三角形旋转

合集下载

全等三角形旋转模型知识点总结附解析

全等三角形旋转模型知识点总结附解析

全等三角形旋转模型知识点总结附解析一、全等三角形旋转模型1.(课题研究)旋转图形中对应线段所在直线的夹角(小于等于90°的角)与旋转角的关系.(问题初探)线段AB 绕点O 顺时针旋转得到线段CD ,其中点A 与点C 对应,点B 与点D 对应,旋转角的度数为α,且0°<α<180°.(1)如图①,当α=60°时,线段AB 、CD 所在直线夹角(锐角)为 ;(2)如图②,当90°<α<180°时,直线AB 与直线CD 所夹锐角与旋转角α存在怎样的数量关系?请说明理由;(形成结论)旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角 .(运用拓广)运用所形成的结论解决问题:(3)如图③,四边形ABCD 中,∠ABC =60°,∠ADC =30°,AB =BC ,CD =3,BD =19,求AD 的长.解析:(1)60°;(2)互补,理由见解析;【形成结论】相等或互补;(310【分析】(1)由旋转的性质可得AB CD =,OA OC =,BO DO =,可证()AOB COD SSS ,可得B D ∠=∠,由三角形内角和定理可求解;(2)由旋转的性质可得AB CD =,OA OC =,BO DO =,可证()AOBCOD SSS ,可得B D ∠=∠,由平角的定义和四边形内角和定理可求解; 【形成结论】由(1)(2)可知对应线段所在直线的所夹锐角角与旋转角:相等或互补;【运用拓广】(3)将BCD ∆绕点B 顺时针旋转60︒,得到BAF ∆,连接FD ,由旋转的性质可得BF BD =,3AF CD ==,由三角形内角和定理可求90FAD ∠=︒,由勾股定理可求解.【详解】解:(1)如图1,延长DC 交AB 于F ,交BO 于E ,α=︒,60∴∠=︒,60BOD线段AB绕点O顺时针旋转得线段CD,=,AB CD=,BO DO∴=,OA OCAOB COD SSS,()B D∴∠=∠,∠=∠,OED BEF,B DBFE EOD,60故答案为:60︒;(2)直线AB与直线CD所夹锐角角与旋转角α互补,理由如下:如图2,延长AB,DC交于点E,线段AB绕点O顺时针旋转得线段CD,=,=,BO DO∴=,OA OCAB CDAOB COD SSS,()ABO D,ABO EBO,180D EBO,180360EBO E D BOD,E BOD,180∴直线AB与直线CD所夹锐角角与旋转角α互补.形成结论由(1)(2)(3)可知:旋转图形中,当旋转角小于平角时,对应线段所在直线的所夹锐角角与旋转角:相等或互补.故答案为:相等或互补.运用拓广(3)如图3,将BCD ∆绕点B 顺时针旋转60︒,得到BAF ∆,连接FD ,延长FA ,DC 交于点E ,∴旋转角60ABC ∠=︒,BCD BAF ,60AED ABC ∴∠=∠=︒,3AF CD ==,BD BF =,30ADC ∠=︒,90FAD AED ADC ,又60FBD ABC ,BF BD =, BFD ∴∆是等边三角形,BF BD DF ,∴在Rt DAF 中,2219910ADDF AF . 【点睛】本题是几何变换综合题,考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,添加辅助线构造全等三角形是本题的关键.2.发现规律:(1)如图①,ABC 与ADE 都是等边三角形,直线,BD CE 交于点F .直线BD ,AC 交于点H .求BFC ∠的度数(2)已知:ABC 与ADE 的位置如图②所示,直线,BD CE 交于点F .直线BD ,AC 交于点H .若ABC ADE α∠=∠=,ACB AED β∠=∠=,求BFC ∠的度数 应用结论:(3)如图③,在平面直角坐标系中,点O 的坐标为(0,0),点M 的坐标为(3,0),N 为y 轴上一动点,连接MN .将线段MN 绕点M 逆时针旋转60得到线段MK ,连接NK ,OK ,求线段OK 长度的最小值答案:A解析:(1)BFC ∠的度数为60︒;(2)BFC ∠的度数为180αβ︒--;(3)线段OK 长度的最小值为32 【分析】(1)通过证明BAD CAE ≅△△可得ABD ACE ∠=∠,再由三角形内角和定理进行求解即可;(2)通过证明ABC ADE 可得BAC DAE ∠=∠,AB AC AD AE=,可证ABD ACE ,可得ABD ACE ∠=∠,由外角性质可得BFC BAC ∠=∠,再有三角形内角和定理进行求解即可;(3)由旋转的性质可得MNK △是等边三角形,可得MK MN NK ==,60NMK NKM KNM ∠=∠=∠=︒,如图③将MOK 绕点M 顺时针旋转60︒,得到MQN △,连接OQ ,可得60OMQ ∠=︒,OK =NQ ,MO =MQ ,则当NQ 为最小值时,OK 有最小值,由垂线段最短可得当QN y ⊥轴时,NQ 有最小值,由直角三角形的性质即可求解.【详解】 (1)∵ABC 与ADE 是等边三角形∴AB=AC ,AD=AE ,60BAC DAE ABC ACB ∠=∠=∠=∠=︒∴BAD CAE ∠=∠∴()BAD CAE SAS ≅ ∴ABD ACE ∠=∠∵60ABD DBC ABC ∠+∠=∠=︒∴60ACE DBC ∠+∠=︒∴18060BFC DBC ACE ACB ∠=︒-∠-∠-∠=︒;(2)∵ABC ADE α∠=∠=,ACB AED β∠=∠=∴ABC ADE∴BAC DAE ∠=∠,AB AC AD AE= ∴BAD CAE ∠=∠,AB AD AC AE = ∴ABD ACE ∴ABD ACE ∠=∠ ∵BHC ABD BAC BFC ACE ∠=∠+∠=∠+∠ ∴BFC BAC ∠=∠ ∵180BAC ABC ACB ∠+∠+∠=︒ ∴180BFC αβ∠++=︒∴180BFC αβ∠=︒--;(3)∵将线段MN 绕点M 逆时针旋转60︒得到线段MK∴MN MK =,60NMK ∠=︒∴MNK △是等边三角形∴MK MN NK ==,60NMK NKM KNM ∠=∠=∠=︒如下图,将MOK 绕点M 顺时针旋转60︒,得到MQN △,连接OQ∴MOK MQN ≅,60OMQ ∠=︒∴OK =NQ ,MO =MQ∴MOQ △是等边三角形∴60QOM ∠=︒∴30NOQ ∠=︒∵OK =NQ∴当NQ 为最小值时,OK 有最小值,由垂线段最短可得当QN y ⊥轴时,NQ 有最小值 ∵点M 的坐标为(3,0)∴3OM OQ ==∵QN y ⊥轴,30NOQ ∠=︒∴1322NQ OQ == ∴线段OK 长度的最小值为32. 