以,化简得x0y0=﹣6,即,代入,化简得,解得x 0=﹣2(舍),,所以,……(14分)所以,,所以,所以.故存在满足条件的,且.……(16分)20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P 在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.【解答】解:(1)由已知得:,…………………………(2分)解得a=6,b=1.故椭圆C的方程为.………………………(4分)(2)由题设可知:l1的直线方程为x=﹣7y﹣2.联立方程组,整理得:85y2+28y﹣32=0..…………………………(6分)∴.…………………………………………(7分)∵,∴,即.…………………………………………(8分)设l2的直线方程为x=my﹣2(m≠0).将x=my﹣2代入+y2=1得(m2+36)y2﹣4my﹣32=0.设M(x1,y1),N(x2,y2),则.……………………………………(10分)又∵,∴.解得m2=4,∴m=±2.故直线l2的斜率为.………………………(12分)21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.【解答】解:(Ⅰ)由方程组得x2﹣2px=0,解得x1=0,x2=2p,所以O(0,0),T(2p,2p),则|OT|=2p,又|OT|=2p=4,所以p=2.故C的方程为x2=4y.(Ⅱ)由(Ⅰ)O(0,0),T(4,4),则线段OT的中点坐标(2,2).故直线l的方程为y﹣2=k(x﹣2).由方程组得x2﹣4kx+8k﹣8=0.设A(x1,x12),B(x2,x22),则x1+x2=4k,x1x2=8k﹣8,直线OA的方程y=x,代入y=x﹣2,解得x=,所以M(,),同理得N(,),所以|MN|=•|﹣|=||=×|=4•因为0<k≤,所以8<|MN|≤4.当k=时,|MN|取得最大值4.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.【解答】(本小题满分12分)解:(1)依题意可设椭圆方程为(a>b>0),由2c=4,c=2,e==,则a=2,b2=a2﹣c2=4,∴椭圆C的方程为:.(2)由题意可知直线l的斜率存在,设l的方程为:y=kx﹣1,A(x1,y1),B(x2,y2),由,整理得(2k2+1)x2﹣4kx﹣6=0,且△>0,则x1+x2=,x1x2=﹣,由,即(﹣x1,﹣1﹣y1)=2(x2,y2+1),x1=﹣2x2,,消去x2并解关于k的方程得:k=±,∴l的方程为:y=±x﹣1.。
【高考数学经典习题】圆锥曲线压轴题(含答案)8

【高考数学经典习题】圆锥曲线压轴题(含答案)8未命名一、解答题1.(题文)已知离心率为的椭圆C:经过点(0,-1),且F1、F2分别是椭圆C的左、右焦点,不经过F1的斜率为k的直线l与椭圆C相交于A、B两点. (Ⅰ)求椭圆C的方程;(Ⅱ)如果直线AF1、l、BF1的斜率依次成等差数列,求k的取值范围,并证明AB的中垂线过定点.2.(题文)已知椭圆的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)直线与椭圆交于两点,以为直径的圆与轴正半轴交于点.是否存在实数,使得的内切圆的圆心在轴上?若存在,求出的值;若不存在,请说明理由.3.在直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的左焦点为F,A是C上的动点,且满足AF的最小值为2.(1)求椭圆C的标准方程;(2)在椭圆C上任取一点B,使OA OB⊥,求证:点O到直线AB的距离为定值. 4.已知抛物线的顶点在原点,准线方程为,是焦点,过点的直线与抛物线交于两点,直线分别交抛物线于点.(1)求抛物线的方程及的值;(2)记直线的斜率分别为,证明:为定值.5.(题文)(题文)已知椭圆:,斜率为的动直线与椭圆交于不同的两点、.(1)设为弦的中点,求动点的轨迹方程;(2)设、为椭圆的左、右焦点,是椭圆在第一象限上一点,满足,求面积的最大值. 6.动点在抛物线上,过点作垂直于轴,垂足为,设.(I )求点的轨迹的方程;(II )设点,过点的直线交轨迹于两点,设直线的斜率分别为,求的最小值.7.给定椭圆2222:1(0)x y C a b a b+=>>.称圆心在原点O圆C 的“准圆”.若椭圆C 的一个焦点为F ,其短轴上的一个端点到F . (1)求椭圆C 的方程和其“准圆”方程;(2)点P 是椭圆C 的“准圆”上的一个动点,过动点P 作直线12,l l ,使得12,l l 与椭圆C 都只有一个交点,试判断12,l l 是否垂直?