数理统计复习题试题习题

合集下载

概率与数理统计复习题及答案

概率与数理统计复习题及答案

★编号:重科院( )考字第( )号 第 1 页复习题一一、选择题1.设随机变量X 的概率密度21()01x x f x x θ-⎧>=⎨≤⎩,则θ=( )。

A .1 B.12 C. -1 D. 322.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为( )。

A .12 B. 23 C. 16 D. 133.设)(~),(~22221221n n χχχχ,2221,χχ独立,则~2221χχ+( )。

A .)(~22221n χχχ+ B. ~2221χχ+)1(2-n χ C. 2212~()t n χχ+ D. ~2221χχ+)(212n n +χ4.若随机变量12Y X X =+,且12,X X 相互独立。

~(0,1)i X N (1,2i =),则( )。

A .~(0,1)Y N B. ~(0,2)Y N C. Y 不服从正态分布 D. ~(1,1)Y N5.设)4,1(~N X ,则{0 1.6}P X <<=( )。

A .0.3094 B. 0.1457 C. 0.3541 D. 0.2543 二、填空题1.设有5个元件,其中有2件次品,今从中任取出1件为次品的概率为 2.设,A B 为互不相容的随机事件,()0.1,()0.7,P A P B ==则()P A B =U 3.设()D X =5, ()D Y =8,,X Y 相互独立。

则()D X Y +=4.设随机变量X 的概率密度⎩⎨⎧≤≤=其它,010,1)(x x f 则{}0.2P X >=三、计算题1.设某种灯泡的寿命是随机变量X ,其概率密度函数为 5,0()0,0x Be x f x x -⎧>=⎨≤⎩(1)确定常数B (2)求{0.2}P X > (3)求分布函数()F x 。

2.甲、乙、丙三个工厂生产同一种产品,每个厂的产量分别占总产量的40%,35%,25%,这三个厂的次品率分别为0.02, 0.04,0.05。

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

数理统计考试题及答案

数理统计考试题及答案

1、 离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni i p2、 设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y相互独立的条件是)()(),(y F x F y x F Y X ∙=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +⋅⋅⋅++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +⋅⋅⋅++=ξ~)10(2χ,查表得025.0ξ=20.54、 设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=n i iXY 122)(1μσ,则EY=n解:∑=-=n i iXY 122)(1μσ~)(2n χ,E 2χ=n ,D 2χ=2n二、设设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=6122)(51i iX X s ,试求)5665.2(22σ≤s P 。

解:因为),(~2σμN X ,所以有)5(~)(126122χσ∑=-i iX X,则⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎭⎫⎝⎛≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi i i i X X P X X P sP s P 查2χ分布表得=≤)5665.2(22σs P ⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752三.设总体X 的概率密度为f(x)=(1),(01)0a x x α⎧+<<⎨⎩,其他,其中α>0,求参数α的矩估计和极大似然估计量。

《概率论与数理统计》分章复习题

《概率论与数理统计》分章复习题

第一章 随机事件与概率一、 选择题1、以A 表示甲种产品畅销,乙种产品滞销,则A 为( ).(A) 甲种产品滞销,乙种产品畅销 (B) 甲、乙产品均畅销(C) 甲种产品滞销 (D) 甲产品滞销或乙产品畅销2、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个发生的事件可以表示为( ).(A)ABC (B) A B C ⋂⋂ (C) A B C ⋃⋃ (D) ABC3、已知事件B A ,满足A B =Ω(其中Ω是样本空间),则下列式( )是错的. (A) B A = (B ) Φ=B A (C) B A ⊂ (D ) A B ⊂4、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个不发生的事件可以表示为( )。