【点睛】本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,三角形内角和定理等知识,灵活运用这些性质进行推理是解决本题的关键.3.如图1,在等腰Rt △ABC 中,∠ABC =90°,AB =BC =6,过点B 作BD ⊥AC 交AC 于点D ,点E 、F 分别是线段AB 、BC 上两点,且BE =BF ,连接AF 交BD 于点Q ,过点E 作EH ⊥AF 交AF 于点P ,交AC 于点H .(1)若BF =4,求△ADQ 的面积;(2)求证:CH =2BQ ;(3)如图2,BE =3,连接EF ,将△EBF 绕点B 在平面内任意旋转,取EF 的中点M ,连接AM ,CM ,将线段AM 绕点A 逆时针旋转90°得线段AN ,连接MN 、CN ,过点N 作NR ⊥AC 交AC 于点R .当线段NR 的长最小时,直接写出△CMN 的周长.答案:A解析:(1)1.8;(2)证明见解析;(3)3263351022+. 【分析】(1)利用等腰直角三角形的性质求出1322BD AD CD AC ====积相等和勾股定理分别求出AQ 和QD ,最后利用三角形面积公式即可求解;(2)如图,先作辅助线构造()AEH CFG ASA ∆∆≌,得到AH CG =,再通过转化得到2AH DQ =,最后利用AC ,得到一个相等关系,即()2AH HC BQ QD +=+,利用等式性质即可得到所求;(3)如图,通过做辅助线构造全等三角形确定出当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小,接着利用勾股定理和等腰直角三角形的性质,分别求出CM 、MN 、CN 的长,相加即可.【详解】解:6AB BC ==,°90ABC =∠,AC ==∴又∵AC BD ⊥∴BD 平分AC ,且BD 是∠ABC 的角平分线∴12BD AD CD AC ====Q 点到BA 和BC 边的距离相等; ∵4BF =, ∴6342ABQBFQ S S ∆∆==, ∴32AQ FQ =,∵AF ===∴35AQ AF ==∴5QD ===,∴1 1.825ADQ S ∆=⨯⨯=, ∴△ADQ 的面积为1.8.(2)如图,作CG ⊥AC ,垂足为C ,交AF 的延长线于点G ,∴°90ACG =∠∵°45ACB CAB ==∠∠,∴°45GCB CAB ==∠∠,∵EH ⊥AF ,∴°90EAP AEP +=∠∠,又∵°90EAP AFB +=∠∠∴AEP AFB =∠∠,∴AEP CFG =∠∠∵BE BF =,BA BC =∴AE CF =,在AEH ∆和CFG ∆中,AEH CFG AE CFEAH FCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AEH CFG ASA ∆∆≌∴AH CG =;∵BD ⊥AC ,CG ⊥AC ,∴BD ∥CG ,∵D 点是AC 的中点,且BD ∥CG ,∴DQ 是ACG ∆的中位线, ∴12DQ CG =, ∴2DQ CG AH ==; ∵AC =2BD ,∴()2AH HC BQ QD +=+,∵2AH DQ =,∴CH =2BQ .(3)如图①,作AH ⊥AB ,且AH =AB ,∴∠NAH +∠HAM =∠HAM +∠BAM =90°,∴∠BAM =∠NAH ,∵AB =AH ,AM =AN ,∴()ABM AHN SAS ∆∆≌, ∴HN =BM ,∵BE =BF =3,∠EBF =90°, ∴232EF BE ==∴由M 点是EF 的中点,可得1322BM EF == ∴322NH =, ∴N 点在以H 点为圆心,322为半径的圆上,如图②,当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小,为NR HR HN HR =-=-∵∠BAC =45°,∴∠HAC =45°,∴∠AHN =45°,HR =AR ,∵222HR AR AH +=,∴HR AR ===,∴22NR HR =-=, ∵AC == ∴CR AC AR =-=∴CN AN === ∵∠MAN =90°,AM =AN ,∴MN ==∴∠ABM =45°,∴∠EBM =45°,∴F 点在BA 上,E 点在CB 延长线上,如图,作MP ⊥EC ,垂足为P ,∴1322BP MP EB ===, ∴315622PC PB BC =+=+=,∴2MC ==∴MC MN CN ++=∴△CMN+.【点睛】本题综合考查了等腰直角三角形的性质、全等三角形的判定与性质、旋转的性质、勾股定理、圆等知识,要求学生熟练掌握相关概念并能灵活应用它们,本题的综合性较强,难点在于作辅助线构造全等三角形以及线段之间的关系转化等,考查了学生综合分析和推理论证以及计算的能力,本题属于压轴题,蕴含了数形结合和转化的思想方法等. 4.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.答案:C解析:(1)60BD CE ,=;(2)452CEB BD CE ∠︒=,=,理由见解析;(3)CE 的长为2或2【分析】(1)证明ACE ABD ≌,得出CE =BD ,AEC ADB ∠=∠,即可得出结论; (2)证明ACE ABD ∽,得出AEC ADB ∠=∠,BD =,即可得出结论; (3)先判断出BD =,再求出AB =:①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出AP =DP =AE =2,再根据勾股定理求出,BP =6,得出BD =4;②当点E 在点D 下方时,同①的方法得,AP =DP =AE =1,BP =6,进而得出BD =BP +DP =8,即可得出结论.【详解】解:(1)ABC 为等腰三角形,60AC BC ACB ∠︒=,=,∴ABC 是等边三角形,同理可得ADE 是等边三角形6018012060BAD DAC DAC CAE BAD CAE AD AE AB ACEAC DAB ACE ABD SAS BD CEAEC ADB ADE AEC AED CEBCEB ∠+∠=∠+∠=︒∴∠=∠=⎧⎪=⎨⎪∠∠⎩∴∴=∠=∠=︒-∠=︒∠=∠+∠∴∠=︒=≌()故答案为:60CEB BD CE ∠=︒=;.