并说明理由. 8.已知椭圆的离心率为,以原点为圆心,以椭圆的半长轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程; (Ⅱ)设点在椭圆上运动,与关于原点对称,且,当的面积最小时,求直线的方程.9.(题文)已知点是圆上的任意一点,点为圆的圆心,点与点关于原点对称,线段的垂直平分线与线段交于点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设点,若直线轴,且与曲线交于另一点,直线与直线交于点.(1)证明:点恒在曲线上;(2)求面积的最大值. 10.双曲线的一条渐近线方程是:,且曲线过点.(1)求双曲线的方程; (2)设曲线的左、右顶点分别是、,为曲线上任意一点,、分别与直线交于、,求的最小值.11.(题文)已知双曲线的一条渐近线方程为 ,焦距为 .(1)求双曲线 的方程;(2)若直线 与双曲线 交于 两点,且点 在第一象限,过点 作 轴的垂线,交 轴于点 ,交双曲线 于另一点 ,连结 交双曲线 于点 ,求证: .12.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为())12,F F ,直线0x =与椭圆C 的—个交点为(),点A 是椭圆C 上的任意—点,延长1AF 交椭圆C 于点B ,连接22,BF AF . (1)求椭圆C 的方程;(2)求2ABF ∆的内切圆的最大周长.13.已知椭圆( )经过点 ,且其离心率为, 、分别为椭圆 的左、右焦点.设直线 与椭圆 相交于 , 两点, 为坐标原点.(I )求椭圆 的标准方程;(II )当 时,求 的面积的最大值;(III )以线段 , 为邻边作平行四边形 ,若点 在椭圆 上,且满足 ,求实数 的取值范围. 14.已知椭圆的两个焦点为 ,其短轴长是 ,原点 到过点 和 两点的直线的距离为.(1)求椭圆 的方程;(2)若点 是定直线 上的两个动点,且 ,证明:以 为直径的圆过定点,并求 定点的坐标. 15.已知椭圆的左、右焦点分别为,为该椭圆上任意一点,且的最大值为.(I)求椭圆的离心率;(II)已知椭圆的上顶点为,动直线与椭圆交于不同的两点,且,证明:动直线过定点,并求出该定点坐标.16.椭圆M:的焦距为,点关于直线的对称点在椭圆上.(1)求椭圆M的方程;(2)如图,椭圆M的上、下顶点分别为A,B,过点P的直线与椭圆M相交于两个不同的点C,D.①求的取值范围;②当与相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.17.如图所示,如图所示,已知椭圆,⊙,点是椭圆的左顶点直线与⊙相切于点.(1)求椭圆的方程;(2)若⊙的切线与椭圆相交于两点,求面积的取值范围. 18.已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点且斜率为的直线与椭圆相交于两点,直线分别交直线于两点,线段的中点为. 记直线的斜率为,求证:为定值.19.如图,抛物线的焦点为,取垂直于轴的直线于抛物线交于不同的两点,,过,作圆心为的圆,使抛物线上其余点均在圆外,且.(1)求抛物线和圆的方程;(2)过点作倾斜角为的直线,且直线与抛物线和圆依次交于,求的最小值.20.已知椭圆(),其离心率与双曲线的离心率互为倒数,而直线过椭圆的一个焦点.(I)求椭圆的方程;(II)如图,以椭圆的左顶点为圆心作圆,设圆与椭圆交于两点,,求的最小值,并求出此时圆的方程.21.已知椭圆的离心率,一个焦点为.(1)求椭圆的方程;(2)设是椭圆与轴负半轴的交点,过点作椭圆的两条弦和,且. (i)直线是否过定点,如果是求出该点坐标,如果不是请说明理由;(ii)若是等腰直角三角形,求直线的方程.22.已知抛物线的焦点为,直线与轴的交点为,与的交点为 ,且.(1)求 的方程;(2)设 ,动点 在曲线 上,曲线 在点 处的切线为 .问:是否存在定点 ,使得 与 都相交,交点分别为 ,且 与 的面积之比是常数?若存在,求 的值;若不存在,说明理由.23.如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为,点(2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 与圆O :x 2+y 2=2相切,与椭圆C 相交于P ,Q 两点.①若直线l 过椭圆C 的右焦点F ,求△OPQ 的面积; ②求证: OP ⊥OQ .24.设顶点在原点,焦点在x 轴上的拋物线过点()2,4P ,过P 作抛物线的动弦PB PA ,,并设它们的斜率分别为DC . (1)求拋物线的方程;(2)若0=+PB PA k k ,求证:直线AB 的斜率为定值,并求出其值; (3)若1PA PB k k =,求证:直线AB 恒过定点,并求出其坐标.25.