圆锥曲线高考选择填空压轴题专练
圆锥曲线基础训练题及答案

圆锥曲线基础训练题姓名____________分数______________一、选择题1 .抛物线y 2=ax 的焦点坐标为(-2,0),则抛物线方程为( )A .y 2=-4x B .y 2=4x C .y 2=-8x D .y 2=8x2 .如果椭圆的两个焦点三等分它所在的准线间的垂线段,那么椭圆的离心率为 ( )A .23 B .33 C .36 D .66 3 .双曲线191622=-y x 的渐近线方程为 ( )A . x y 34±= B .x y 45±= C .x y 35±= D .x y 43±= 4 .抛物线 x y 42= 的焦点坐标是( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)5 .双曲线221916y x -=的准线方程是 ( ) A 165x =±B 95x =±C 95y =±D 165y =± 6 .双曲线221169x y -=上的点P 到点(5,0)的距离是15,则P 到点(-5,0)的距离是 ( )A .7B .23C .5或23D .7或237 .双曲线1322=-y x 的两条渐近线方程是 ( )A .03=±y xB .03=±y xC .03=±y xD .03=±y x8 .以椭圆的焦点为圆心,以焦距为半径的圆过椭圆的两个顶点,则椭圆的离心率为 ( )A .43)D (23)C (22)B (219 .抛物线y x 42=上一点A 纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .510.抛物线()042<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛041,a B .⎪⎭⎫ ⎝⎛a 1610,C .⎪⎭⎫ ⎝⎛-a 1610,D .⎪⎭⎫⎝⎛0161,a 11.椭圆2x 2=1-3y 2的顶点坐标为( )A .(±3,0),(0,±2)B .(±2,0),(0,±3)C .(±22,0),(0,±33) D .(±12,0),(0,±13) 12.焦距是10,虚轴长是8,经过点(23, 4)的双曲线的标准方程是( )A .116922=-y x B .116922=-x y C .1643622=-y x D .1643622=-x y 13.双曲线22124x y -=-的渐近线方程为( )A .y =B .x =C .12y x =±D .12x y =±14.已知椭圆方程为1322=+y x ,那么左焦点到左准线的距离为 ( )A .22 B .223 C .2D .2315.抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x-4y-12=0上,此抛物线的方程是 ( )A .y 2=16xB .y 2=12xC .y 2= -16xD .y 2= -12x16.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .3C .12 D .217.下列表示的焦点在y 轴上的双曲线方程是( )A .13422=+y xB .14322=+y xC .13422=-y xD .13422=-x y 18.抛物线y =2px 2(p ≠0)的焦点坐标为( )A .(0,p )B .(10,4p ) C .(10,8p) D .(10,8p±) 19.与椭圆205422=+y x 有相同的焦点,且顶点在原点的抛物线方程是( )A .x y 42=B .x y 42±=C .y x 42=D .y y 42±=20.已知双曲线的渐近线方程为x y43±=,则此双曲线的( )A .焦距为10B .实轴和虚轴长分别是8和6C .离心率是45或35 D .离心率不确定21.双曲线122=-y x 的渐近线方程是( )A .±=x 1B .y =C .x y ±=D .x y 22±= 22.若命题“曲线C 上的点的坐标都是方程f(x ,y)=0的解”是正确的,则以下命题中正确的是( )A .方程(x ,y)=0的曲线是CB .坐标满足方程f(x ,y)=0的点都在曲线C 上 C .曲线C 是方程f(x ,y)=0的轨迹D .方程f(x ,y)=0的曲线不一定是C23.双曲线221916y x -=的准线方程是 ( )A .165x =±B .95x =±C .95y =±D .165y =±24.双曲线191622=-x y 的焦点坐标是 ( )A .()0,5和()0,5-B .()5,0和()5,0-C .()0,7和()0,7- D .()7,0和()7,0-25.已知抛物线的焦点坐标为(-3,0),准线方程为x =3,则抛物线方程是( )A .y 2+6x =0B .y 2+12x =0C .y +6x 2=0D .y +12x 2=0 26.双曲线 191622=-y x 的渐近线的方程是( )A .x y 43±= B .x y 34±= C .x y 169±= D .x y 916±= 27.对抛物线24y x =,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为1(0,)16 C .开口向右,焦点为(1,0)D .开口向右,焦点为1(0,)1628.双曲线2y 2-x 2=4的一个焦点坐标是( )A .(0,-)6B .(6,0)C .(0,-2)D .(2,0)29.若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 ( )A .-2B .2C .-4D .430.到直线x=-2与定点P (2,0)距离相等的点的轨迹是( )A .抛物线B .双曲线C .椭圆D .直线二、填空题31.(1)短轴长为6,且过点(1,4)的椭圆标准方程是(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是 32.与两坐标轴距离相等的点的轨迹方程是________________________33.椭圆4422=+y x 的焦点坐标为___________,__________. 34.抛物线x y 42=的准线方程为______ 35.到x 轴,y 轴距离相等的点的轨迹方程_________.36.已知两个定点1(4,0)F -,2(4,0)F ,动点P 到12,F F 的距离的差的绝对值等于6,则点P 的轨迹方程是 ;37.若双曲线22145x y -=上一点P 到右焦点的距离为8,则P 到左准线的距离为38.若定点(1,2)A 与动点(),Px y 满足,4OP OA ⋅=则点P 的轨迹方程是39.已知双曲线的离心率为2,则它的实轴长和虚轴长的比为 。
高中数学圆锥曲线选填精练(附答案解析)

圆锥曲线选填练习一.选择题(共8小题)1.已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线与椭圆交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则离心率为()A.B.2﹣C.﹣2D.﹣2.已知椭圆x2+y2=a2(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a的取值范围是()A.B.或C.或D.3.如图所示,A,B,C是双曲线=1(a>0,b>0)上的三个点,AB经过原点O,AC经过右焦点F,若BF⊥AC且|BF|=|CF|,则该双曲线的离心率是()A.B.C.D.34.已知双曲线的标准方程为,F为其右焦点,A1,A2是实轴的两端点,设P为双曲线上不同于A1,A2的任意一点,直线A1P,A2P与直线x=a分别交于两点M,N,若,则a的值为()A.B.C.D.5.若双曲线=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为()A.B.C.D.6.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.7.设F是双曲线的右焦点,双曲线两条渐近线分别为l1,l2,过F作直线l1的垂线,分别交l1,l2于A、B两点,且向量与同向.若|OA|,|AB|,|OB|成等差数列,则双曲线离心率e的大小为()A.B.C.D.28.已知F1、F2是双曲线(a>0,b>0)的左、右焦点,若在双曲线上的点P满足∠F1PF2=60°,且|OP|=a(O为坐标原点),则该双曲线的离心率是()A.2B.C.D.二.填空题(共7小题)9.已知Q为椭圆C:上一动点,且Q在y轴的右侧,点M(2,0),线段QM的垂直平分线交y轴于点N,则当四边形OQMN的面积取最小值时,点Q的横坐标为.10.已知点F(1,0)是抛物线C:y2=mx的焦点,经过点A(﹣1,0)的直线l 与抛物线C交于两点M,N,若∠MFN是锐角,且直线l与双曲线4x2+ny2=1只有一个公共点,则双曲线离心率的取值范围是.11.过双曲线的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为.12.设直线l过点P(0,3),和椭圆交于A、B两点(A在B上方),试求的取值范围.13.直线l过椭圆的左焦点F,且与椭圆相交于P、Q两点,M为PQ 的中点,O为原点.若△FMO是以OF为底边的等腰三角形,则直线l的方程为.14.椭圆Γ:=1(a>b>0)的左右焦点分别为F1,F2,焦距为2c,若直线y=与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.15.椭圆+=1(a为定值,且a>)的左焦点为F,直线x=m与椭圆交于点A,B,△FAB的周长的最大值是12,则该椭圆的离心率是.参考答案与试题解析一.选择题(共8小题)1.已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线与椭圆交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则离心率为()A.B.2﹣C.﹣2D.﹣【分析】设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,再由椭圆的定义和周长的求法,可得m,再由勾股定理,可得a,c的方程,求得,开方得答案.【解答】解:如图,设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+m,即m=2(2﹣)a,则|AF2|=2a﹣m=(2﹣2)a,在直角三角形AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2﹣)2a2+4(﹣1)2a2,∴c2=(9﹣6)a2,则e2==9﹣6=,∴e=.故选:D.【点评】本题考查椭圆的定义、方程和性质,主要考查离心率的求法,同时考查勾股定理的运用,灵活运用椭圆的定义是解题的关键,是中档题.2.已知椭圆x2+y2=a2(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a的取值范围是()A.B.或C.或D.【分析】因为椭圆与线段无公共点,所以线段AB在椭圆的内部或在椭圆的外部,即由“A,B两点同在椭圆内或椭圆外”求解.【解答】解:根据题意有:A,B两点同在椭圆内或椭圆外∴或∴或故选:B.【点评】本题主要通过直线与椭圆的位置关系,来考查点与椭圆的位置关系.当点(x0,y0)在椭圆内,则有,点(x0,y0)在椭圆外,则有3.如图所示,A,B,C是双曲线=1(a>0,b>0)上的三个点,AB经过原点O,AC经过右焦点F,若BF⊥AC且|BF|=|CF|,则该双曲线的离心率是()A.B.C.D.3【分析】运用直角三角形斜边上中线等于斜边的一半,求得A的坐标,由对称得B的坐标,由于BF⊥AC且|BF|=|CF|,求得C的坐标,代入双曲线方程,结合a,b,c的关系和离心率公式,化简整理成离心率e的方程,代入选项即可得到答案.