(A)ABC (B )ABC (C) A B C ⋃⋃ (D ) ABC5、假设事件,A B 满足(|)1P B A =,则( ).(A) A 是必然事件 (B) (|)0P B A = (C)A B ⊃ (D)A B ⊂6、设()0P AB =, 则有( ).(A) A 和B 不相容 (B) A 和B 独立 (C) P(A)=0或P(B)=0 (D) P(A-B)=P(A)7、设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是(). (A )A 与B 不相容 (B )A 与B 相容(C )()()()P AB P A P B = (D )()()P A B P A -=8、设A B ⊂,则下面正确的等式是( ). (A) )(1)(A P AB P -= (B) )()()(A P B P A B P -=-(C) )()|(B P A B P = (D) )()|(A P B A P =9、事件,A B 为对立事件,则下列式子不成立的是( ).(A)()0P AB = (B )()0P AB = (C)()1P A B ⋃= (D )()1P A B ⋃=10、对于任意两个事件,A B ,下列式子成立的是( ).(A) ()()()P A B P A P B -=- (B ) ()()()()P A B P A P B P AB -=-+(C) ()()()P A B P A P AB -=- (D ) ()()()P A B P A P AB -=+11、设事件B A ,满足1)(=B A P , 则有( ).(A )A 是必然事件 (B )B 是必然事件(C )A B φ⋂=(空集) (D ))()(B P A P ≥ 12、设,A B 为两随机事件,且B A ⊂,则下列式子正确的是( ).(A )()()P A B P A ⋃=; (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -13、设,A B 为任意两个事件,0)(,>⊂B P B A ,则下式成立的为( )(A )B)|()(A P A P < (B )B)|()(A P A P ≤(C )B)|()(A P A P > (D )B)|()(A P A P ≥14、设A 和B 相互独立,()0.6P A =,()0.4P B =,则()P A B =( )(A )0.4 (B )0.6 (C )0.24 (D )0.515、设 (),(),(),P A c P B b P A B a ==⋃= 则 ()P AB 为 ( ).(A) a b - (B ) c b - (C) (1)a b - (D ) b a -16、设A ,B 互不相容,且()0,()0P A P B >>,则必有( ). (A) 0)(>A B P (B ))()(A P B A P = (C) )()()(B P A P AB P = (D ) 0)(=B A P17、设,A B 相互独立,且()0.82P A B ⋃=,()0.3P B =,则()P A =( )。

数理统计试题及答案

数理统计试题及答案

数理统计试题及答案一、选择题1. 在一次试验中,事件A和事件B是互斥事件,概率分别为0.4和0.3。

则事件“A或B”发生的概率是多少?A. 0.1B. 0.2C. 0.3D. 0.7答案:D. 0.72. 一批产品的重量服从正态分布,均值为100g,标准差为5g。

若随机抽取一件产品,其重量大于105g的概率是多少?A. 0.6827B. 0.1587C. 0.3413D. 0.0228答案:B. 0.15873. 一家量化投资公司共有1000名员工,调查结果显示,有700人拥有股票,400人拥有债券,300人既拥有股票又拥有债券。

随机选择一名员工,问其既拥有股票又拥有债券的概率是多少?A. 0.3B. 0.4C. 0.2D. 0.15答案:A. 0.34. 设X和Y为两个随机变量,已知X的期望为2,方差为4;Y的期望为5,方差为9,且X与Y的协方差为6。

则X + Y的期望为多少?A. 5B. 7C. 6D. 9答案:B. 7二、计算题1. 一箱产品中有10个次品,从中随机抽取3个,求抽到1个次品的概率。

解答:总共的可能抽取组合数为C(10,3) = 120。

抽取到1个次品的组合数为C(10,1) * C(90,2) = 4005。

所以,抽到1个次品的概率为4005/120 = 33.375%。

2. 已知某城市的男性身高服从正态分布,均值为172cm,标准差为5cm;女性身高也服从正态分布,均值为160cm,标准差为4cm。

问男性身高高于女性身高的概率是多少?解答:需要计算男性身高大于女性身高的概率,可以转化为计算两个正态分布随机变量之差的概率。

设随机变量X表示男性身高,Y表示女性身高,则X - Y服从正态分布,其均值为172cm - 160cm = 12cm,方差为5cm^2 + 4cm^2 =41cm^2。