(2)45CEB BD ∠︒=,,理由如下:在等腰三角形ABC 中,AC =BC ,90ACB ∠︒=,45AB CAB ∴∠︒,= ,同理,45AD ADE DAE ∠∠︒,==, ∴AE AC AD AB =,DAE CAB ∠∠=, EAC DAB ∴∠∠=,ACE ABD ∴∽ ,∴BD AD CE AE==∴AEC ADB BD ∠∠=,,点B 、D 、E 在同一条直线上:180135ADB ADE ∴∠︒-∠︒==135AEC ∴∠︒=45CEB AEC AED ∴∠∠-∠︒==;(3)由(2)知,ACE ABD ∽, 2BD CE ∴=, 在Rt ABC 中,25AC =,2210AB AC ∴== ,①当点E 在点D 上方时,如图③,过点A 作AP BD ⊥交BD 的延长线于P ,DE BD ⊥,PDE AED APD ∴∠∠∠==,∴四边形APDE 是矩形,AE DE = ,∴矩形APDE 是正方形,2AP DP AE ∴===,在Rt APB △中,根据勾股定理得,226BP AB AP -==,4BD BP AP ∴-==,1222CE BD ∴==; ②当点E 在点D 下方时,如图④同①的方法得,AP =DP =AE =2,BP =6,∴BD =BP +DP =8,122CE BD ∴==4, 综上CE 的长为22或42.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE 和三角形ABD 相似是关键.5.如图,ABD △和ACE △都是等边三角形.(1)连接CD 、BE 交于点P ,求∠BPD ;(2)连接PA ,判断线段PA 、PB 、PD 之间的数量关系并证明;(3)如图,等腰ABC 中AB =AC ,∠BAC =α(0<α<90),在ABC 内有一点M ,连接MA 、MB 、MC .当MA +MB +MC 最小时,∠ABM = (用含α的式子表示)答案:D解析:(1)60BPD ∠=︒(2)PD PB PA =+,证明见详解(3)1602α︒-【分析】(1)证明()DAC BAE SAS ≅,得ADC ABE ∠=∠,就可以证明60BPD DAB ∠=∠=︒;(2)在DP 上截取PF=PB ,连接BF ,证明()DBF ABP SAS ≅,得DF PA =,即可证明PD PB PA =+;(3)分别以AB 和AC 为边,向两边作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,然后利用等腰三角形ADC ,求出ADC ∠的度数,即可得到ABM ∠的度数.【详解】解:(1)∵ABD △和ACE △是等边三角形,∴AD AB =,AC AE =,60DAB CAE ∠=∠=︒,∵DAB BAC CAE BAC ∠+∠=∠+∠,∴DAC BAE ∠=∠,在DAC △和BAE △中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()DAC BAE SAS ≅,∴ADC ABE ∠=∠,∵ADC DAB ABE BPD ∠+∠=∠+∠,∴60BPD DAB ∠=∠=︒;(2)如图,在DP 上截取PF=PB ,连接BF ,∵60BPD ∠=︒,PF PB =,∴PFB △是等边三角形,∴BF BP =,60FBP ∠=︒,∴DBA FBP ∠=∠,∵DBA FBA FBP FBA ∠-∠=∠-∠,∴DBF ABP ∠=∠,在DBF 和ABP △中,DB AB DBF ABP BF BP =⎧⎪∠=∠⎨⎪=⎩,∴()DBF ABP SAS ≅,∴DF PA =,∵PD PF FD =+,∴PD PB PA =+;(3)如图,分别以AB 和AC 为边,作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,由(2)中的结论可得MD MA MB =+,则当D 、M 、C 三点共线时MA MB MC ++最小,即CD 的长,由(1)得ADC ABM ∠=∠,∵AD AB AC ==,60DAC α∠=︒+,∴()1806016022ADC αα︒-︒+∠==︒-, ∴1602ABM α∠=︒-,故答案是:1602α︒-.【点睛】本题考查全等三角形的性质和判定,等边三角形的性质,解题的关键是做辅助线构造全等三角形来进行证明求解.6.探究:(1)如图①,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠B=28°,则∠ACD的度数是.拓展:(2)如图②,∠MCN=90°,射线CP在∠MCN的内部,点A、B分别存CM、CN 上,分别过点A、B作AD⊥CP、BE⊥CP于点D、E,若AC=CB,则AD、DE、BE三者间的数量关系为.请说明理由;应用:(3)如图③,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连结AD、BE、AE,且使∠MCN=∠ADP=∠BEP.当AC=BC 时,△≌△;此时如果CD=2DE,且S△CBE=6,则△ACE的面积是.答案:D解析:(1)28°(2)DE=AD﹣BE;理由见解析(3)ACD;CBE;9【分析】(1)利用直角三角形的两锐角互余,即可得出结论;(2)利用同角的余角相等判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(3)利用等式的性质判断出∠ADC=∠CEB,进而判断出△ACD≌△CBE,得出S△ACD=S△CBE,再求出S△ADE=3,即可得出结论.【详解】解:探究:∵CD⊥AB,∴∠CDB=90°,∵∠B=28°,∴∠BCD=90°﹣∠B=68°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCD=28°,故答案为:28°;拓展:(2)∵∠MCN=90°,∴∠ACD+∠BCE=90°,∵AD⊥CP,BE⊥CP,∴∠ADC =∠BEC =90°,∴∠ACD+∠CAD =90°,∴∠CAD =∠BCE ,在△ACD 和△CBE 中,ADC CEB CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD =BE ,AD =CE ,∴DE =CE ﹣CD =AD ﹣BE ,故答案为:DE =AD ﹣BE ;应用:(3)∵∠MCN =∠ACD+∠BCD ,∠MCN =∠ADP ,∴∠ADP =∠ACD+∠BCD ,∵∠ADP =∠ACD+∠CAD ,∴∠CAD =∠BCE ,∵∠ADP =∠BEP ,∴∠ADC =∠CEB ,在△ACD 和△CBE 中,ADC CEB CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴S △ACD =S △CBE ,∵S △CBE =6,∴S △ACD =6,∵CD =2DE ,∴S △ACD =2S △ADE ,∴S △ADE =12S △ACD =3, ∴S △ACE =S △ACD +S △ADE =9,故答案为:ACD ,CBE ,9.