【解答】解:由题意可得在直角三角形ABF中,OF为斜边AB上的中线,即有|AB|=2|OA|=2|OF|=2c,设A(m,n),则m2+n2=c2,又﹣=1,解得m=,n=,即有A(,),B(﹣,﹣),又F(c,0),由于BF⊥AC且|BF|=|CF|,可设C(x,y),即有•=﹣1,又(c+)2+()2=(x﹣c)2+y2,可得x=,y=﹣,将C(,﹣)代入双曲线方程,可得﹣=1,化简可得(b2﹣a2)=a3,由b2=c2﹣a2,e=,可得(2e2﹣1)(e2﹣2)2=1,对照选项,代入检验可得e=成立.另解:设双曲线的另一个焦点为E,令|BF|=|CF|=|AE|=m,|AF|=n,由双曲线的定义有,|CE|﹣|CF|=|AE|﹣|AF|=2a,在直角三角形EAC中,m2+(m+n)2=(m+2a)2,代入2a=m﹣n,化简可得m=3n,又m﹣n=2a得n=a,m=3a,在直角三角形EAF中,m2+n2=(2c)2,即为9a2+a2=4c2,可得e==.故选:A.【点评】本题考查双曲线的方程和性质,主要考查双曲线的a,b,c的关系和离心率的求法,注意运用点在双曲线上满足方程,同时注意选择题的解法:代入检验,属于难题.4.已知双曲线的标准方程为,F为其右焦点,A1,A2是实轴的两端点,设P为双曲线上不同于A1,A2的任意一点,直线A1P,A2P与直线x=a分别交于两点M,N,若,则a的值为()A.B.C.D.【分析】双曲线,右焦点F(5.0),A1(﹣3,0),A2(3,0),设P(x,y),M(a,m),N(a,n),由P,A1,M三点共线,知,故m=,由P,A2,N三点共线,知,故n=,由,和,能求出a的值.【解答】解:∵双曲线,右焦点F(5,0),A1(﹣3,0),A2(3,0),设P(x,y),M(a,m),N(a,n),∵P,A1,M三点共线,∴m=,∵P,A2,N三点共线,∴,∴n=,∵,∴,∴,,,∴=(a﹣5)2+=(a﹣5)2+,∵,∴(a﹣5)2+=0,∴25a2﹣90a+81=0,∴a=.故选:B.【点评】本题考查双曲线的性质和应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.解题时要认真审题,注意向量知识的合理运用.5.若双曲线=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为()A.B.C.D.【分析】因为双曲线即关于两条坐标轴对称,又关于原点对称,所以任意一个焦点到两条渐近线的距离都相等,所以不妨利用点到直线的距离公式求(c,0)到y=x的距离,再令该距离等于焦距的,就可得到含b,c的齐次式,再把b用a,c表示,利用e=即可求出离心率.【解答】解:双曲线的焦点坐标为(c,0)(﹣c,0),渐近线方程为y=±x根据双曲线的对称性,任意一个焦点到两条渐近线的距离都相等,求(c,0)到y=x的距离,d===b,又∵焦点到一条渐近线的距离等于焦距的,∴b=×2c,两边平方,得4b2=c2,即4(c2﹣a2)=c2,∴3c2=4a2,,即e2=,e=故选:B.【点评】本题主要考查点到直线的距离公式的应用,以和双曲线离心率的求法,求离心率关键是找到a,c的齐次式.6.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.【分析】y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22)A,B的中点坐标是(,)因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直=+m,由此能求得m.【解答】解:y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22),A,B的中点坐标是(,),因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直=+m,,x12+x22═+m,x2+x1=﹣,因为,所以x12+x22=(x1+x2)2﹣2x1x2=,代入得,求得m=.故选:B.【点评】本题主要考查直线与圆锥曲线的综合应用能力,具体涉和到轨迹方程的求法和直线与椭圆的相关知识,解题时要注意合理地进行等价转化.7.设F是双曲线的右焦点,双曲线两条渐近线分别为l1,l2,过F作直线l1的垂线,分别交l1,l2于A、B两点,且向量与同向.若|OA|,|AB|,|OB|成等差数列,则双曲线离心率e的大小为()A.B.C.D.2【分析】由勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.【解答】解:不妨设OA的倾斜角为锐角∵向量与同向,∴渐近线l1的倾斜角为(0,),∴渐近线l1斜率为:k=<1,∴==e2﹣1<1,∴1<e2<2∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)2|AB|,∴|AB|=2(|OB|﹣|OA|),∴|OB|﹣|OA|=|AB|,∵|OA|,|AB|,|OB|成等差数列∴|OA|+|OB|=2|AB|,∴|OA|=|AB|∴在直角△OAB中,tan∠AOB=,由对称性可知:OA的斜率为k=tan(﹣∠AOB),∴=,∴2k2+3k﹣2=0,∴k=(k=﹣2舍去);∴=,∴==e2﹣1=,∴e2=,∴e=.故选:A.【点评】本题考查了双曲线的简单性质以和等差数列的性质,确定|OA|=|AB|,联想到对应的是渐近线的夹角的正切值,是解题的关键.8.已知F1、F2是双曲线(a>0,b>0)的左、右焦点,若在双曲线上的点P满足∠F1PF2=60°,且|OP|=a(O为坐标原点),则该双曲线的离心率是()A.2B.C.D.【分析】假设|F1P|=x,分别根据中线定理和余弦定理建立等式求得c2+5a2=14a2﹣2c2,可得a和c的关系,即可求双曲线的离心率.【解答】解:不妨设P在左支上,|F1P|=x,则|F2P|=2a+x∵OP 为三角形F 1F 2P 的中线,∴根据三角形中线定理可知x 2+(2a +x )2=2(c 2+7a 2)整理得x (x +2a )=c 2+5a 2由余弦定理可知x 2+(2a +x )2﹣x (2a +x )=4c 2 整理得x (x +2a )=14a 2﹣2c 2 进而可知c 2+5a 2=14a 2﹣2c 2 ∴3a 2=c 2 ∴故选:C .【点评】本题考查了双曲线的定义、标准方程,考查余弦定理的运用,考查学生的计算能力,属于中档题.二.填空题(共7小题) 9.已知Q 为椭圆C :上一动点,且Q 在y 轴的右侧,点M (2,0),线段QM 的垂直平分线交y 轴于点N ,则当四边形OQMN 的面积取最小值时,点Q 的横坐标为.【分析】设Q (x 0,y 0),(y 0≠0,x 0>0),求出直线ND 的方程,再求出N 的坐标,根据四边形OQMN =S △OQM +S △OMN =2|y 0|+,利用基本不等式即可求出.【解答】解:设直线MQ 的中点为D ,由题意知ND ⊥MQ ,直线ND 的斜率存在,设Q (x 0,y 0),(y 0≠0,x 0>0), ∴点D 的坐标为(,),且直线MQ 的斜率k MQ =,∴k ND =﹣=,∴直线ND 的方程为y ﹣=(x ﹣),令x=0,可得y=,∴N (0,),由+y 02=1可得x 02=3﹣3y 02,∴N (0,),∴S 四边形OQMN =S△OQM +S△OMN =×2×|y 0|+×2×||=|y 0|+||=2|y 0|+,即y 0=±,x 0=等号成立,故Q 的横坐标为, 故答案为:【点评】本题考查直线与椭圆的位置关系,考查基本不等式的性质的应用,考查转化思想,属于中档题.10.已知点F (1,0)是抛物线C :y 2=mx 的焦点,经过点A (﹣1,0)的直线l 与抛物线C 交于两点M ,N ,若∠MFN 是锐角,且直线l 与双曲线4x 2+ny 2=1只有一个公共点,则双曲线离心率的取值范围是(,).【分析】设经过点A(﹣1,0)的直线l的方程为y=k(x+1),设M(x1,y1),N (x2,y2),由,根据根与系数的关系以和>0,即可求出k2的范围,再根据直线l与双曲线4x2+ny2=1只有一个公共点则直线l与双曲线的渐近线平行,求出b2=﹣=,根据离心率公式结合k2的范围即可求出双曲线离心率的取值范围.【解答】解:点F(1,0)是抛物线C:y2=mx的焦点,则=1,即m=4,∴抛物线C:y2=4x,设经过点A(﹣1,0)的直线l的方程为y=k(x+1),设M(x1,y1),N(x2,y2),由,消y可得k2x+(2k2﹣4)x+k2=0,∴,解得﹣1<k<1且k≠0∴x1+x2=﹣2+,x1x2=1,∴y1y2=4,∵F(1,0),∴=(1﹣x1,﹣y1),=(1﹣x2,﹣y2),∴=(1﹣x1)•(1﹣x2)+y1y2=1+x1x2﹣(x1+x2)+4=8﹣,∵∠MFN是锐角,∴=8﹣>0,解得k2>,∴<k2<1,∵双曲线4x2+ny2=1的渐近线方程为y=±2x,∵直线l与双曲线4x2+ny2=1只有一个公共点,∴|k|=2,∴﹣=,∵双曲线4x2+ny2=1,即+=1,∴a2=,b2=﹣=∴e2==1+=1+k2,∵<e2<2,∴<e<,故答案为:(,).【点评】本题考查了直线和抛物线的位置关系以和直线和双曲线的位置关系,考查了向量的运算和离心率的求法,考查了运算能力和转化能力,属于难题11.过双曲线的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为.【分析】先设双曲线的右焦点为F',则F'的坐标为(c,0)因为抛物线为y2=4cx,所以F'为抛物线的焦点O为FF'的中点,E为FP的中点所以OE为△PFF'的中位线,得到PF=2b,再设P(x,y)过点F作x轴的垂线,由勾股定理得出关于a,c的关系式,最后即可求得离心率.【解答】解:设双曲线的右焦点为F',则F'的坐标为(c,0)因为抛物线为y2=4cx,所以F'为抛物线的焦点O为FF'的中点,E为FP的中点所以OE为△PFF'的中位线,那么OE∥PF'因为OE=a 那么PF'=2a又PF'⊥PF,FF'=2c 所以PF=2b设P(x,y)x+c=2a x=2a﹣c过点F作x轴的垂线,点P到该垂线的距离为2a由勾股定理y2+4a2=4b24c(2a﹣c)+4a2=4(c2﹣a2)得e=.故答案为:.【点评】本小题主要考查双曲线的标准方程,以和双曲线的简单性质的应用,等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.12.设直线l过点P(0,3),和椭圆交于A、B两点(A在B上方),试求的取值范围.【分析】当直线l的斜率不存在时,A点坐标为(0,2),B点坐标为(0,﹣2),这时=.当直线l斜率为k时,直线l方程为y=kx+3,设A点坐标为(x1,y1),B点坐标为(x2,y2),则向量AP=(﹣x1,3﹣y1),向量PB=(x2,y2﹣3),所以=,因为直线y=kx+3与椭圆有两个交点,且它们的横坐标不同,把y=kx+3代入后的一元二次方程(9k2+4)x2+54k+45=0的判别式(54k)2﹣4(9k2+4)×45>0,所以k>3或k<﹣.由此入手能够求出的范围.【解答】解:当直线l的斜率不存在时,A点坐标为(0,2),B点坐标为(0,﹣2),这时=.当直线l斜率为k时,直线l方程为y=kx+3,设A点坐标为(x1,y1),B点坐标为(x2,y2),则向量AP=(﹣x1,3﹣y1),向量PB=(x2,y2﹣3),所以=,因为直线y=kx+3与椭圆有两个交点,且它们的横坐标不同,把y=kx+3代入后的一元二次方程(9k2+4)x2+54k+45=0的判别式(54k)2﹣4(9k2+4)×45>0,所以k>或k<﹣,设=λ,则x1=λx2,因为x1+x2=﹣,x1x2=,所以(1+λ)x2═﹣,(1)λx22=,(2)显然λ不等于1,解得0<λ<1.