要计算男性身高高于女性身高的概率,即计算P(X - Y > 0)。

首先,标准化X - Y,得到标准正态分布的随机变量Z:Z = (X - Y - 12) / sqrt(41)所以,P(X - Y > 0) = P(Z > (0 - 12) / sqrt(41)) = P(Z > -2.464)查标准正态分布表可知,P(Z > -2.464) ≈ 0.9937所以,男性身高高于女性身高的概率约为99.37%。

数理统计习题(汇总)

数理统计习题(汇总)

150 162 175 165
(1) 求 Y 对 X 的线性回归方程; (2) 检验回归方程的显著性; (3) 求回归系数 b 的 95%的置信区间; (4) 取 x 0 =90,求 y 0 的预测值及 95%的预测区间。 8. 为了考察影响某种化工产品转化率的因素 , 选择了三个有关因素: 反应温度 (A)、反应时 间( B)、用碱量(C),而每个因素取三种水平,列表如下: 水平 因子 温度(A) 时间(B) 用碱量(C) 1 80℃( A1 ) 90 分( B1 ) 5%( C1 ) 2 90℃( A2 ) 120 分( B2 ) 6%( C2 ) 3 90℃( A3 ) 150 分( B3 ) 7%( C3 )
X ________, E ( X ) ______, D( X ) ______ .
3. 设 X 1 , X 2 , , X n 相互独立,且 X i N (0,1).(i 1, 2, , n) 则 的________分布。
2 4. 设 X N (0,1).Y ( n). X 与 Y 独 立 ,则 随 机 变 量 T
2
9. 某厂生产一种乐器用的合金弦线,按以往的资料知其抗拉强度(单位: kg cm 2 )服从 正态分布 N (10560,802 ) ,今用新配方生产了一批弦线,欲考察这批弦线的抗拉强度是 否有提高,为此随机抽取 10 根弦线做抗拉试验,测得其抗拉强度均值为 x 10631.4 , 均方差 s 81.00 。 (检验水平 0.05 ) 。 10. 某厂生产一种保险丝,规定保险丝熔化时间的方差不能超过 400。今从一批产品中
2 2 2 sB 1024( h2 ) ,取置信水平为 0.99 ,试求:
(1)
2 1 的区间估计。 2 2

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题1.未知p(ab)?p(a),则a与b的关系就是单一制。

2.未知a,b互相矛盾,则a与b的关系就是互相矛盾。

3.a,b为随机事件,则p(ab)?0.3。

p(a)?0.4,p(b)?0.3,p(a?b)?0.6,4.已知p(a)?0.4,p(b)?0.4,p(a?b)?0.5,则p(a?b)?0.7。

25.a,b为随机事件,p(a)?0.3,p(b)?0.4,p(ab)?0.5,则p(ba)?____。

36.已知p(ba)?0.3,p(a?b)?0.2,则p(a)?2/7。

7.将一枚硬币重复投掷3次,则正、反面都至少发生一次的概率为0.75。

8.设立某教研室共计教师11人,其中男教师7人,贝内旺拉拜教研室中要自由选择3名叫优秀教师,则3名优秀教师中至少存有1名女教师的概率为___26____。

339.设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。

611110.3人单一制截获一密码,他们能够单独所译的概率为,,,则此密码被所译的5343概率为______。

5后不送回,则第2次取出的就是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235cp(1?p)7次顺利的概率为______。