如图,已知椭圆()222210x y a b a b+=>>的左、右焦点为()()121,0,1,0,F F P -为椭圆上一点,Q 为椭圆上顶点,M 在1PF 上,122,0F M MP PO F M =⋅=.(1)求当离心率12e =时的椭圆方程; (2)求满足题设要求的椭圆离心率的取值范围;(3)当椭圆离心率最小时,若过0,7⎛- ⎝⎭的直线l 与椭圆交于,A B (不同于点Q )两点,试问:AQB ∠是否为定值?并给出证明. 26.已知椭圆的方程为,它的一个顶点为 ,离心率为. (1)求椭圆的方程;(2)设直线 与椭圆交于 两点,坐标原点 到直线 的距离为,求 面积的最大值.27.在平面直角坐标系 中,已知椭圆的左顶点为 ,右焦点为 ,为椭圆 上两点,圆 .(1)若 轴,且满足直线 与圆 相切,求圆 的方程;(2)若圆 的半径为 ,点 满足,求直线 被圆 截得弦长的最大值.28.如图,在平面直角坐标系 中,已知椭圆的离心率为,长轴长为4,过椭圆的左顶点 作直线 ,分别交椭圆和圆 于相异两点 .(1)若直线 的斜率为 ,求的值; (2)若,求实数 的取值范围.29.在平面直角坐标系 中,已知抛物线 上一点到准线的距离与到原点 的距离相等,抛物线的焦点为 . (1)求抛物线的方程;(2)若 为抛物线上一点(异于原点 ),点 处的切线交 轴于点 ,过 作准线的垂线,垂足为点 .试判断四边形 的形状,并证明你的结论.30.在平面直角坐标系xOy 中,已知点3(1,)2P 在椭圆2222:1(0)x y C a b a b+=>>上,P到椭圆C 的两个焦点的距离之和为4. (1)求椭圆C 的方程;(2)若点,M N 是椭圆C 上的两点,且四边形POMN 是平行四边形,求点,M N 的坐标.31.已知两点 ,直线 、 相交于点 ,且这两条直线的斜率之积为.(1)求点 的轨迹方程;(2)记点 的轨迹为曲线 ,曲线 上在第一象限的点 的横坐标为1,直线 、 与圆相切于点 、 ,又 、 与曲线 的另一交点分别为 , ,求 的面积的最大值(其中点 为坐标原点).32.如图,设抛物线 的准线与 轴交于 ,焦点为 ;以 为焦点,离心率的椭圆 与抛物线 在 轴上方的交点为 ,延长 交抛物线于点 是抛物线 上一动点,且 在 与 之间运动.(1)当 时,求椭圆 的方程;(2)当 的边长恰好是三个连续的自然数时,求 面积的最大值. 33.已知A 为椭圆上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有.(Ⅰ)求椭圆离心率;(Ⅱ)设,试判断是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.34.设抛物线的准线与轴交于点,焦点;椭圆以和为焦点,离心率.设是与的一个交点.(1)椭圆的方程;(2)直线过的右焦点,交于两点,且等于的周长,求的方程.35.已知椭圆的离心率为,其短轴的下端点在抛物线的准线上.(1)求椭圆的方程;(2)设为坐标原点,是直线上的动点,为椭圆的右焦点,过点作的垂线与以为直径的圆相交于两点,与椭圆相交于两点,如图所示.①若,求圆的方程;②设与四边形的面积分别为,若,求的取值范围.36.已知抛物线 上一点 到焦点F 距离是.(1)求抛物线C 的方程;(2)过F 的直线与抛物线C 交于A 、B 两点,是否存在一个定圆恒以AB 为直径的圆内切,若存在,求该定圆的方程;若不存在,请说明理由. 37.已知椭圆C:的离心率为,直线 与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)设 是椭圆的上顶点,过点 分别作直线 交椭圆于 , 两点,设两直线的斜率分别为,,且 , 证明:直线 过定点(,-l).38.已知椭圆C :2222by a x +=1(a>0,b>0)的两焦点与短轴的一个端点的连线构成等边三角形,直线一1=0与以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(I)求椭圆C 的方程;(Ⅱ)设点B ,C ,D 是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线CD ,CB ,OB ,OC 的斜率分别为k 1,k 2,k 3,k 4,且k 1k 2=k 3k 4. (i)求k 1k 2的值: (ii)求OB 2+ OC 2的值. 39.设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形. (1)求椭圆的方程和“相关圆”的方程; (2)过“相关圆”上任意一点作相关圆”的切线与椭圆交于两点,为坐标原点.