综上所述的范围是[).故答案为:[).【点评】本题考查直线与圆锥曲线的综合问题,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.13.直线l过椭圆的左焦点F,且与椭圆相交于P、Q两点,M为PQ 的中点,O为原点.若△FMO是以OF为底边的等腰三角形,则直线l的方程为.【分析】由椭圆的方程求出椭圆的左焦点,由题意可知直线l的斜率存在且不等于0,写出直线l的方程,和椭圆方程联立后利用根与系数关系得到PQ中点M的横坐标,再由△FMO是以OF为底边的等腰三角形得到M的横坐标,两数相等求出k的值,则直线l的方程可求.【解答】解:由,得a2=2,b2=1,所以c2=a2﹣b2=2﹣1=1.则c=1,则左焦点F(﹣1,0).由题意可知,直线l的斜率存在且不等于0,则直线l的方程为y=kx+k.设l与椭圆相交于P(x1,y1)、Q(x2,y2),联立,得:(2k2+1)x2+4k2x+2k2﹣2=0.所以.则PQ的中点M的横坐标为.因为△FMO是以OF为底边的等腰三角形,所以.解得:.所以直线l的方程为.故答案为.【点评】本题考查了直线与圆锥曲线的关系,考查了设而不求的方法,解答此题的关键是由△FMO是以OF为底边的等腰三角形得到M点的横坐标,此题是中档题.14.椭圆Γ:=1(a>b>0)的左右焦点分别为F1,F2,焦距为2c,若直线y=与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.【分析】由直线可知斜率为,可得直线的倾斜角α=60°.又直线与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,可得,进而.设|MF2|=m,|MF1|=n,利用勾股定理、椭圆的定义和其边角关系可得,解出a,c即可.【解答】解:如图所示,由直线可知倾斜角α与斜率有关系=tanα,∴α=60°.又椭圆Γ的一个交点满足∠MF1F2=2∠MF2F1,∴,∴.设|MF2|=m,|MF1|=n,则,解得.∴该椭圆的离心率e=.故答案为.【点评】本题综合考查了直线的斜率与倾斜角的关系、勾股定理、含30°角的直角三角形的边角关系、椭圆的定义、离心率等基础知识,考查了推理能力和计算能力即数形结合的思想方法.15.椭圆+=1(a为定值,且a>)的左焦点为F,直线x=m与椭圆交于点A,B,△FAB的周长的最大值是12,则该椭圆的离心率是.【分析】先画出图象,结合图象以和椭圆的定义求出△FAB的周长的表达式,进而求出何时周长最大,即可求出椭圆的离心率.【解答】解:设椭圆的右焦点E.如图:由椭圆的定义得:△FAB的周长为:AB+AF+BF=AB+(2a﹣AE)+(2a﹣BE)=4a+AB ﹣AE﹣BE;∵AE+BE≥AB;∴AB﹣AE﹣BE≤0,当AB过点E时取等号;∴△FAB的周长:AB+AF+BF=4a+AB﹣AE﹣BE≤4a;∴△FAB的周长的最大值是4a=12⇒a=3;∴e===.故答案:.【点评】本题主要考察椭圆的简单性质.在解决涉和到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口.。
圆锥曲线综合练习题(有答案)

圆锥曲线综合练习一、 选择题:1.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .82.直线220x y -+=经过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A B .12 C D .233.设双曲线22219x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .14.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B C D 5.已知双曲线22221(00)x y a b a b-=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N ,两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( )A B C D 6.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( )A .0B .1C .2D .7.双曲线221259x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .28.P 为双曲线221916x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则||||PM PN -的最大值为( )A .6B .7C .8D .99.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .1610.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =,则以B C ,为焦点,且过D E ,的双曲线离心率为( )A B 1 C 1 D 111.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2by x a=-的焦点坐标是( )A .5(0)16-, B .2(0)5-, C .1(0)5-, D .1(0)5, 12.已知12A A ,分别为椭圆2222:1(0)x y C a b a b+=>>的左右顶点,椭圆C 上异于12A A ,的点P恒满足1249PA PA k k ⋅=-,则椭圆C 的离心率为( )A .49 B .23 C .59D 513.已知2212221(0)x y F F a b a b+=>>、分别是椭圆的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0OA OB +=(O 为坐标原点),2120AF F F ⋅=2, 则直线AB 的方程是( ) A . 22y =B .22y x =C .3y =D .3y = 14.已知点P 是抛物线22y x =上的一个动点,则点P 到点(02)M ,的距离与点P 到该抛物线准线的距离之和的最小值为A .3B 17C 5D .9215.若椭圆221x y m n+=与双曲线221(x y m n p q p q -=,,,均为正数)有共同的焦点F 1,F 2,P 是两曲线的一个公共点,则12||||PF PF ⋅等于 ( )A .m p +B .p m -C .m p -D .22m p -16.若()P a b ,是双曲线22416(0)x y m m -=≠上一点,且满足20a b ->,20a b +>,则该点P 一定位于双曲线( ) A .右支上 B .上支上 C .右支上或上支上 D .不能确定17.如图,在ABC △中,30CAB CBA ∠=∠=,AC BC ,边上的高分别为BD AE ,,则以A B , 为焦点,且过D E ,的椭圆与双曲线的离心率的倒数和为( ) A .3 B .1 C .32D .218221sin 2sin 3cos 2cos 3=--表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线19.已知12F F ,是椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=记线段1PF 与y 轴的交点为Q ,O 为坐标原点,若1FOQ △与四边形2OF PQ 的面积之比为1:2,则该椭圆的离心率等于 ( ) A .23 B .33 C .43- D 3120.已知双曲线方程为2214y x -=,过(21)P -,的直线L 与双曲线只有一个公共点,则直线l 的条数共有( )A .4条B .3条C .2条D .1条 21.已知以1(20)F -,,2(20)F ,为焦点的椭圆与直线340x y +=有且仅有一个交点,则椭圆的长轴长为( ) A .2 B .6 C .7 D .222.双曲线22221x y a b-=与椭圆22221x y m b +=(00)a m b >>>,的离心率互为倒数,那么以a b m ,,为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形23.已知点(10)(10)A B -,,,及抛物线22y x =,若抛物线上点P 满足PA m PB =,则m 的最大值为( ) A .3 B .2 CD24.设12F F ,是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32x a =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为( )A .12B .23C .34D .4525.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A B ,两点,||AB =则C 的实轴长为( )AB. C .4 D .826.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A B ,两点,||12AB =,P 为C 准线上一点,则ABP △的面积为( )A .18B .24C .36D .48 27.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(42)-,,则它的离心率为( ) ABCD28.椭圆221ax by +=与直线1y x =-交于A B ,两点,过原点与线段AB中点的直线的斜率为,则ab的值为( ) AB. C.29.若椭圆221(00)x y m n m n +=>>,与曲线22||x y m n +=-无焦点,则椭圆的离心率e 的取值范围是( )A.1) B.(0 C.1) D.(0 30.已知12F F ,分别是椭圆22143x y +=的左、右焦点,A 是椭圆上一动点,圆C 与1F A 的延长线、12F F 的延长线以及线段2AF 相切,若(0)M t ,为一个切点,则( )A .2t =B .2t >C .2t <D .t 与2的大小关系不确定31.如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点A B ,,交其准线于点C ,若||2||BC BF =,且||3AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x = D.2y32.已知椭圆2214x y +=的焦点为12F F 、,在长轴12A A 上任取一点M,过M 作垂直于12A A 的直线交椭圆于P ,则使得120PF PF ⋅<的M 点的概率为( D ) ABC .12D33.以O 为中心,12F F ,为两个焦点的椭圆上存在一点M ,满足12||2||2||MF MO MF ==,则该椭圆的离心率为( ) AB .23CD34.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( ) A. B .2 C .1 D .035.在抛物线25(0)y x ax a =+-≠上取横坐标为1242x x =-=,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线的顶点坐标为( ) A .(29)--, B .(05)-, C .(29)-, D .(16)-,36.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为( ) A .2 B .3 C .6 D .837.