12.已知3次独立重复试验中事件a至少成功一次的概率为1事件a顺利的概率p?______。

319,则一次试验中27c35813.随机变量x能取?1,0,1,取这些值的概率为,c,c,则常数c?__。

24815k14.随机变量x原产律为p(x?k)?,k?1,2,3,4,5,则p(x?3x?5)?_0.4_。

15x??2,?0?x?15.f(x)??0.4?2?x?0,是x的分布函数,则x分布律为__??pi?1x?0?0??__。

0.40.6??2?0,x?0??16.随机变量x的分布函数为f(x)??sinx,0?x??,则2?1,x2?p(x??3)?__3__。

《数理统计》考试题及参考答案

《数理统计》考试题及参考答案

1 《数理统计》考试题及参考答案一、填空题(每小题3分,共15分)1,设总体X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129(,,)X X X 和129(,,)Y Y Y 是分别来自X 和Y 的样本,则192219X X U Y Y++=++ 服从的分布是服从的分布是_______ ._______ .解:(9)t .2,设1ˆq 与2ˆq 都是总体未知参数q 的估计,且1ˆq 比2ˆq 有效,则1ˆq 与2ˆq 的期望与方差满足的期望与方差满足_______ . _______ .解:1212ˆˆˆˆ()(), ()()E E D D q q q q =<.3,“两个总体相等性检验”的方法有“两个总体相等性检验”的方法有_______ _______ _______ 与与____ ___.解:秩和检验、游程总数检验.4,单因素试验方差分析的数学模型含有的三个基本假定是_______ .解:正态性、方差齐性、独立性.5,多元线性回归模型=+Y βX e 中,β的最小二乘估计是ˆβ=_______ .解:1ˆ-¢¢X Y β=()X X .二、单项选择题(每小题3分,共15分)1,设12(,,,)(2)nX X X n ³ 为来自总体(0,1)N 的一个样本,X 为样本均值,2S 为样本方差,则____D___ .(A )(0,1)nX N ;(B )22()nS n c;(C )(1)()n X t n S- ;(D )2122(1)(1,1)ni i n X F n X =--å .2,若总体2(,)X N m s ,其中2s 已知,当置信度1a -保持不变时,如果样本容量n 增大,则m 的置信区间信区间____B___ . ____B___ .(A )长度变大;(B )长度变小;(C )长度不变;(D )前述都有可能)前述都有可能. .3,在假设检验中,分别用a ,b 表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是下列说法中正确的是____C___ . ____C___ .(A )a 减小时b 也减小;(B )a 增大时b 也增大;(C ),a b 其中一个减小,另一个会增大;(D )(A )和()和(B B )同时成立)同时成立. .4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有和,则总有___A___ . ___A___ .(A )T e A S S S =+;(B )22(1)A S r c s- ;(C )/(1)(1,)/()AeS r F r n r S n r ---- ; ((D )A S 与e S 相互独立相互独立. . 5,在一元回归分析中,判定系数定义为2T S R S=回,则,则___B____ . ___B____ . (A )2R 接近0时回归效果显著;时回归效果显著; ((B )2R 接近1时回归效果显著;时回归效果显著; (C )2R 接近¥时回归效果显著;时回归效果显著; ((D )前述都不对)前述都不对. .三、(本题10分)设总体21(,)X N m s 、22(,)Y N m s ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22XYS S 、分别是它们的样本均值和样本方差,分别是它们的样本均值和样本方差,证明证明证明12121211()()(2)n n X Y t n n S w m m ---+-+ ,其中2221212(1)(1)2X Y n S n S S n n w -+-=+-. 证明:易知易知221212(,)X Y N n n s s m m --+ , 1212()()(0,1)11X Y U N n nm m s ---=+ .由定理可知由定理可知22112(1)(1)Xn S n c s-- ,22222(1)(1)Yn S n c s-- .由独立性和2c 分布的可加性可得分布的可加性可得222121222(1)(1)(2)XYn Sn SV n n c ss--=++- .由U 与V 得独立性和t 分布的定义可得分布的定义可得1212121112()()(2)/(2)n n X Y Ut n n V n n Swm m ---=+-+-+.四、(本题10分)已知总体X 的概率密度函数为1, 0(),0, xe xf x qq -ì>ï=íïî其它其中未知参数0q >, 12(,,,)n X X X 为取自总体的一个样本,求q 的矩估计量,并证明该估计量是无偏估计量.的矩估计量,并证明该估计量是无偏估计量.解:(1)()11()xv E Xxf x dxxe dx q q q-¥¥-¥-¥====òò,用111ni i vX X n ===å 代替,所以代替,所以å===ni i X X n11ˆq .(2)11ˆ()()()()ni i E E X E X E X n q q =====å,所以该估计量是无偏估计.,所以该估计量是无偏估计. 