【点睛】此题是三角形综合题,主要考查了直角三角形的性质,同角的余角相等,等式的性质,全等三角形的判定和性质,判断出△ACD ≌△CBE 是解本题的关键.7.问题解决一节数学课上,老师提出了这样一个问题:如图①,点P 是等边ABC 内的一点,6PA =,8PB = ,10PC =.你能求出APB ∠的度数和等边ABC 的面积吗? 小明通过观察、分析、思考,形成了如下思路:如图①将BPC △绕点B 逆时针旋转60°,得到BPA △,连接PP ',可得BPP '是等边三角形,根据勾股定理逆定理可得AP P '是直角三角形,从而使问题得到解决.(1)结合小明的思路完成填空:PP '=_____________,APP '∠=_______________,APB ∠=_____________ ,ABC S = ______________.(2)类比探究 Ⅰ如图②,若点P 是正方形ABCD 内一点,1PA = ,2PB =,3PC =,求APB ∠的度数和正方形的面积.Ⅱ如图③,若点P 是正方形ABCD 外一点,3PA = ,1PB =, 11PC =,求APB ∠的度数和正方形的面积.答案:B解析:(1)8,90˚,150˚,25336;(2)Ⅰ135APB ∠=︒,722ABCD S =+正方形;Ⅱ45APB ∠=︒, 1032ABCD S =-正方形【分析】(1)根据小明的思路,然后利用等腰三角形和直角三角形性质计算即可;(2)Ⅰ将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′,求出∠APB 的度数;先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;过B 作BE ⊥AP 于点E ,然后利用勾股定理求出AB 的长度即可求出正方形面积;Ⅱ将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′,求出∠APB 的度数;先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;过B 作BF ⊥AP 于点F ,然后利用勾股定理求出AB 的长度即可求出正方形面积;【详解】解:(1)由题易有P BP '∆是等边三角形,AP P '∆是直角三角形∴PP '=BP=8,90?APP '=∠,60?P PB '=∠,∴APB ∠=APP '∠+=P PB '∠150˚,如图1,过B 作BD ⊥AP 于点D∵APB ∠=150°∴30?BPD =∠在Rt △BPD 中,30?BPD =∠,BP=8∴BD=4,PD=43 ∴AD=6+43∴AB 2=AD 2+BD 2=100+483∴ABC S =234AB =25336+ (2)Ⅰ.如图2,将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′,∴△ABP'≌△CBP ,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt △PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=2BP=22,∵AP=1,∴AP 2+PP'2=1+8=9,∵AP'2=32=9,∴AP 2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;过B 作BE ⊥AP 于点E ,∵∠APB=135°∴∠BPE=45°∴△BPE 是等腰直角三角形∴BE=BP=22BP =2 ∴AE=1+2∴AB 2=AE 2+BE 2=7+22 ∴2722ABCD S AB ==+正方形Ⅱ.如图3,将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′,∴△ABP'≌△CBP ,∴∠PBP'=90°,BP'=BP=1,AP'=CP=11,在Rt △PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=2BP=2,∵AP=3,∴AP 2+PP'2=9+2=11,∵AP'2=(11)2=11,∴AP 2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'-∠BPP'=90°-45°=45°.过B 作BF ⊥AP 于点F∵∠APB=45°∴△BPF 为等腰直角三角形∴PF=BF=22BP =22 ∴2 ∴AB 2=AF 2+BF 2=1032-∴21032ABCD S AB ==-正方形【点睛】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.8.在等腰Rt ABC △中,AB AC =、90BAC ∠=︒.(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且45DAE ∠=︒,将ABE △绕点A 逆时针旋转90后,得到AFC △,连接DF .①求证:AED AFD ≌.②当3BE =,9CE =时,求DE 的长.(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE △(E 点在直线BC 的上方),当3BD =,9BC =时,求DE 的长.答案:D解析:(1)①证明见解析;②5;(2)35或317【分析】(1)①证明∠DAE=∠DAF=45°即可利用SAS 证明全等;②由①中全等可得DE=DF ,再在Rt △FDC 中利用勾股定理计算即可;(2)连接BE ,根据共顶点等腰直角三角形证明全等,再利用勾股定理计算即可。