直线3440x y -+=与抛物线24x y =和圆22(1)1x y +-=从左到右的交点依次为A B C D ,,,,则||||AB CD 的值为( )A .16B .116 C .4 D .1438.如图,双曲线的中心在坐标原点O ,A C ,分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F 是双曲线的左焦点,直线AB 与FC 相交于点DBDF 的余弦是( )ABC D39.设双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,若在双曲线的右支上存在一点P ,使得12||3||PF PF =,则双曲线C 的离心率e 的取值范围为( )A .(12],B .2]C .2)D .(12),40.已知11()A x y ,是抛物线24y x =上的一个动点,22()B x y ,是椭圆22143x y +=上的一个动点,(10)N ,是一个定点,若AB ∥x 轴,且12x x <,则NAB △的周长l 的取值范围为( )A .10(5)3,B .8(4),C .10(4)3,D .11(5)3,41.2=e ,右焦点(0)F c ,,方程20ax bx c +-=的两个根分别为1x ,2x ,则点12()P x x ,在( )A .圆1022=+y x 内 B .圆1022=+y x 上 C .圆1022=+y x 外 D .以上三种情况都有可能42.过双曲线22221(00)x y a b a b-=>>,的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点, 则双曲线的离心率是( )A B C .2 D43.若双曲线22221(0,0)x y a b a b-=>>上不存在点P 使得右焦点F 关于直线OP(O 为双曲线的中心)的对称点在y轴上,则该双曲线离心率的取值范围为( )A .)+∞B .)+∞C .D .44.已知以椭圆)0(12222>>=+b a by a x 的右焦点F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是( )A B C D 45的左准线l ,左.右焦点分别为F 1.F 2,抛物线C 2的准线为l ,焦点是F 2,C 1与C 2的一个交点为P ,则|PF 2 )A B C .4 D .846.已知F 1、F 2是双曲线 12222=-by a x (a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( ) A .4+32 B.3+1 C.3—1 D.213+47.已知双曲线)0,0(12222>>=-b a by a x 的左顶点、右焦点分别为A 、F,点B (0,b ),-=+,则该双曲线离心率e 的值为( )A .213+ B C .215- D .248.直线l 是双曲线22221(0,0)x y a b a b-=>>的右准线,以原点O 为圆心且过双曲线焦点的圆被直线l 分成弧长为2:1的两段,则双曲线的离心率为( )A .B .C .2D .49.从双曲线)0,0(12222>>=-b a by a x 的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则MT MO -与a b -的大小关系为 A .a b MT MO ->- B .a b MT MO -=- C .a b MT MO -<-D .不确定.50.点P 为双曲线1C :()0,012222>>=-b a by a x 和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为( ) A .3B .21+C .13+D .251.设圆锥曲线r 的两个焦点分别为12F F ,,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于 A .1322或B .23或2C .12或2 D .2332或 52.已知点P 为双曲线22221(00)x y a b a b -=>>,右支上一点,12F F ,分别为双曲线的左、右交点,I 为22PF F △的内心,若1212IPF IPF IF F S S S λ=+△△△成立,则λ的值为( )AB C .b a D .ab二、填空题:53.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点.若22||||12F A F B +=,则||AB = . 54.中心在原点,焦点在x 轴上,且长轴长为4,离心率为12的椭圆的方程为 . 55.9.已知双曲线221y x a-=的一条渐近线与直线230x y -+=垂直,则a = .56.已知P 为椭圆22194x y +=上的点,12F F ,是椭圆的两个焦点,且1260F PF ∠=,则12F PF △ 的面积是 . 57.已知双曲线22221(00)x y a b a b -=>>,和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .58.若双曲线22221(00)x y a b a b -=>>,的一条渐近线与椭圆22143x y +=的焦点在x 轴上的射影恰为该椭圆的焦点,则双曲线的离心率为 . 59.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,过点2F 做与x 轴垂直的直线与双曲线一个焦点P ,且1230PF F ∠=,则双曲线的渐近线方程为 .60.已知12F F 、分别为椭圆221259x y +=的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若12||||4PF PF -=,则12()PQ PF PF ⋅-= 。
高考数学一轮复习《圆锥曲线》练习题(含答案)

高考数学一轮复习《圆锥曲线》练习题(含答案)一、单选题1.双曲线2228x y -=的渐近线方程是( ) A .12y x =±B .2y x =±C .2y x =±D .22y x =±2.已知双曲线()2222100x y a b a b-=>>,的左右焦点分别为()()1200F c F c -,,,,若直线2y x =与双曲线的一个交点P 的横坐标恰好为c ,则双曲线的离心率为( ) A .5B .2C .21+D .21-3.如图,在体积为3的三棱锥P-ABC 中,P A ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ⊥,则点M 的轨迹长度的最大值为( )A .3B .6C .23D .324.抛物线22y x =的焦点坐标为( ).A .1,02⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭D .10,8⎛⎫- ⎪⎝⎭5.设抛物线y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A ,B ,点A 在第一象限,且|AF |﹣|BF |32=,则AF BF =( ) A .32B .2C .3D .46.已知抛物线M :24y x =的焦点为F ,O 是坐标原点,斜率为()0k k >的直线l 交抛物线M 于A ,B 两点,且点A ,B 分别位于第一、四象限,交抛物线的准线l '于点C .若2ACFABFSS=,2BF =,则AOBS=( )A .33-B .33+C .2D .231+7.若双曲线的中心为坐标原点,焦点在y 轴上,其离心率为2,则该双曲线的渐近线方程为( ) A .3y x =±B .33y x =±C .4y x =±D .14y x =±8.已知双曲线E 的左、右焦点分别为12,F F ,O 为坐标原点.若点P 在E 上,2OP OQ =-,22PF OF =,1132QF OF =,则E 的离心率为A .2B .2C .5D .31+9.设1F ,2F 是离心率为5的双曲线222124x y a -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于A .42B .83C .24D .4810.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,直线20l :x y '-+=,动点M 在C 上运动,记点M 到直线l 与l ′的距离分别为d 1,d 2,O 为坐标原点,则当d 1+d 2最小时,cos ∠MFO =( ) A .22B .23C .24D .2611.如图,已知正方体1111ABCD A B C D -的棱长为1,,M N 分别是棱1,AA BC 上的动点,若2MN =,则线段MN 的中点P 的轨迹是( )A .一条线段B .一段圆弧C .一部分球面D .两条平行线段12.已知拋物线21:2(0)C y px p =>的焦点F 为椭圆22222:1(0)x y C a b a b+=>>的右焦点,且1C与2C 的公共弦经过F ,则椭圆的离心率为( )A 1B C D二、填空题13.已知点(3,2)在椭圆221(0,0)x y m n m n+=>>上,则点(-3,3)与椭圆的位置关系是__________.14.过点且渐近线与双曲线22:12x C y -=的渐近线相同的双曲线方程为______.15.焦点在y 轴上的双曲线221y mx -=,则m 的值为___________.16.已知过抛物线C :y 2=8x 焦点的直线交抛物线于A ,B 两点,过点A 作抛物线准线的垂线,垂足为M ,AB BM =,则A 点的横坐标为___.三、解答题17.求经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的标准方程.18.已知椭圆C :22143x y +=,过椭圆右焦点的直线l 与椭圆交于M ,N 两点,求MN 的取值范围.19.已知椭圆()2222:10x y C a b a b+=>>的离心率12e =,且椭圆C 经过点31,2P ⎛⎫-- ⎪⎝⎭.(1)求椭圆C 的方程.(2)不过点P 的直线:2l y kx =+与椭圆C 交于A ,B 两点,记直线P A ,PB 的斜率分别为1k ,2k ,试判断12k k +是否为定值.若是,求出该定值;若不是,请说明理由.20.在平面直角坐标系xOy 中,已知椭圆221:195x y C +=与()222206:136x y b C b =<<+的离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A ,B 两点,射线OB 与椭圆2C 交于点C ,椭圆2C 的右顶点为D .(1)求椭圆2C 的标准方程;(2)若ABO 10,求直线AB 的方程; (3)若2AF BF =,求证:四边形AOCD 是平行四边形.21.已知(0,2),(3,1)A B 是椭圆2222:1(0)x y G a b a b+=>>上的两点.(1)求椭圆G 的离心率;(2)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.22.已知椭圆C 的离心率2e =()10,1B -,()20,1B . (1)求椭圆C 的方程;(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,且与直线2x =相交于点Q .问在x 轴上是否存在定点N ,使得以PQ 为直径的圆恒过定点N ,若存在,求出N 点坐标;若不存在,说明理由.23.已知点P 在圆22:4O x y +=上运动,PQ x ⊥轴,垂足为Q ,点A 满足12AQ PQ =. (1)求点A 的轨迹E 的方程;(2)过点30,2⎛⎫⎪⎝⎭的直线l 与曲线E 交于,M N 两点,记OMN ∆的面积为S ,求S 的最大值.24.