五、(本题10分)设总体X 的概率密度函数为(;)(1),01f x x x q q q =+<<,其中未知参数1q >-,12(,,)n X X X 是来自总体X 的一个样本,试求参数q 的极大似然估计.的极大似然估计.解:1 (1)() , 01() 0 , nniii x x L qq q =ì+P <<ï=íïî其它 当01i x <<时,1ln ()ln(1)ln n i i L n x q q q ==++å,令1ln ()ln 01ni i d L n x d q q q ==+=+å,得,得 1ˆ1ln nii n x q==--å.六、(本题10分)设总体X 的密度函数为e,>0;(;)0,0,xx f x x l l l -ì=í£î未知参数0l >,12(,,)n X X X 为总体的一个样本,证明X 是1l的一个UMVUE UMVUE..证明:由指数分布的总体满足正则条件可得由指数分布的总体满足正则条件可得222211()ln (;)I E f x E l l l l l éù¶-æö=-=-=ç÷êú¶èøëû, 1l的的无偏估计方差的C-R 下界为下界为2221221[()]11()nI n n l l l l l-éùêú¢ëû==.另一方面另一方面()1E X l =, 21V a r ()X n l=,即X 得方差达到C-R 下界,故X 是1l的UMVUE UMVUE..七、(本题10分)合格苹果的重量标准差应小于0.005公斤.在一批苹果中随机取9个苹果称重, 得其样本标准差为007.0=S 公斤, 试问:(1)在显著性水平05.0=a 下, 可否认为该批苹果重量标准差达到要求 (2)如果调整显著性水平0.025a =,结果会怎样?,结果会怎样?参考数据参考数据: : 02319)9(2025.0=c , 91916)9(205.0=c, 53517)8(2025.0=c, 50715)8(205.0=c .解:(1)()()2222021:0.005,~8n SH s c c s-£=,则应有:,则应有:()()2220.050.0580.005,(8)15.507P c cc >=Þ=,具体计算得:22280.00715.6815.507,0.005c ´==>所以拒绝假设0H ,即认为苹果重量标准差指标未达到要求.求.(2)新设)新设 20:0.005,H s £ 由2220.025280.00717.535,15.6817.535,0.005cc ´=Þ==< 则接受假设,即可以认为苹果重量标准差指标达到要求.即可以认为苹果重量标准差指标达到要求.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X m s ,222~(,)Y m s ,221212, , , m m s s未知,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,求2122s s的置信度为1a -的置信区间的置信区间.. 解:设22, XY S S分别表示总体X Y ,的样本方差,由抽样分布定理可知的样本方差,由抽样分布定理可知221121(1)(1)Xn S n c s -- , 222222(1)(1)Yn S n c s-- , 由F 分布的定义可得分布的定义可得211222121222221222(1)(1)(1,1)(1)(1)XX Y Yn Sn S F F nn n SS n ss s s--==---- . 对于置信度1a -,查F 分布表找/212(1,1)F n n a --和1/212(1,1)F n n a ---使得使得[]/2121/212(1,1)(1,1)1P F n n F Fn n a a a---<<--=-,即22222121/2122/212//1(1,1)(1,1)X Y X Y S S S S P F n n F n n a a s a s-æö<<=-ç÷----èø, 所求2221s s 的置信度为a -1的置信区间为的置信区间为 22221/212/212//, (1,1)(1,1)X Y XY S S S S F n n F n n a a -æöç÷----èø.九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.试简要论述线性回归分析包括哪些内容或步骤.解:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数理统计练习题1.设4321,,,X X X X 是总体),(2σμN 的样本,μ已知,2σ未知,则不是统计量的是〔 〕.〔A 〕415X X +; 〔B 〕41ii Xμ=-∑;〔C 〕σ-1X ; 〔D 〕∑=412i iX.解: 统计量是不依赖于任何未知参数的连续函数. ∴ 选C.2.设总体n X X X p B X ,,,),,1(~21 为来自X 的样本,则=⎪⎭⎫⎝⎛=n k X P 〔 〕. 〔A 〕p ; 〔B 〕p -1;〔C 〕k n k k n p p C --)1(; 〔D 〕k n k kn p p C --)1(.解:n X X X 21相互独立且均服从),1(p B 故 ∑=ni ip n B X1),(~即 ),(~p n B X n 则()()(1)k k n k n k P X P nX k C p p n-====- ∴ 选C.3.设n X X X ,,,21 是总体)1,0(N 的样本,X 和S 分别为样本的均值和样本标准差,则〔 〕.〔A 〕)1(~/-n t S X ; 〔B 〕)1,0(~N X ;〔C 〕)1(~)1(22--n S n χ; 〔D 〕)1(~-n t X n .