三角形的旋转体

三角形的旋转体

三角形的旋转体三角形是几何学中最基本的形状之一,它由三条线段组成,这三条线段相互连接起来形成一个封闭的图形。

但当我们将三角形在平面上旋转时,会得到一个全新的形状——三角形的旋转体。

三角形的旋转体是指将一个三角形绕着某一条边作为旋转轴进行旋转,从而形成的由曲面构成的立体图形。

根据旋转轴的不同位置,三角形的旋转体可以分为三种不同的情况:绕底边旋转、绕高旋转和绕斜边旋转。

首先,我们来看绕底边旋转的情况。

假设我们有一个底边为AB,两个顶点分别为C和D的三角形。

当我们将这个三角形以AB为旋转轴进行旋转时,我们可以得到一个旋转体,它的形状类似于一个圆锥。

圆锥的底面是一个与底边平行的圆,而侧面是由直线CD沿着旋转轴旋转形成的曲线。

接下来,我们来看绕高旋转的情况。

假设我们有一个底边为AB,高为h的三角形。

当我们以高AB为旋转轴进行旋转时,我们可以得到一个旋转体,它的形状类似于一个圆柱。

圆柱的底面是一个与底边平行的圆,而侧面是由直线AB沿着旋转轴旋转形成的曲线。

最后,我们来看绕斜边旋转的情况。

假设我们有一个斜边为AB,底边为CD的三角形。

当我们以斜边AB为旋转轴进行旋转时,我们可以得到一个旋转体,它的形状类似于一个旋转椎体。

旋转椎体的底面是一个与底边平行的椭圆,而侧面则是由直线CD沿着旋转轴旋转形成的曲线。

通过以上的描述,我们可以看出,三角形的旋转体具有多种形状,这取决于旋转轴的位置和旋转角度的大小。

不同的旋转方式会带来不同的立体效果,使得三角形的旋转体成为几何学中一个极具美感和变化性的研究对象。

总结起来,三角形的旋转体是指将三角形绕某一条边或者高进行旋转而得到的立体图形。

它的形状可以是圆锥、圆柱或者旋转椎体,具体取决于旋转轴的位置和旋转角度的大小。

这种立体图形丰富了几何学的研究内容,拓宽了我们对三角形的理解和应用。

三角形旋转全等常见模型

三角形旋转全等常见模型

1、绕点型(手拉手模型)(1)自旋转:⎪⎪⎩⎪⎪⎨⎧,造中心对称遇中点旋全等遇等腰旋顶角,造旋转,造等腰直角旋遇,造等边三角形旋遇自旋转构造方法0000018090906060(2)共旋转(典型的手拉手模型)例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明:(1) △ABE ≌△DBC(2) AE=DC(3) AE 与DC 的夹角为60。

(4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明:(1) △ABE ≌△DBC (2) AE=DC(3) AE 与DC 的夹角为60。

(4) AE 与DC 的交点设为H,BH 平分∠AHC变式练习2、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)△ABE ≌△DBC (2)AE=DC(3)AE 与DC 的夹角为60。

(4)AE 与DC 的交点设为H,BH 平分∠AHC(1)如图1,点C 是线段AB 上一点,分别以AC ,BC 为边在AB 的同侧作等边△ACM 和△CBN ,连接AN ,BM .分别取BM ,AN 的中点E ,F ,连接CE ,CF ,EF .观察并猜想△CEF的形状,并说明理由.(2)若将(1)中的“以AC ,BC 为边作等边△ACM 和△CBN”改为“以AC ,BC 为腰在AB 的同侧作等腰△ACM 和△CBN ,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.例4、例题讲解:1. 已知△ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B,C 重合),以AD 为边作菱形ADEF(按A,D,E,F 逆时针排列),使∠DAF=60°,连接CF.(1)?如图1,当点D 在边BC 上时,求证:①?BD=CF???②AC=CF+CD.(2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由; ?(3)如图3,当点D 在边BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系。