若,证明原点到直线的距离是定值,并求的取值范围.40.已知抛物线方程为22(0)x py p =>,其焦点为F ,点O 为坐标原点,过焦点F 作斜率为(0)k k ≠的直线与抛物线交于,A B 两点,过,A B 两点分别作抛物线的两条切线,设两条切线交于点M .(1)求OA OB ⋅;(2)设直线MF 与抛物线交于,C D 两点,且四边形ACBD 的面积为2323p ,求直线AB 的斜率k .41.已知椭圆 : 的焦距为4,设右焦点为 ,过原点 的直线 与椭圆 交于 , 两点,线段 的中点为 ,线段 的中点为 ,且. (1)求弦 的长;(2)若直线 的斜率为 ,且,求椭圆 的长轴长的取值范围. 42.已知过抛物线的焦点,斜率为的直线交抛物线于()11,,A x y ()22,B x y (12x x <)两点,且(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值43.已知椭圆的离心率为,点在椭圆上.(I )求椭圆C 的方程; (II )设椭圆的左右顶点分别是A 、B ,过点的动直线与椭圆交于M ,N 两点,连接AN 、BM 相交于G 点,试求点G 的横坐标的值.44.如图椭圆的离心率为,其左顶点在圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆的另一个交点为,与圆的另一个交点为.(i)当时,求直线的斜率;(ii)是否存在直线,使得? 若存在,求出直线的斜率;若不存在,说明理由.45.已知椭圆:的焦距为4,设右焦点为,过原点的直线与椭圆交于,两点,线段的中点为,线段的中点为,且.(1)若离心率,求椭圆的方程;(2)求椭圆的长轴长的取值范围.46.已知为圆上的动点,点,线段的垂直平分线与半径相交于点,记点的轨迹为.(1)求曲线的方程;(2)当点在第一象限,且时,求点的坐标.47.已知焦点在轴上的椭圆的中心是原点,离心率等于,以椭圆的长轴和短轴为对角线的四边形的周长为,直线与轴交于点,与椭圆交于、两个相异点,且.(Ⅰ) 求椭圆的方程;(Ⅱ)若,求的取值范围.48.已知椭圆的离心率为,右顶点为.(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线交椭圆于两点,设直线的斜率为,直线斜率为.求证:为定值,并求此定值.49.已知椭圆C:的离心率为,且点在C上.(1)求椭圆C的方程;(2)直线l经过点,且与椭圆C有两个交点A、B,是否存在直线l0:x = x0(其中x0> 2),使得A、B到l0的距离d A、d B满足恒成立?若存在,求x0的值;若不存在,请说明理由.50.已知椭圆的右焦点为,短轴长为2,点为椭圆上一个动点,且的最大值为.(1)求椭圆的方程;(2)设不在坐标轴上的点的坐标为,点为椭圆上异于点的不同两点,且直线平分,试用表示直线的斜率.参考答案1.(Ⅰ);(Ⅱ),直线过定点.【解析】试题分析:(Ⅰ)根据条件,和椭圆的性质,得到椭圆的标准方程;(Ⅱ)设直线的方程:,和椭圆方程联立,得到根与系数的关系,并且,用坐标表示,结合根与系数的关系,得到,最后代入得到的取值范围;根据以上所求关系得到线段的中点,并且设出直线AB 的方程,经过整理得到,得到定点.试题解析:(Ⅰ)由条件知(),且b=1,解得a2=2,椭圆C的方程为.(Ⅱ)令直线l的方程为,代入椭圆方程得:.由得,解之得.令A(x1,y1),B(x2,y2),则.由条件得,即.因为,,即.将代入中,得..由上知,,于是得AB中点坐标为,中垂线方程为:.将代入得:,整理得:.故AB的中垂线过定点.考点:1.椭圆方程;2.直线与椭圆的位置关系.【思路点睛】本题第二问考察是否过定点问题,一般考察直线过定点问题,首先是设直线,斜率存在时设,然后通过方程发现的等量关系,代入后即得到直线所过定点,或是通过特殊情况先发现定点,然后通过条件证明点和定点,三点共线;而本题所采用就是第一种方法,根据直线方程与椭圆方程联立,得到根与系数的关系,和将本题所给的三个斜率成等差数列的等式转化为坐标的关系,就会得到的等量关系和中点坐标,最后代入中垂线方程,问题就迎刃而解了.2.(1);(2)或.【解析】试题分析:(1)由椭圆:的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为,求出,由此能求出椭圆方程;(2)依题意知,设,,,则,由此能求出存在满足条件的值.试题解析:(1)设焦点,则,从而,由题意有,即,解得,又由,于是,解得,椭圆的方程为.(2)依题意可知,且,于是直线的斜率为,直线的斜率为,则,,,,相加得.联立消去,整理得,,.