解:∑==ni i X n X 110=X E ,)1,0(~112n N X n n n X D ∴== B 错 )1(~)1(222--n S n χσ)1(~)1(1)1(2222--=-∴n S n S n χ )1(~-n t n SX . ∴ A 错.∴ 选C.4.设n X X X ,,,21 是总体),(2σμN 的样本,X 是样本均值,记=21S ∑∑∑===--=-=--n i n i n i i i i X n S X X n S X X n 1112232222)(11,)(1,)(11μ,∑=-=ni i X n S 1224)(1μ,则服从自由度为1-n 的t 分布的随机变量是〔〕.〔A 〕1/1--=n S X T μ;〔B 〕1/2--=n S X T μ;〔C 〕nS X T /3μ-=;〔D 〕n S X T /4μ-=解:)1(~)(2212--∑=n X Xni iχσ)1,0(~N n X σμ-)1(~1)(1122----=∑=n t n X XnX T ni iσσμ)1(~11/)(222---=--=n t n S X n nS nX T μμ ∴选B.5.设621,,,X X X 是来自),(2σμN 的样本,2S 为其样本方差,则2DS 的值为〔〕. 〔A 〕431σ;〔B 〕451σ;〔C 〕452σ;〔D 〕.522σ 解:2126,,,~(,),6X X X N n μσ=∴)5(~5222χσS由2χ分布性质:1052522=⨯=⎪⎪⎭⎫ ⎝⎛σS D即442522510σσ==DS ∴选C.6.设总体X 的数学期望为n X X X ,,,,21 μ是来自X 的样本,则下列结论中正确的是〔〕. 〔A 〕1X 是μ的无偏估计量; 〔B 〕1X 是μ的极大似然估计量; 〔C 〕1X 是μ的一致〔相合〕估计量; 〔D 〕1X 不是μ的估计量. 解:11EX EX X μ==∴是μ的无偏估计量.∴选A.7.设n X X X ,,,21 是总体X 的样本,2,σμ==DX EX ,X 是样本均值,2S 是样本方差,则〔〕.〔A 〕2~,X N n σμ⎛⎫ ⎪⎝⎭;〔B 〕2S 与X 独立; 〔C 〕)1(~)1(222--n S n χσ;〔D 〕2S 是2σ的无偏估计量.解:已知总体X 不是正态总体 ∴〔A 〕〔B 〕〔C 〕都不对. ∴选D.8.设n X X X ,,,21 是总体),0(2σN 的样本,则〔 〕可以作为2σ的无偏估计量.〔A 〕∑=n i i X n 121; 〔B 〕∑=-n i i X n 1211; 〔C 〕∑=n i i X n 11; 〔D 〕∑=-ni i X n 111.解:2222)(,0σ==-==i i i i i EX EX EX DX EX22121)1(σσ=⋅=∑n nX n E n i ∴选A.9.设总体X 服从区间],[θθ-上均匀分布)0(>θ,n x x ,,1 为样本,则θ的极大似然估计为〔 〕〔A 〕},,max {1n x x ; 〔B 〕},,min{1n x x 〔C 〕|}|,|,max {|1n x x 〔D 〕|}|,|,min{|1n x x解:1[,]()20x f x θθθ⎧∈-⎪=⎨⎪⎩其它似然正数∏==ni i n x f x x L 11),();,,(θθ 1,||1,2,,(2)0,i nx i n θθ⎧≤=⎪=⎨⎪⎩其它此处似然函数作为θ函数不连续 不能解似然方程求解θ极大似然估计∴)(θL 在)(n X =θ处取得极大值|}|,|,max{|ˆ1nn X X X ==θ ∴选C.10.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是〔A 〕1X 是μ的无偏估计量. 〔B 〕1X 是μ的极大似然估计量. 〔C 〕1X 是μ的相合〔一致〕估计量. 〔D 〕1X 不是μ的估计量. 〔 〕 解:1EX μ=,所以1X 是μ的无偏估计,应选〔A 〕. 11.设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为 〔A 〕/2/2(x u x u αα-+ 〔B 〕1/2/2(x u x u αα--+ 〔C 〕(x u x uαα-+ 〔D 〕/2/2(x u x u αα-+ 解:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D.12.设总体 X ~ N ( μ , σ2 ),其中σ2已知,则总体均值μ的置信区间长度L 与置信度1-α的关系是(a) 当1-α缩小时,L 缩短. (b) 当1-α缩小时,L 增大. (c) 当1-α缩小时,L 不变. (d) 以上说法均错.解:当σ2已知时,总体均值μ的置信区间长度为当1-α缩小时,L 将缩短,故应选〔a) 13.设总体 X ~ N ( μ1 , σ12 ), Y ~ N ( μ2 , σ22 ) ,X 和Y 相互独立,且μ1 , σ12,μ2 , σ22均未知,从X 中抽取容量为n 1 =9的样本,从Y 中抽取容量为n 2 =10的样本分别算得样本方差为 S 12 =63.86, S 22=236.8对于显著性水平α=0.10〔0< α <1〕,检验假设H 0 : σ12 = σ22; H 1 : σ12≠σ22则正确的方法和结论是[ ](a)用F 检验法,查临界值表知F 0.90(8 ,9)=0.40, F 0.10(8,9)=2.47 结论是接受H 0(b)用F 检验法,查临界值表知F 0.95(8,9)=0.31, F 0.05(8,9)=3.23 结论是拒绝H 0 (c)用t 检验法,查临界值表知t 0.05(17)=2.11结论是拒绝H 0 (d)用χ2检验法,查临界值表知χ2 0.10(17)=24.67结论是接受H 0解:这是两个正态总体均值未知时,方差的检验问题,要使用F 检验法。