三角形旋转最值问题

三角形旋转最值问题

三角形旋转最值问题三角形旋转最值问题也称为绕心路速或三角形旋转最优化问题,是一种考虑物体旋转以达到最优化的问题。

三角形旋转最值问题可以被用于工业流程的设计,如机械加工、电路板制造等。

在这些工业流程中,物体旋转是达到最佳成果的关键,因此三角形旋转最值问题也就变得非常重要。

三角形旋转最值问题的主要目的是求得三角形旋转的最优路径,以便可以最大程度地减少旋转的距离,达到最佳的旋转效果。

为了解决三角形旋转最值问题,可以使用搜索算法、局部搜索和统计方法等,这些算法均可以被用于求解三角形旋转最值问题。

首先,搜索算法可以用于解决三角形旋转最值问题。

搜索算法是一种用于优化某种特定目标函数的算法,它首先通过在特定空间中搜索一系列可行的解来求解三角形旋转最值问题,搜索算法可以用于求解三角形的最优路径。

此外,搜索算法还可以用于求解三角形的最优旋转角度。

其次,局部搜索也可以用于三角形旋转最值问题。

局部搜索是一种用于优化目标函数的算法,它可以从当前值出发,通过对目标函数的一些微小改变来求解三角形旋转最值问题。

局部搜索可以用来求解三角形最终转弯路径,也可以用于求解三角形最优旋转角度。

另外,统计方法也可以用于三角形旋转最值问题,统计方法的主要目的在于估计物体旋转的最优路径。

统计方法可以根据实际情况来模拟物体旋转的过程,根据模拟的结果来估计出最优的旋转路径。

综上所述,三角形旋转最值问题可以通过搜索算法、局部搜索和统计方法来求解。

三角形旋转最值问题的求解可以视为一个物体从一个地点移动到另一个地点的过程,它可以用来求解三角形最终转弯路径,也可以求解三角形最优旋转角度。

三角形旋转最值问题一直是工业流程设计中重要的问题,可以帮助企业在有限的时间内,达到最佳的旋转效果。

三角形的旋转与角度计算

三角形的旋转与角度计算

三角形的旋转与角度计算三角形是几何学中的基本图形之一,它由三个边和三个角组成。

在实际应用中,我们经常需要进行三角形的旋转和角度计算,以满足不同的需求。

本文将探讨三角形旋转的概念和方法,并介绍如何计算旋转后的角度。

一、三角形的旋转概念三角形的旋转是指将整个三角形绕一个旋转中心按一定角度旋转,从而得到新的三角形位置和形状的过程。

旋转可以是顺时针或逆时针方向的,旋转中心可以是三角形的顶点、质心或其他点。

二、三角形的旋转方法1. 绕顶点旋转当我们以三角形的某个顶点为中心进行旋转时,可以通过以下步骤来完成:(1)确定旋转中心,即选择一个顶点作为旋转中心;(2)确定旋转角度,即要把三角形旋转多少度;(3)按照选择的顶点为中心和确定的旋转角度,计算出旋转后的每个顶点的坐标。

2. 绕质心旋转三角形的质心是三条中线的交点,将质心作为旋转中心进行旋转,可以通过以下步骤来完成:(1)计算出三角形的质心坐标;(2)确定旋转角度,即要把三角形旋转多少度;(3)按照质心为中心和确定的旋转角度,计算出旋转后的每个顶点的坐标。

3. 绕其他点旋转除了顶点和质心外,我们还可以选择其他点作为旋转中心。

具体的旋转方法如下:(1)确定旋转中心,即选择一个非顶点、非质心的点作为旋转中心;(2)确定旋转角度,即要把三角形旋转多少度;(3)按照选择的旋转中心和确定的旋转角度,计算出旋转后的每个顶点的坐标。

三、角度计算在进行三角形旋转的过程中,我们还需要计算旋转后的角度。

角度计算可以通过以下步骤来进行:(1)确定顶点的坐标变化;(2)利用向量叉积的性质来计算旋转角度。

四、实例演示假设有一个三角形ABC,其中顶点坐标分别为A(2,4),B(5,6),C(7,8)。

现在要将该三角形绕点A逆时针旋转30度,计算旋转后的三角形的坐标和旋转角度。

首先,我们需要确定旋转后的每个顶点的坐标。

以点A为中心逆时针旋转30度后,顶点B的坐标变为(3.39, 5.10),顶点C的坐标变为(3.23, 8.46)。

旋转中的最值问题方法

旋转中的最值问题方法

旋转中的最值问题方法一、三角形旋转中的最值问题。

题目1:在等腰直角三角形ABC中,∠ ACB = 90^∘,AC = BC=√(2),将ABC绕点C逆时针旋转角α(0^∘<α<90^∘)得到A'B'C,连接A'B。