已知抛物线1C :()220x py p =>的焦点为F ,圆2C :()()22284x y +++=,过y 轴上点G 且与y 轴不垂直的直线l 与抛物线1C 交于A 、B 两点,B 关于y 轴的对称点为D ,O 为坐标原点,连接2GC 交x 轴于点E ,且点E 、F 分别是2GC 、OG 的中点. (1)求抛物线1C 的方程; (2)证明:直线AD 与圆2C 相交参考答案1.C2.C3.A4.C5.B6.B7.B8.D9.C10.A11.B12.A 13.点在椭圆外 14.22163x y -=15.4 16.417.设所求的等轴双曲线的方程为:()220x y λλ-=≠,将(3,1)A -代入得:()2231λ--=,即=8λ, 所以等轴双曲线的标准方程:22188x y -=18.解:由椭圆C :22143x y +=知,2a =,b =1c =,所以椭圆C 的右焦点为()1,0F .当直线l 的斜率不存在时,223b MN a==. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,将其代入椭圆C 的方程得()22223484120kxk x k +-+-=.设()11,M x y ,()22,N x y ,则2122834k x x k +=+,212241234k x x k -=+, 所以=MN ()222121333434+==+++k k k因为20k ≥,所以(]3,4MN ∈. 综上,MN 的取值范围是[]3,4. 19.(1)因为12c e a ==,所以2a c =,所以222234b a c a =-=.因为椭圆C 过31,2P ⎛⎫-- ⎪⎝⎭,所以221914a b +=,所以24a =,23b =,故椭圆C 的标准方程为22143x y +=. (2)因为直线l 不过31,2P ⎛⎫-- ⎪⎝⎭,且直线P A ,PB 的斜率存在,所以72k ≠且12k ≠.设()11,A x y ,()22,B x y ,联立方程组222143y kx x y =+⎧⎪⎨+=⎪⎩,得()22341640k x kx +++=, 则1221634k x x k +=-+,122434x x k =+. 由()()221616340k k ∆=-+>,得214k >且72k ≠.因为()()12121212121212121273377272222211111kx x k x x y y kx kx k k x x x x x x x x ⎛⎫++++++++ ⎪⎝⎭+=+=+=+++++++, 所以2221222271682712482134343416416713434k k k k k k k k k k k k k k ⎛⎫+ ⎪⎝⎭-+-++++===-+-+++, 即12k k +为定值,且123k k +=.20.(1)由题意知,椭圆1C 的长轴长126a =,短轴长12b =124c ==, 椭圆2C 的长轴长2212a =,短轴长2b ,焦距22c =.因为椭圆1C 与2C 的离心相等,所以1212c c a a =,即23= 因为06b <<,所以220b =,所以椭圆2C 的标准方程为2213620x y +=.(2)因为椭圆1C 右焦点为()2,0F ,且A ,O ,B 三点不共线, 设直线AB 的方程为2x my =+,联立22195x y +=,消x 得()225920250m y my ++-=.设()11,A x y ,()22,B x y ,()22(20)100590m m ∆=++>,所以1,2y ==, 即1212222025,5959m y y y y m m -+=-=++. 因为121212111||||||222ABOAOFBOFSS SOF y OFy O y y y F y =+=+=-=-==, 化简得4259m=,所以m =, 所以直线AB 的方程为2x y =+,即5100x ±-=. (3)因为2AF BF =,所以2AF FB =.因为()()1122,,,,(2,0)A x y B x y F ,所以()()11222,22,x y x y --=-,所以121262,2.x x y y =-⎧⎨=-⎩ 因为()()1122,,,A x y B x y 在椭圆22195x y +=上, 所以221122221,951,95x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以()222222226241,951,95x y x y ⎧-+=⎪⎪⎨⎪+=⎪⎩消2y ,得2218x =. 代入2222195x y +=,由对称性不妨设120,0y y ><,所以2y =从而得,113,4x y ==即321,,48A B ⎛⎛ ⎝⎭⎝⎭.所以OC k =,直线OC的方程为y x =, 联立2213620x y +=,得244116x =.由题知0x >,所以21,4x y ==21,4C ⎛ ⎝⎭.又(6,0)D,所以OA CD k k ==又因为,OA CD 不共线,所以//OA CD ,又AD OC k k ==,且,OC AD 不共线,所以//OC AD . 所以四边形AOCD 是平行四边形. 21.解:(1)由已知2b =, 由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==所以2228,c a b c =-== 所以椭圆G的离心率是c e a ==; (2)当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件; 设直线BC 的方程为1(3)y k x -=-),点(),C C C x y ,由22131124y kx kx y =+-⎧⎪⎨+=⎪⎩可得()222316(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B 和点C 的横坐标, 所以223(13)12331C k x k --=+,即22(13)431C k x k --=+,所以2236131C k k y k --+=+,因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=,2222963961(3,1),3131k k k k AB AC k k ⎛⎫-----⋅=-⋅ ⎪++⎝⎭2236128031k k k --==+, 即(32)(31)0k k -+=, 123k ,213k =-, 当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以123BC k k ==, 所以直线BC 的方程为213y x =-. 22.(1)由题意可设椭圆为22221x y a b+=由题意可得c e a ==1b =,可得a =所以椭圆的方程为:2212x y +=.(2)联立2222y kx m x y =+⎧⎨+=⎩,整理可得:()222124220k x kmx m +++-=, 由题意可得()()222216412220k m k m ∆=-+-=,可得2212m k =+;可得()242212P km k x m k -==-+,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭. 联立2y kx mx =+⎧⎨=⎩,可得2Q x =,2Q y k m =+,即()2,2Q k m +,设在x 轴上存在()0,0N x .由0PN QN ⋅=,可得()0021,2,20k x x k m m m ⎛⎫+-⋅---= ⎪⎝⎭,可得200242210k k k x x m m m ⎛⎫+--++= ⎪⎝⎭, 即()200022110kx x x m-++-=, 可得20002101x x x ⎧-+=⎨=⎩,可得01x =,即定点()1,0N .23.(1)设(,)A x y ,11(,)P x y , ∵12AQ PQ =,∴A 为PQ 的中点, ∴11,2,x x y y =⎧⎨=⎩∴22(2)4x y +=,即2214x y +=.∴点A 的轨迹E 的方程2214x y +=.(2)显然直线l 的斜率存在,设直线l 的方程为32y kx =+,将直线方程代入椭圆方程中得22(14)1250k x kx +++=, ∴222251444(14)56420016k k k k ∆=-⨯+=->⇒>. 设1122(,),(,)M x y N x y ,∴12133||224OMN POM PON S S S x x ∆∆∆=-=⨯⨯-=令2914()4t k t =+>,则214k t -=,∴3344OMN S S ∆====∵914049t t >⇒<<,∴129t =时,34143OMN S ∆≤⨯=,∴S 的最大值1.24.(1)设点()0,0E x ,()00,G y ,因为圆2C :()()22284x y +++=,所以圆心()22,8C --,因为点E 是2GC 的中点,所以00202820x y -+=⎧⎨-+=⨯⎩,解得0018x y =-⎧⎨=⎩,则点()0,8G ,因为点F 是OG 的中点, 所以()0,4F ,则42p=,解得8p =, 故抛物线的方程为216x y =.(2)因为B 关于y 轴的对称点为D , 所以设()11,B x y ,()22,A x y ,()11,D x y -,设直线AB 的方程为8y kx -=,即80kx y -+=,联立28016kx y x y-+=⎧⎨=⎩,消去x 得()22161640y k y -++=,则1264y y =, 设直线AD 的方程为y mx n =+,联立216y mx n x y=+⎧⎨=⎩,消去x 得()2221620y m n y n -++=,则212y y n =, 故264n =,易知0n <,则8n =-,直线AD 的方程为8y mx =-,必过定点()0,8-, 而圆2C :()()22284x y +++=正好与y 轴交于定点()0,8-, 且过点()0,8-的所有直线中,只有与y 轴重合的直线才能与圆2C :()()22284x y +++=相切,直线AD 显然不可能是y 轴,因此,直线AD 与圆2C 相交.。
(完整版)圆锥曲线练习题含标准答案(最新整理)

当 0 m 1 时,
y2 1
x2 1
1, e2
a2 b2 a2
1m
3,m 4
1 ,a2 4
1 m
4, a
2
m
20. x2 y2 1 20 5
设双曲线的方程为 x2 4 y2 , ( 0) ,焦距 2c 10, c2 25
5 /9
当
0 时,
x2
y2
1,
4
25,
20 ;
4
当
0
时,
y2
x2
1,
(
)
4
25,
20
4
21. (, 4) (1, ) (4 k)(1 k) 0, (k 4)(k 1) 0, k 1,或k 4
22. x 3 2 p 6, p 3, x p 3
2
22
23.1
焦点在 y 轴上,则 y2 x2 1, c2 5 1 4, k 1
28. ( 7, 0) 渐近线方程为 y m x ,得 m 3, c 7 ,且焦点在 x 轴上 2
29. b2 a2
设A( x1 ,y1), NhomakorabeaB(x2 ,
y2
)
,则中点
M
(
x1
2
x2
,
x
, 2
x2
8x
4
0,
x1
x2
8,
y1
y2
x1
x2
4
4
中点坐标为 ( x1 x2 , y1 y2 ) (4, 2)
2
2
27. , 2
t2 设 Q(
,t) ,由
PQ
a
t2 得(
最新高考经典圆锥曲线习题(含答案)

16.(2005重庆文)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为
(1)求双曲线C的方程;(2)若直线 与双曲线C恒有两个不同的
交点A和B,且 (其中O为原点).求k的取值范围.