把两边同时平方,可得,代入可得,化简可得,或,解得,或,即存在满足条件的值,,或.考点:椭圆的简单性质.【方法点晴】本题考查椭圆方程的求法,考查满足条件的直线的斜率的求法,是中档题,解题时要认真审题,在第一问中利用离心率以及过焦点且与轴垂直的弦长求出椭圆的方程,也是在高考中常见的表达形式;在第二问中利用设而不求的思想设出三点的坐标,先利用内切圆的圆心在轴上,即等价于直角的角平分线轴上,得,转化为斜率,联立直线的方程与椭圆的方程结合维达定理,代入求解.3.(1)2214xy+=;(2)证明见解析.【解析】试题分析: (1)由AF 的最小值为23-可得23a c -=-,由离心率为3可知,再由的关系最后可求得的值,得到椭圆的标准方程;(2)当AB 的斜率不存在时很容易求得O 到AB 的距离,当AB 的斜率存在时可设直线方程的斜截式y kx m =+,联立椭圆方程,由根与系数的关系得122841km x x k +=-+,21224441m x x k -=+,再由OA OB ⊥可建立等式,求得224(1)5m k =+,代入点到直线的距离公式可得距离为定值. 试题解析:(1)解:根据题意有2{a c c a -==, 解方程组得:2,a c ==∴21b =,∴椭圆C 的标准方程为2214x y +=. (2)证明:当AB 的斜率不存在时,AB 的方程为x =±O 到AB 的距离为d =; 当AB 的斜率存在时,可设AB 的方程为y kx m =+,1122(,),(,)A x y B x y ,由22{14y kx mx y =++=,得222(41)8440k x kmx m +++-=, ∵22222(8)4(41)(44)16(14)0km k m k m ∆=-+-=-->,∴122841km x x k +=-+,21224441m x x k -=+, ∴2212121212()()()y y kx m kx m k x x km x x m =++=+++,222222224484414141m km m k k km m k k k --=⋅-⋅+=+++, ∵OA OB ⊥,∴22112212122544(,)(,)041m k OA OB x y x y x x y y k --⋅==+==+, ∴224(1)5m k =+, ∴点O 到直线AB :0kx y m -+=的距离5d ===, 故O 到AB 的距离为定值.考点:椭圆的性质、直线与椭圆的位置关系.4.(1) ;(2)证明见解析.【解析】试题分析:(1)根据抛物线的定义即可得出抛物线方程,再联立 的方程,消去 ,由韦达定理可得 的值;(2)设出 的坐标,由斜率公式表示出 ,消去变量即可得出的定值.试题解析:(1)依题意,设抛物线方程为y 2=-2px(p>0),由准线x = =1,得p =2, 所以抛物线方程为y 2=-4x ,设直线PQ 的方程为x =my -2,代入y 2=-4x ,消去x ,整理得y 2+4my -8=0, 从而y 1y 2=-8.(2)证明 设M(x 3,y 3),N(x 4,y 4),则. 设直线PM 的方程为x =ny -1,代入y 2=-4x ,消去x ,整理得y 2+4ny -4=0,所以y 1y 3=-4,同理y 2y 4=-4.故,为定值. 考点:1、抛物线的标准方程;2、抛物的几何性质;3、斜率公式;4、直线方程. 5.(1)();(2).【解析】试题分析:(1)设,,,两式相减结合,可求得;(2)由求出点坐标,设直线的方程为,面积用表示,最后用基本不等式求最值.试题解析:(1)设,①②①-②得:,,即,又由中点在椭圆内部得,所以点的轨迹方程为,(2)由,得点坐标为,设直线的方程为,代入椭圆方程中整理得:,由得,则,,,所以,当时,.考点:1、点差法求轨迹方程;2、利用基本不等式求解析几何中的最值.【方法点睛】本题主要考查“点差法”求轨迹方程以及利用基本不等式求解析几何中的最值,属于难题.对于有弦关中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.本题(1)就是利用“点差法”求解的.6.(I);(II).【解析】试题分析:(I)设点,,则由,得,因为点在抛物线上,∴;(II)联立,利用根与系数关系得到,下面分情况讨论.当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,,此时;同理,当点与点重合时,,直线不经过点即且时,,化简得故.试题解析:(I)设点,,则由,得,因为点在抛物线上,∴.(II)方法一:由已知,直线的斜率一定存在,设点,,则联立,得,,由韦达定理,得.当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,,此时;同理,当点与点重合时,直线不经过点即且时,∵,,故,所以的最小值为1.