求A'B的最小值。

解析:1. 因为ABC绕点C旋转得到A'B'C,所以CA = CA'=√(2)。

2. 在A'CB中,根据余弦定理:A'B^2=A'C^2+BC^2- 2A'C· BC·cos(∠ A'CB)。

3. 由于∠ A'CB=∠ ACB+α = 90^∘+α,A'C = AC=√(2),BC=√(2)。

4. 则A'B^2=2 + 2-2×√(2)×√(2)cos(90^∘+α)=4 + 4sinα。

5. 因为0^∘<α<90^∘,当sinα = 0(即α = 0^∘)时,A'B^2取得最小值4,所以A'B的最小值为2。

题目2:已知等边三角形ABC的边长为2,点D是边BC的中点,将ABD绕点A逆时针旋转得到ACE。

求线段DE的最大值。

解析:1. 因为ABD绕点A逆时针旋转得到ACE,所以AD = AE,∠ DAE=∠ BAC = 60^∘,所以ADE是等边三角形。

2. 点D是边BC的中点,在等边三角形ABC中,AD⊥ BC,根据勾股定理可得AD=√(3)。

3. 因为ADE是等边三角形,所以DE = AD=√(3),DE的最大值就是√(3)。

题目3:在ABC中,AB = 3,AC = 4,∠ BAC = 60^∘,将ABC绕点A旋转,得到AB'C'。

求BC'的最大值。

解析:1. 由余弦定理可得BC=√(AB^2)+AC^{2-2AB· AC·cos∠ BAC}- 把AB = 3,AC = 4,∠ BAC = 60^∘代入可得:BC=√(9 + 16-2×3×4×frac{1){2}}=√(13)。

三角形旋转全等常见模型

三角形旋转全等常见模型

1、绕点型(手拉手模型)(1)自旋转:自旋转构造放方法:①遇60°旋60°,构造等边三角形;②遇90°旋90°,构造等腰直角三角形;③遇等腰旋转顶角,构造旋转全等;④遇中点180°,构造中心对称。

(2)共旋转(典型的手拉手模型)例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC(3) AE 与DC 的夹角为60。

(4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC(2) AE=DC(3) AE 与DC 的夹角为60。

(4) AE 与DC 的交点设为H,BH 平分∠AHC变式练习2、如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:Array(1)△ABE≌△DBC(2)AE=DC(3)AE与DC的夹角为60。

(4)AE与DC的交点设为H,BH平分∠AHC(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CBN,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由.(2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰△ACM和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.例4、例题讲解:1. 已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F逆时针排列),使∠DAF=60°,连接CF.(1) 如图1,当点D在边BC上时,求证:① BD=CF ‚②AC=CF+CD.(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。

三角形旋转最值问题

三角形旋转最值问题

三角形旋转最值问题三角形旋转最值问题是一个以三角形旋转行为为基本操作的复杂算法问题。

它可以简单地描述为:在三角形的内部极点处假定存在一个可以旋转的物体,给定一组边长,寻找以此边长构造的三角形,并使用此三角形内部的极点旋转,使得物体可以达到最大值的算法。

目前,三角形旋转最值问题已经成为图形学经典问题之一,这个问题在许多领域有很重要的应用,这也是它深受人们关注的原因。

三角形旋转最值问题有多种传统的解决方案,但是这些方法往往比较复杂。

为了解决这个问题,许多研究人员专注于提出更加简单的算法,以及更高的效率的算法。

自1980年以来,许多研究者已经开展了大量的研究,在这些研究中,多种解决方案已经被提出,但大多数算法以牺牲时间效率或空间效率为代价。

针对这样的问题,有一种基于折线搜索的最优解算法,也被称作折线法,它能够有效解决三角形旋转最值问题。

折线法的基本思想是:根据给定的三角形边长,建立一个搜索空间,并在搜索空间中定义一条最优的(或最小的)折线,我们称之为“最优折线”,利用这条最优折线,该算法将从而得到三角形的旋转最值。

具体来说,折线法是通过把三角形内部极点的每一种可能位置看成一个点,将所有极点组成的点集形成一个多边形,然后求解多边形中的最小折线。

折线法得到的结果是可以接受的,它能够快速得到三角形旋转最值。

在实际应用中,该算法能够解决许多复杂的问题,如视觉图形处理、机器视觉、电子器件布局等,已经发挥了重要的作用。

同时,它还具有解决复杂问题的潜力,未来可以继续探索一些新的解决方式。

总之,三角形旋转最值问题是一个复杂且受关注的研究课题,并且具有重要的应用价值。

折线法是解决这一问题的最优算法,它具有解决复杂问题的优势,对于许多领域具有重要的作用。

虽然折线法的效率略低于部分其他算法,但相较于其他算法,它更加容易理解并实现,因此,今后关于三角形旋转最值问题的研究有可能会越来越多,折线法也会得到更多的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形旋转三角形旋转问题考察旋转变换,三角形全等,三角形相似,三角形面积,线段长度的最值,综合性非常强。

(2011浙江宁波3分)如图,⊙O1 的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,O1O2 =8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现(A)3次(B)5次(C)6次(D)7次【答案】B。

【考点】直线与圆的位置关系,正方形的性质【分析】∵⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,设O1O2交圆O1于M,∴PM=8-3-1=4。