(Ⅱ)设直线 与C交于A,B两点.k为何值时 ?此时 的值是多少?
19.(2002广东、河南、江苏)A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
20.(2007福建理)如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且 = 。(1)求动点P的轨迹C的方程;
18.解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以 为焦点,
长半轴为2的椭圆.它的短半轴 ,故曲线C的方程为 .
(Ⅱ)设 ,其坐标满足
消去y并整理得 ,故 .
,即 .而 ,
于是 .
所以 时, ,故 .
当 时, , .
,
而 ,
所以 .
19.解:(1)依题意,可设直线方程为y=k(x-1)+2
高考圆锥曲线试题精选
一、选择题:(每小题5分,计50分)
1、(2008海南、宁夏文)双曲线 的焦距为()
A. 3 B. 4 C. 3 D. 4
2.(2004全国卷Ⅰ文、理)椭圆 的两个焦点为F1、F2,过F1作垂直于x轴的
直线与椭圆相交,一个交点为P,则 =()
A. B. C. D.4
圆锥曲线历年高考题 选择填空(非常好的一份基础夯实资料)

第 1 页 共 2 页高考数学:圆锥曲线基础试题一、选择题:1.(2013安徽 )椭圆1422=+y x 的离心率为( )(A )23 (B )43 (C )22 (D )32 2.(2013上海 )设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( ) A .4 B .5 C .8 D .103.(2013广东)若焦点在x 轴上的椭圆1222=+my x 的离心率为21,则m=( ) A .3 B .23 C .38 D .324.(2013全国Ⅱ卷 、理)已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )(A )2 3 (B )6 (C )4 3 (D )12 5.(2013北京 )如图,直线022:=+-y x l 过椭圆的左焦点 F 1和 一个顶点B ,该椭圆的离心率为( )A .51B .52C .55D .5526.(2013春招北京 、理)已知椭圆的焦点是F 1、F 2、P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ|=|PF 2|,那么动点Q 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线 7.(2013福建 、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )(A )32 (B )33 (C )22 (D )238.(2013重庆 )已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为( )(A )23 (B )62 (C )72 (D )24二、填空题:9.(2013全国Ⅰ卷 )在ABC △中,90A ∠= ,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = . 10.(2013上海理)已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .11.(2013江苏)在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆192522=+y x 上,则sin sin sin A CB += .12.(2013春招北京、内蒙、安徽 、理)椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.一、选择题:1.(2013全国卷Ⅱ ,2013春招北京 、理)双曲线22149x y -=的渐近线方程是( ) (A )23y x =± (B )49y x =± (C )32y x =± (D )94y x =±2.(2013全国Ⅰ卷 、理)双曲线221mx y +=的虚轴长是实轴长的2倍,则m =( )A .14-B .4-C .4D .143.(2013春招北京、安徽 、理)双曲线12222=-ay b x 的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2B .3C .2D .234.(2013全国Ⅰ 、理)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( )(A )112422=-y x (B )141222=-y x (C )161022=-y x (C )110622=-y x 5.(2013辽宁 ) 已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( ) A .1 B .2 C .3 D .46.(2013全国卷III 、理)已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅= 则点M 到x 轴的距离为( )A .43B .53C .233D .37.(2013福建 、理)双曲线22221x y a b-=(a >0,b >0)的两个焦点为12,F F ,若P 为其上的一点,且12||2||PF PF =,则双曲线离心率的取值范围为( )A.(1,3) B.(1,3] C.(3,)+∞ D.[3,)+∞8.(2013安徽理)如图,1F 和2F 分别是双曲线)0,0(12222 b a br a x =-的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为( ) (A )3 (B )5 (C )25(D )31+二、填空题:。
(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线高考选择填空压轴题专练A 组一、选择题1.过抛物线C : 24y x =上一点()00,P x y 作两条直线分别与抛物线相交于A , B 两点,连接AB ,若直线AB 的斜率为1,且直线PA , PB 与坐标轴都不垂直,直线PA ,PB 的斜率倒数之和为3,则0y =( )A. 1B. 2C. 3D. 4 【答案】D【解析】设直线,PA PB 的斜率分别为12,k k ,因为点()00,P x y 在抛物线24y x =上,所以200,4y P y ⎛⎫⎪⎝⎭,故直线PA 的方程为20014y y y k x ⎛⎫-=- ⎪⎝⎭ ,代入抛物线方程得220011440y y y y k k -+-= ,其解为0y 和014y k - ,则()201021144,4y k A y k k ⎛⎫- ⎪- ⎪⎝⎭ ,同理可得()202022244,4y k B y k k ⎛⎫- ⎪- ⎪⎝⎭,则由题意,得()()001222010222124414444y y k k y k y k k k ⎛⎫--- ⎪⎝⎭=--- ,化简,得01211214y k k ⎛⎫=+-=⎪⎝⎭, 故选D. 2.已知双曲线221221(0,0)x y C a b a b-=>>:,抛物线224C y x =:, 1C 与2C 有公共的焦点F , 1C 与2C 在第一象限的公共点为M ,直线MF 的倾斜角为θ,且12cos 32aaθ-=-,则关于双曲线的离心率的说法正确的是()A. 仅有两个不同的离心率12,e e 且()()121,2,4,6e e ∈∈B. 仅有两个不同的离心率12,e e 且()()122,3,4,6e e ∈∈ C. 仅有一个离心率e 且()2,3e ∈ D. 仅有一个离心率e 且()3,4e ∈ 【答案】C 【解析】24y x = 的焦点为()1,0 , ∴ 双曲线交点为()1,0,即1c = ,设M 横坐标为x ,则0000011,1,121p a x ex a x x a x a a++=-+=-=- ,001111112cos 1132111a x aa a x a aθ+----===++-+- , 可化为2520a a -+= , ()22112510,2510g e e e a a ⎛⎫⨯-⨯+==-+= ⎪⎝⎭,()()()()200,10,20,30,1,2510g g g g e e e >∴-+= 只有一个根在()2,3 内,故选C.3.已知点1F 、2F 是椭圆22221(0)x y a b a b+=>>的左右焦点,过点1F 且垂直于x 轴的直线与椭圆交于A 、B 两点,若2ABF 为锐角三角形,则该椭圆的离心率的取值范围是( )A. ()1 B.⎫⎪⎪⎝⎭C.⎛⎝⎭D. )1,1【答案】D【解析】由于2ABF 为锐角三角形,则2212145,tan 12b AF F AF F ac∠<∠=<, 22b ac < , 2222,210a c ac e e -+-,1e <或1e >,又01e <<,11e << ,选D .4.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且2213AF F B =,则该双曲线的离心率为A.B. C. D. 2【答案】A【解析】由()2,0F c 到渐近线by x a=的距离为d b == ,即有2AF b = ,则23BF b = ,在2AF O ∆ 中, 22,,,bOA a OF c tan F OA a==∠=224tan 1bb a AOB a b a ⨯∠==⎛⎫- ⎪⎝⎭,化简可得222a b = ,即有222232c a b a =+= ,即有62c e a == ,故选A. 5.