方法二:同上,,所以的最小值为1.方法三:设点,,由直线过交轨迹于两点得:,化简整理得:令则,.而.考点:1.直线与圆锥曲线的位置关系;2.根与系数关系.【方法点晴】圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.跟与系数的关系是解这类题目的必备工具,另外题目运算量较大,需要一定的运算能力.7.(Ⅰ)2213xy+=,224x y+=;(Ⅱ)垂直.【解析】试题分析:(1)由“椭圆C的一个焦点为F,其短轴上的一个端点到F”知:12c a b====⇒=从而可得椭圆的标准方程和“准圆”的方程;(2)分两种情况讨论:①12,l l当中有一条直线斜率不存在;②直线12,l l斜率都存在.对于①可直接求出直线12,l l的方程并判断其是不互相垂直;对于②设经过准圆上点()00,,P x y与椭圆只有一个公共点的直线为()00y t x x y=-+与椭圆方程联立组成方程组()0022{13y tx y txxy=+-+=消去y得到关于x的方程:()()()2220000136330t x t y tx x y tx++-+--=由0∆=化简整理得:()22200003210x t x y t y-++-=22004x y+=→()()22300003230x t x y t x-+--=而直线12,l l的斜率正是方程的两个根12,t t,从而121t t⋅=-12l l⇒⊥(1)2,1c a b==∴=∴椭圆方程为2213xy+=准圆方程为224x y+=(2)①12,l l当中有一条无斜率时,不妨设1l无斜率,因为1l与椭圆只有一个共公点,则其方程为x=当1l方程为x1l与准圆交于点)),1-此时经过点)(或)1-)且与椭圆只有一个公共眯的直线是1y=(或1y=-)即2l为1y=(或1y=-),显然直线12,l l垂直;同理可证1l方程为x =12,l l 也垂直.②当12,l l 都有斜率时,设点()00,,P x y 其中22004x y +=设经过点()00,,P x y 与椭圆只有一个公共点的直线为()00y t x x y =-+则由()0022{13y tx y tx x y =+-+=消去y ,得()()()2220000136330t x t y tx x y tx ++-+--=由0∆=化简整理得:()22200003210x t x y t y -++-=因为22004x y +=,所以有()()22300003230x t x y t x -+--=设12,l l 的斜率分别为12,t t ,因为12,l l 与椭圆只有一个公共点 所以12,t t 满足上述方程()()22300003230x t x y t x -+--= 所以121t t ⋅=-,即12,l l 垂直, 综合①②知,12,l l 垂直.考点:1、椭圆的标准方程;2、直线与圆锥曲线的综合问题. 8.(Ⅰ);(Ⅱ),或.【解析】试题分析:(Ⅰ)根据离心率可以得到 的一个关系,再由椭圆与直线相切可以得到 的一个关系,再联立 即可求出椭圆的方程;(Ⅱ)首先注意到当直线的斜率不存在或者等于零时即为长轴(或短轴)时地特殊情况,并求出其面积;其次当直线的斜率 存在并且不为零时,用 表示出的面积并结合基本不等式求出此时的面积的最小值,并注意与特殊情况进行比较,最后即可得出的面积最小值,进而可求得当的面积最小时,求直线的方程.试题解析:(Ⅰ)以原点为圆心,以椭圆的半长轴长为半径的圆的方程为,因为该圆与直线相切,所以有,解得.又,所以,故.所以椭圆的方程为.(Ⅱ)当为长轴(或短轴)时,依题意知,点是椭圆的上顶点或下顶点(左顶点或右顶点),此时.当直线的斜率存在且不为时,设直线的斜率为,,,则直线的方程为,由,解得所以由知,为等腰三角形,为线段的中点,,所以直线的方程为,由,解得.当且仅当,即时,上式中的等号成立,此时的面积的最小值为,因为,所以的面积的最小值为,此时直线的方程为,或.考点:1、椭圆;2、基本不等式;3、三角形的面积.【思路点晴】本题是一个关于圆锥曲线方面的综合性问题,属于难题.解决本题的基本思路是:(Ⅰ)根据离心率可以得到的一个关系,再由椭圆与直线相切可以得到的一个关系,再联立即可求出椭圆的方程;(Ⅱ)首先注意到当直线的斜率不存在或者等于零时即为长轴(或短轴)时的特殊情况,并求出其面积;其次当直线的斜率存在并且不为零时,用表示出的面积并结合基本不等式求出此时的面积的最小值,并注意与特殊情况进行比较,最后即可得出的面积最小值,进而可求得当的面积最小时,求直线的方程.9.(Ⅰ);(Ⅱ)(1)证明见解析;(2).