∴圆O1与以P为圆心,以4为半径的圆相外切。

∴在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现5次。

故选B。

问题:证明边相等思路:三角形全等问题:求周长最值思路:和存在性问题结合。

列出周长函数解析式,配方法求出最值(2012四川省南充市,21,8分) 在Rt△POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.(1)求证:MA=MB;(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值.若存在,求出最小值;若不存在,请说明理由.解析:(1)连接OM.证明⊿AMO ≌⊿AMO即可.(2)在Rt⊿AOB中,运用勾股定理得到求AB长的式子,转化成二次函数的问题,运用二次函数的最值求解.答案:(1)证明:连接OM.∵⊿PQR是等腰之间三角形且M是斜边PQ的中点,∴MO=MQ,∠MOA=∠MOAMQB=450.∵∠AMO+∠OMB=900,∠OMB+∠AMO =900.∴∠AMO =∠AMO.∴⊿AMO ≌⊿AMO.∴MA=MB.(2)解:由(1)中⊿AMO ≌⊿AMO得AO=BQ.设AO=x,则OB=4-x.在Rt⊿OAB中,22222+(4-)=2(-2)+8 AB OA OB x x x=+=.∴当x=2时,AB的最小值为22,∴⊿AOB的周长的最小值为22+4.点评:本题以直角三角形为基本图形,综合考查了全等三角形的性质与判定、等腰直角三角形的性质、勾股定理和二次函数的性质等知识点.考查了学生综合运用数学知识以及转化的数学思想解决问题的能力.对于几何知识与二次函数的综合,是学生解题的难点之一.难度较大例1.【2012义乌市23题】在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质。

解答:解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,∴∠CC1B=∠C1CB=45°,∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.(2)∵△ABC≌△A1BC1,∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,∴∠ABA1=∠CBC1,∴△ABA1∽△CBC1.∴,∵S△ABA1=4,∴S△CBC1=;(3)过点B作BD⊥AC,D为垂足,∵△ABC为锐角三角形,∴点D在线段AC上,在Rt△BCD中,BD=BC×sin45°=,①如图,当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=﹣2;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+AE=2+5=7.例2.【2012•益阳】已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求出△ABE和△BCF重叠部分(即△BEG)的面积;(2)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质;解直角三角形。

专题:几何综合题。

分析:(1)由正方形ABCD的面积等于3,即可求得此正方形的边长,由在△BGE与△ABE 中,∠GBE=∠BAE,∠EGB=∠EBA=90°,可证得△BGE∽△ABE,由相似三角形的面积比等于相似比的平方,即可求得答案;(2)首先由正切函数,求得∠BAE=30°,易证得Rt△ABE≌Rt△AB′E′≌Rt△ADE′,可得AB′与AE在同一直线上,即BF与AB′的交点是G,然后设BF与AE′的交点为H,可证得△BAG≌△HAG,继而证得结论.解答:(1)解:∵正方形面积为3,∴AB=,在△BGE与△ABE中,∵∠GBE=∠BAE,∠EGB=∠EBA=90°,∴△BGE∽△ABE,∴,又∵BE=1,∴AE2=AB2+BE2=3+1=4,∴S△BGE=×S△ABE==.(2)解:没有变化.理由:∵AB=,BE=1,∴tan∠BAE==,∠BAE=30°,∵AB′=AD,∠AB′E′=∠ADE'=90°,AE′公共,∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′,∴∠DAE′=∠B′AE′=∠BAE=30°,∴AB′与AE在同一直线上,即BF与AB′的交点是G,设BF与AE′的交点为H,则∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG公共,∴△BAG≌△HAG,∴S四边形GHE′B′=S△AB′E′﹣S△AGH=S△ABE﹣S△ABG=S△BGE.∴△ABE在旋转前后与△BCF重叠部分的面积没有变化点评:此题考查了相似三角形的判定与性质、正方形的性质、全等三角形的判定与性质以及三角函数等知识.此题综合性较强,难度较大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.求角度:旋转变换产生全等三角形,产生相等的角和相等的边,相等的边构成等腰三角形又产生相等的角,对应边的夹角都等于旋转角,利用这些角度的知识来求一些角度。

求面积:已知(或者没有)一个三角形的面积,求另一个三角形的面积。

因为三角形旋转产生很多相等的角,所以很大可能产生相似三角形。

求出相似三角形的相似比,面积比等于相似比的平方。

如果是直角三角形,可以直接求。

重叠面积是否变化:首先转化为剩下部分的面积是否变化的问题,注意点的特殊位置。

找到全等三角形或相同面积的三角形,从而把三角形面积转化为三角形的面积。

求线段最值:线段的一端固定,另一端是动点而且随着三角形旋转起来,线段的长度会变化。

当线段两端点和旋转中心共线时,出现最值。

证明三角形全等:旋转过程中的边相等,角相等,相等的角加上(或减去)公共角(或相等的角)构成新的相等角,相交线想到对顶角相等,直角三角形想到等角(同角)的余角相等。

证明三角形相似:找到两组相等角,或者夹角相等,两边成比例,这两种方法居多。

求两点距离:构造直角三角形,这两点的线段通常是斜边。

分别求出两条直角边的长度,利用勾股定理求出两点距离。

例3.【2012成都20题】如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=92a时,P、Q两点间的距离(用含a的代数式表示).考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形;旋转的性质。

解答:(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴,∵BP=a,CQ=a,BE=CE,∴BE=CE=a,∴BC=3a,∴AB=AC=BC•sin45°=3a,∴AQ=CQ﹣AC=a,P A=AB﹣BP=2a,连接PQ,在Rt△APQ中,PQ==a.。

相关文档
最新文档