焦点为F 的抛物线C : 28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为( )A. 2y x =+或2y x =--B. 2y x =+C. 22y x =+或22y x =-+D. 22y x =-+ 【答案】A【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF===∠∠,则当MA MF取得最大值时, MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k =-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .6.设A 是双曲线22221(0,0)x y a b a b-=>>的右顶点, (),0F c 是右焦点,若抛物线224a y x c=-的准线l 上存在一点P ,使30APF ∠=,则双曲线的离心率的范围是( )A. [)2,+∞B. (]1,2C. (]1,3D. [)3,+∞ 【答案】A【解析】抛物线的准线方程为2a x c =,正好是双曲的右准线.由于AF= c a -,所以AF弦,圆心)2a c O c a ⎛⎫+- ⎪ ⎪⎝⎭,半径R c a =-圆上任取一点P, 30APF ∠=,现在转化为圆与准线相交问题.所以()22a c a c a c+-≤-,解得2e ≥.填A. 7.中心为原点O 的椭圆焦点在x 轴上, A 为该椭圆右顶点, P 为椭圆上一点,090OPA ∠=,则该椭圆的离心率e 的取值范围是 ( )A. 1,12⎡⎫⎪⎢⎣⎭B. ,12⎛⎫⎪ ⎪⎝⎭C. 1,23⎡⎫⎪⎢⎪⎣⎭D. 0,2⎛ ⎝⎭【答案】B【解析】设椭圆标准方程为22221(0)x y a b a b+=>>,设P(x,y),点P 在以OA 为直径的圆上。
圆的方程: 22222a a x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,化简为220x ax y -+=,2222220{1(0)x ax y x y a b a b-+=+=>>可得()2223220b a x a x a b -+-=。
则22,0,ab x x a c =<<所双220,ab a c<<1e <<,选B. 8.正三角形ABC 的两个顶点,A B 在抛物线22(0)x py p =>上,另一个顶点C 是此抛物线焦点,则满足条件的三角形ABC 的个数为( )A. 0B. 1C. 2D. 3 【答案】C【解析】由题可知其焦点为0,2p F ⎛⎫ ⎪⎝⎭作倾斜角为60︒与倾斜角为120︒的直线,分别与抛物线22(0)x py p =>相交天两点,,,A B C D .如图,则,AFC BFD 均为正三角形.故本题答案选C .9.设F 为抛物线2:2(0)C y px p =>的焦点,曲线(0)ky k x=>与C 相交于点A ,直线FA 恰与曲线(0)ky k x =>相切于点A , FA 交C 的准线于点B ,则FA BA等于( )A.14 B. 13 C. 23 D. 34【答案】B【解析】由22{y px k y x==解得332{2x pk y pk ==,又对k y x =, 2'k y x =-,所以3232232224FA pkkk pk p k ==-,化简得242k =,所以342px pk==, 124342F AA Bp pFA x x p p AB x x --===-⎛⎫-- ⎪⎝⎭,故选B . 10.已知点P 在抛物线2y x =上,点Q 在圆()221412x y ⎛⎫++-= ⎪⎝⎭上,则PQ 的最小值为( )A.1B. 1C. 1D. 1 【答案】A【解析】设抛物线上点的坐标为()2,(0)P m m m >圆心1,42⎛⎫- ⎪⎝⎭与抛物线上的点的距离的平方:()222242114281624d m m m m m ⎛⎫=++-=+-+ ⎪⎝⎭令()4212816(0)4f m m m m m =+-+> , 则()()()2'412f m m m m =-++ ,由导函数与原函数的关系可得函数在区间()0,1 上单调递减,在区间()1,+∞ 上单调递增,函数的最小值为()11114f = , 由几何关系可得: PQ1=12-. 本题选择A 选项.11.已知椭圆M : 22221x y a b+=(0a b >>)的一个焦点为()1,0F,离心率为2,过点F 的动直线交M 于A , B 两点,若x 轴上的点(),0P t 使得APO BPO ∠=∠总成立(O 为坐标原点),则t =( ) A. 2- B. 2C.D.【答案】B【解析】在椭圆中1c =,c e a ==得a =,故1b =,故椭圆的方程为2212x y +=, 设()11,A x y , ()22,B x y ,由题意可知,当直线斜率不存在时, t 可以为任意实数,当直线斜率存在时,可设直线方程为()1y k x =-,联立方程组()221{12y k x x y =-+=,得()2222124220kx k x k +-+-=,∴2122412k x x k +=+, 21222212k x x k-⋅=+,使得APO BPO ∠=∠总成立,即使得PF 为APB ∠的平分线, 即有直线PA 和PB 的斜率之和为0,即有12120y yx t x t+=--,由111y k x =-(), ()221y k x =-,即有()()12122120x x t x x t -+++=,代入韦达定理,可得()22224441201212k k t t k k --++=++,化简可得2t =,故选B. 二、填空题12.已知抛物线2:4C y x =的焦点为F ,直线l 与抛物线C 相切于Q 点, P 是l 上一点(不与Q 重合),若以线段PQ 为直径的圆恰好经过F ,则PF 的最小值是__________.【答案】2【解析】根据抛物线的对称性设(,Q m,则QF k =,所以直线PF 的方程为)1y x =-,由24y x =,取y =,y '=,所以直线l的方程是)y x m -=-,联立))1{y x y x m =--=-,解得点P 的横坐标1x =-,所以点P 在抛物线的准线上运动,当点P 的坐标是()1,0-时, PF 最小,最小值是2.13.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(),0F c ,点P 在双曲线C 的左支上,若直线FP 与圆222:39c b E x y ⎛⎫-+= ⎪⎝⎭相切于点M 且2PM MF =,则双曲线C 的离心率值为__________.【解析】设双曲线C 的左焦点为1F ,由圆心,03cE ⎛⎫ ⎪⎝⎭可知, 12F E EF =,又2PM MF =,可知1//EM PF ,且13PF EM b ==,由双曲线的定义得2PF a b=+,1PF PF⊥,1F PFRt中,()()22222211222cF F F P FP c b a b b a e a=+⇒=++⇒=⇒==14.已知抛物线22(0)y px p =>的焦点为F ,过抛物线上点()02,P y 的切线为l ,过点P 作平行于x 轴的直线m ,过F 作平行于l 的直线交m 于M ,若5PM =,则p 的值为__________. 【答案】6【解析】设(2,P,由y =,得'y = ,则当2x = 时,'y =,所以过F 且与l 平行的直线方程为2p y x ⎫=-⎪⎝⎭,代入(M ,得742p-= ,解得6p =,故答案为6 . B 组一、选择题 1.两条抛物线21111:T y a x b x c =++,()222221212:0,0,T y a x b x c a a a a =++≠≠≠,联立方程消去2x 项,得直线211221122121:a b a b a c a cl y x a a a a --=+--,称直线l 为两条抛物线1T 和2T 的根轴,若直线:m x t =分别与抛物线222y x x =-++, ()21542y x x =-+及其根轴交于三点12,,P P P ,则12PP PP =( )A. 2B. 12C. 2tD. 12t 【答案】A【解析】抛物线222y x x =-++, ()21542y x x =-+的根轴为2y x =-+,所以12PP PP =()()()()222222232113254222tt t t tt t t t t-++--+-+==-+--+-+,故选A .2.已知12,F F 是椭圆和双曲线的公共焦点, P 是它们的一个公共点,且124F PF π∠=,则椭圆和双曲线的离心率乘积的最小值为() A.12B.2 C. 1 D.【答案】B【解析】设椭圆的长半轴长为1a ,双曲线的实半轴常为12121222{2PF PF a a PF PF a +=⇒-=1PF ⇒=()()()()22212,2121212121242cos 4a a PF a a c a a a a a a a a π+=-⇒=++--+-⇒((22211221112224224c a a e e e e -=+⇒=+≥=⇒122e e ≥,故选B. 3.设点12,F F 分别为双曲线: 22221(0,0)x y a b a b-=>>的左、右焦点,若在双曲线左支上存在一点P ,满足112PF F F =,点1F 到直线2PF 的距离等于双曲线的实轴长,则该双曲线的离心率为( )A.B. 43C. 54D. 53【答案】D【解析】由题意知212PF F F =,可知12PF F 是等腰三角形, 1F 在直线2PF 的投影是中点,可得24P F b ==,由双曲线定义可得422b c a -=,则2a cb +=,又222c a b =+,知225230a ac c +-=,可得23250e e --=,解得()513e =或舍去.故本题答案选D .4.