【解析】试题分析:(Ⅰ)根据题目条件并结合椭圆的定义,即可求得动点的轨迹的方程;(Ⅱ)(1)根据(Ⅰ)的结论设出的坐标,并表示出的坐标,进而表示出直线与直线的交于点的坐标,即可证明点恒在曲线上;(2)根据(Ⅰ)及(Ⅱ)(1)的结论,再结合构造函数以及函数的单调性,即可求得面积的最大值.试题解析:(Ⅰ)由题设得圆的圆心为,半径为,,又,所以,由椭圆的定义知,动点的轨迹是以为焦点,以为长轴长的椭圆.设此椭圆方程为,且焦距为,则即所以动点的轨迹的方程为.(Ⅱ)(1)设,则,且,所以直线,即①.直线,即.②联立①②,解得,所以点的坐标是.则所以点恒在椭圆上.(2)设直线,,则由消去,并整理得,.因为恒成立,所以.所以.令,设,因为,所以函数在上单调递增,故.所以,即当时,的面积取得最大值,且最大值为. 考点:1、椭圆;2、导数在函数(三角形的面积)研究中的应用.【方法点晴】本题是一个关于椭圆的概念以及直线与其位置关系方面的综合性问题,属于难题.解决本题的基本思路及切入点是:(Ⅰ)根据题目条件并结合椭圆的定义,即可求得动点的轨迹的方程;(Ⅱ)(1)根据(Ⅰ)的结论设出的坐标,并表示出的坐标,进而表示出直线与直线的交于点的坐标,即可证明点恒在曲线上;(2)根据(Ⅰ)及(Ⅱ)(1)的结论,再结合构造函数以及函数的单调性,即可求得面积的最大值.10.(1);(2).【解析】试题分析:(1)由渐近线方程可先设出双曲线的方程,再把点的坐标代入即可求得双曲线的方程;(2)可设出、的斜率,并表示出点、的坐标,进而表示出的长,再结合基本不等式即可求得的最小值.试题解析:(1)由渐近线方程可知,双曲线的方程为,把代入可得,所以双曲线方程为.(2)由双曲线的对称性可知,在右支上时,取最小值.由上可得,,根据双曲线方程可得,所以设直线、的斜率分别为,则.的方程为,令,解得,的方程为,令,解得,所以.当且仅当,即时等号成立.考点:1、双曲线;2、基本不等式.11.(1);(2)证明见解析.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知数列{a n }的前n 项和为S n ,且满足a 1=2,na n+1=S n +n (n+1). (Ⅰ)求数列{a n }的通项公式a n ; (Ⅱ)设T n 为数列{
}的前n 项和,求T n ;
(Ⅲ)设b n =,证明:b 1+b 2+b 3+…+b n <.
2. 已知数列{a n },a 1=1,前n 项和S n 满足nS n+1﹣(n+3)S n =0, (Ⅰ)求{a n }的通项公式; (Ⅱ)若b n =4()2,求数列{(﹣1)n
b n }的前n 项和T n ;
(Ⅲ)设C n =2n
(
﹣λ),若数列{C n }是单调递减数列,求实数λ的取值范围.
3. 已知S n 为数列{a n }的前n 项和,S n =na n ﹣3n (n ﹣1)(n ∈N *
),且a 2=11. (1)求a 1的值;
(2)求数列{a n }的前n 项和S n ; (3)设数列{b n }满足b n =
,求证:b 1+b 2+…+b n <
.
4. 已知数列{a n }的前n 项和为S n ,S n =
.
(Ⅰ)求证{a n +1}是等比数列,并求数列{a n }的通项公式; (Ⅱ)证明:
+…
>﹣.
5. 已知数列{a n },a 1=,a 2=,若数列{a n+1﹣2a n },{2a n+1﹣a n }都是等比数列,公比分别
是q 1,q 2(q 1≠q 2).
(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设S n 是数列{}的前n 项和,求证:S n <.
6. 已知数列{}n a 中,111,2,n n n a a a +=+=且
(1)求数列{}n a 的通项公式;(2)若数列{}n a 的前n 项和为2,n n S S 求。
7. 在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设1tan tan ,n n n b a a +=求数列{}n b 的前n 项和n S . 8. 已知数列{},{}n n a b 满足下列条件:111,22 1.n n a a a n +=-=+
1.n n n b a a +=-(Ⅰ)求{}n b 的通项公式;
(Ⅱ)设1{
}n b 的前n 项和为n S ,求证:对任意正整数n ,均有19.420
n S ≤< 9. 已知动直线与椭圆C: 交于P 、Q 两不同点,且△OPQ 的面积=,其中O 为坐标原点.(Ⅰ)证明和均为定值;
(Ⅱ)设线段PQ 的中点为M ,求的最大值;
(Ⅲ)椭圆C 上是否存在点D,E,G ,使得
?若存在,判断△DEG
的形状;若不存在,请说明理由.
10. 已知抛物线)>0(2:2
p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交于另一点B ,交x 轴的正半轴于点D ,且有|FA FD =,当点A 的横坐标为3时,ADF 为正三角形。
(I )求C 的方程;(II )若直线l l //1,且1l 和C 有且只有一个公共点E ,
(i )证明直线AE 过定点,并求出定点坐标;
(ii )ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由。
11. 平面直角坐标系xOy 中,已知椭圆C :
x 2
a 2
+y 2
b 2=1(a >b >0)的离心率为√3
2,左、右焦点分别是F 1、F 2.以F 1为圆心以3为半径的圆与以F 2为圆心1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;
(Ⅱ)设椭圆E:x 2
4a 2+y 2
4b 2=1,P 为椭圆C 上任意一点,过点P 的直线
y =kx +m 交椭圆E 于A,B 两点,射线PO 交椭圆 E 于点 Q .
( i )求|OQ||OP|的值;
(ii )求△ABQ 面积的最大值.
l 22
1
32x y +=()11,x y ()22,x y OPQ S
∆22212x x +22
12y y +||||OM PQ
⋅2ODE ODG OEG S S S ∆∆∆===
9. (I )解:(1)当直线的斜率不存在时,P ,Q 两点关于x 轴对称,
所以
因为
在椭圆上,
因此
①
又因为
所以
②
由①、②得
此时
(2)当直线的斜率存在时,设直线的方程为
由题意知m ,将其代入,得 ,
其中
即
…………(*)
又
所以
因为点O 到直线的距离为
所以
l 2121,.x x y y ==-11(,)
P x y 22
11132x y +
=OPQ S ∆
=
11||||x y ⋅
=
11||| 1.x y =
=2222
12123,2,
x x y y +=+=l l ,y kx m =+0≠22
1
32x y +=222(23)63(2)0k x kmx m +++-=2222
3612(23)(2)0,k m k m ∆=-+->22
32k m +>2121222
63(2)
,,2323km m x x x x k k -+=-=+
+2
||23PQ k ==+
l d =
1
||2OPQ S PQ d ∆=
⋅
又
整理得
且符合(*)式,
此时
综上所述,
结论成立。
(II )解法一:
(1)当直线的斜率存在时,
由(I )知
因此
(2)当直线的斜率存在时,由(I )知
所以
=
223m k =
+OPQ S ∆=
22322,k m +=22
22
21
2
121222
63(2)
()2()23,2323km m x x x x x x k k -+=+-=--⨯=++222222
121212222(3)(3)4() 2.
333y y x x x x +=-+-=-+=2222
12123;2,
x x y y +=+=
l 11|||||2||2,OM x PQ y ==
=
=||||22OM PQ ⋅=
=l 123,22x x k
m +=2221212222
2212122222
22
2222222
332(),2222916211||()()(3),2244224(32)2(21)1||(1)2(2),(23)y y x x k k m k m m m m m
x x y y k m OM m m m m
k m m PQ k k m m ++-+1
=+=-+==++-=+=+==-+-+=+==++2222111||||(3)2(2)2OM PQ m m ⋅=
⨯-⨯⨯+
所以
,当且仅当时,等号成立.
综合(1)(2)得|OM|·|PQ|的最大值为
解法二: 因为
所以
即
当且仅当时等号成立。
因此 |OM|·|PQ|的最大值为
(III )椭圆C 上不存在三点D ,E ,G ,使得
证明:假设存在,
由(I )得
因此D ,E ,G 只能在
这四点中选取三个不同点,
而这三点的两两连线中必有一条过原点,
2222
211(3)(2)113225(
).24m m m m =-
+-++≤=5||||2OM PQ ⋅
≤
2211
32,m m m -=+=即5
.2222222
121221214||||()()()()OM PQ x x y y x x y y +=++++-+-2222
12122[()()]
10.
x x y y =+++=224||||10
2|||| 5.
25OM PQ OM PQ +⋅≤==5
||||,
2OM PQ ⋅
≤2||||OM PQ ==5
.
22ODE ODG OEG S S S ∆∆∆==
=
1122(,),(,),(,)ODE ODG OEG D u v E x y G x y S S S ∆∆∆===
满足222222222222
12121212222222121212123,3,3;2,2,2,
3; 1.
2,,,,,1,
2
u x u x x x v y v y y y u x x v y y u x x v y y +=+=+=+=+=+=======±±解得因此只能从只能从
中选取(1)±
与
矛盾,
所以椭圆C 上不存在满足条件的三点D ,E ,G.
ODE ODG OEG S S S ∆∆∆===。