已知椭圆M : 22221x y a b+=(0a b >>)的一个焦点为()1,0F过点F 的动直线交M 于A , B 两点,若x 轴上的点(),0P t 使得APO BPO ∠=∠总成立(O 为坐标原点),则t =( ) A. 2B.C. D. 2-【答案】A【解析】由题意可得椭圆方程为2212x y +=,很显然AB 斜率不存在时,t 可以为任意实数,当直线的斜率存在时,设AB 的方程为()1y k x =-其中()()1122,,,A x y B x y ,联立直线与椭圆的方程可得: ()2222124220k x k x k +-+-=,则: 22121222422,,1212k k x x x x k k -+==++ 由APO BPO ∠=∠知直线PA 与PB 的斜率之和为0,则: 12120y yx t x t+=--, 整理得: ()()12122120x x t x x t -+++=,故: ()22224144201212k t k t k k+--+=++, 解得: 2t =. 本题选择A 选项.5.已知动点P 在椭圆2213627x y +=上,若点A 的坐标为()3,0,点M 满足1AM =, 0PM AM ⋅=,则PM 的最小值是( )A.2 B.3 C. 22 D. 3【答案】C【解析】0PM AM PM AM ⋅=∴⊥ ,2222211PM AP AMAM PM AP ∴=-=∴=-,1AM =∴点M 的轨迹为以为以点A 为圆心,1为半径的圆,221PM AP =-, AP 越小, PM 越小,结合图形知,当P 点为椭圆的右顶点时, AP取最小值633a c -=-=, PM ∴23122-=故选:C .6.如图,两个椭圆的方程分别为22221(0)x y a b a b +=>>和()()22221x y ma mb +=(0a b >>, 1m >),从大椭圆两个顶点分别向小椭圆引切线AC 、BD ,若AC 、BD 的斜率之积恒为1625-,则椭圆的离心率为( )A.35 B. 34 C. 45D. 74【答案】A【解析】由题意知,外层椭圆方程为()()22221x y ma mb += ,设切线AC 的方程为()1y k x ma =-代入内层椭圆消去y 得:()2222232242211120k a b x mk a x m k a a b +-+-=由0∆=化简得221221,1b k a m =⋅-同理得()222221,b k m a =⋅-所以44222124443,.1(),555b b c b k k e a a a a ⎛⎫=====-= ⎪⎝⎭选A.7.已知双曲线22221(0,0)x y a b a b-=>>的左焦点是(),0F c -,离心率为e ,过点F 且与双曲线的一条渐近线平行的直线与圆222x y c +=在y 轴右侧交于点P ,若P 在抛物线22y cx =上,则2e =A.5 B.512C. 51D. 2【答案】D【解析】双曲线22221x y a b -=的渐近线方程为by x a=± ,据题意,可设直线PF 的斜率为b a ,则直线PF 的方程为: ()by x c a =+ ,解方程组()222{x y c by x c a +==+ 得{0x c y =-= 或 22{2a b x c ab y c-==.则 P 点的坐标为 222,a b ab c c ⎛⎫- ⎪⎝⎭.又点P 在抛物线22y cx =上,得22222ab a b c c c -⎛⎫=⋅⎪⎝⎭.可化为 442a c =,可知22e =.故本题答案选D8.在平面直角坐标系xOy 中,已知抛物线2:4C x y =,点P 是C 的准线 l 上的动点,过点P 作C 的两条切线,切点分别为,A B ,则AOB ∆面积的最小值为( )A.B. 2C. D. 4【答案】B【解析】设()()()01122,1,,,,P x A x y B x y -,因为2xy '=,则过点,A B 的切线()()22112212,4242x x x x y x x y x x -=--=-均过点()0,1P x -,则()()22112201021,14242x x x x x x x x --=---=-,即12,x x 是方程()20142x xx x --=-的两根,则120122,4x x x x x +==-,设直线AB 的方程为y kx b =+,联立24{x y y kx b==+,得2440x kx b --=,则1244x x b =-=-,即1b =,则2AOB S ∆==≥,即AOB ∆的面积的最小值为2;故选B.9.已知双曲线C : 22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,左、右顶点分别为A 、B ,虚轴的上、下端点分别为C 、D ,若线段BC 与双曲线的渐近线的交点为E ,且11BF E CF E ∠=∠,则双曲线的离心率为 A.B.C.D. 【答案】C【解析】根据双曲线C 的性质可以得到, ()0,C b , (),0B a , ()1,0F c -,双曲线C 的渐近线方程b y x a =,直线BC 方程: by x b a=-+,联立{by x b ab y xa=-+=得到2{2ax b y ==,即点,22a b E ⎛⎫ ⎪⎝⎭,所以E 是线段BC 的中点,又因为11BF E CF E ∠=∠,所以11F CF B =,而1FC =, 1F B a c =+,故()222c b a c +=+,因为222a b c +=,所以22220a ac c +-=,因为ce a=,即2220e e --=,所以1e =+,故选C10.已知O 为坐标原点, 12,F F 分别是双曲线2222:1x y C a b+=的左右焦点, A 为C 的左顶点, P 为C 上一点,且1PF x ⊥轴,过点A 的直线l 与线段1PF 交于点M ,与y 轴交于E 点.若直线2F M 与y 轴交点为N , 2OE ON =,则C 的离心率为( )A. 13B. 2C. 23D. 34【答案】B【解析】由1PF x ⊥轴可令(),M c t -,得()(),0,,0A a B a -.则AE tk a c=-,可得AE 的方程为()t y x a a c =+-,令0x =,知0,ta E a c ⎛⎫ ⎪-⎝⎭,又0,2t N ⎛⎫ ⎪⎝⎭且2OE ON =,可得22ta t a c =-,所以2c a =,即2ce a==.故本题答案选B . 11.过抛物线22(0)y px p =>焦点的直线l 与抛物线交于A 、B 两点,以AB 为直径的圆的方程为()()223216x y -+-=,则p =( )A. 2B. 1C. 2或4D. 4 【答案】A【解析】过抛物线22(0)y px p =>焦点的直线l 与抛物线交于,A B 两点,以AB 为直径的圆的方程为()()223216x y -+-=,可得弦长的坐标横坐标为3,圆的半径为4可得弦长为8,设直线与抛物线的交横坐标为12,x x 则12126,8x x x x p +=++=,可得2p =,故选A.二、填空题12.已知过点()2,0A -的直线与2x =相交于点C ,过点()2,0B 的直线与2x =-相交于点D ,若直线CD 与圆224x y +=相切,则直线AC 与BD 的交点M 的轨迹方程为__________.【答案】()22104x y y +=≠【解析】设直线AC ,BD 的斜率分别为12,k k ,则直线AC ,BD 的方程分别为:()()122,2y k x y k x =+=- ,据此可得: ()()122,4,2,4C k D k -- ,则: ()12124422CD k k k k k +==+-- ,直线CD 的方程为: ()()11242y k k k x -=+- , 整理可得: ()()121220k k x y k k +-+-= 直线与圆相切,则:2= ,据此可得: 1214k k =-, 由于: ()()122,2y k x y k x =+=-, 两式相乘可得: ()222121414y k k x x =-=-+ 即直线AC 与BD 的交点M 的轨迹方程为()22104x y y +=≠.C 组一、选择题1.已知,,A B C 是双曲线22221(0,0)x y a b a b-=>>上的三个点, AB 经过原点O ,AC 经过右焦点F ,若BF AC ⊥且2BF CF =,则该双曲线的离心率是( )A.53 B.3 C. 2 D. 94【答案】B【解析】做出如图因为 AB 经过原点O , AC 经过右焦点F , BF AC ⊥可得'AFBF 为矩形,设AF=a,则'=224AF BF m a FC m a =+⇒=+根据双曲线定义可知'26CF m a =+,在'Rt ACF 得()222222224''34(2)(26),''3a AC AF CF m a m a m a m AFF AF AF FF+=⇒+++=+⇒=⇒+=在中得22210429433a a c e ⎛⎫⎛⎫+=⇒= ⎪ ⎪⎝⎭⎝⎭2.已知圆C : (()22311x y +-=和两点()0A t -,, ()0(0)B t t >,,若圆C 上存在点P ,使得·0PA PB =,则t 的最小值为( ) A. 3 B. 2 C.3 D. 1【答案】D【解析】由题意可得点P 的轨迹方程是以AB 位直径的圆,当两圆外切时有:()22min min 3111t t +=+⇒=,即t 的最小值为1. 本题选择D 选项.3.已知抛物线2:(0)C y mx x =>的焦点为F ,点(0,3A -.若射线FA 与抛物线C 相交于点M ,与其准线相交于点D ,且:1:2FM MD =,则点M 的纵坐标为( )A. 13- B. 3-C. 23- D. 23 【答案】D【解析】根据题意画图如下:由12MF MD =,可得13,3,424MN DN OA m m MD MN OF =====, 1,DAAF =所以31::::122DA AM MF =,可得42,4,3EF DF MF ===, 041,3MF x =+=得013x =,代入2y 4x =,得0233y =-。