在假设H 0 : σ12 = σ22是双侧检验问题,选(b)14.机床厂某日从两台机器所加工的同一种零件中分别抽取容量为n 1和n 2的样本,并且已知这些零件的长度都服从正态分布,为检验这两台机器的精度是否相同,则正确的假设是(a) H 0 : μ1 = μ2; H 1 : μ1≠μ2 (b) H 0 : μ1 = μ2; H 1 : μ1 < μ2 (c) H 0 : σ12 = σ22 ; H 1 : σ12≠σ22 (d) H 0 : σ12 = σ22 ; H 1 : σ12< σ22分析:为检验精度,要检验方差是否相同,故应选(C) 15.在求参数θ的置信区间时,置信度为90%是指〔〕 〔a 〕对100个样品,定有90个区间能覆盖θ 〔b 〕对100个样品,约有90个区间能覆盖θ 〔c 〕对100个样品,至多有90个区间能覆盖θ 〔d 〕对100个样品,只能有90个区间能覆盖θ 答:选(b)16.收集了n 组数据n i y x i i ,,2,1),( = 画出散布图,若n 个点基本在一条直线附近时,称这两变量间具有〔〕 〔a 〕独立的关系〔b 〕不相容的关系 〔c 〕函数关系 〔d 〕线性相关关系 答:选(d) 17.设1217,,,X X X 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________.〔注:20.01(17)33.4χ=, 20.005(17)35.7χ=,20.01(16)32.0χ=, 20.005(16)34.2χ=〕解:2216(){4}0.014S P S a P a >=>= 即 20.01(16)4a χ=,亦即 432a =8a ∴=.18.设测量零件的长度产生的误差X 服从正态分布2(,)N μσ,今随机地测量16个零件,得1618ii X==∑,162134i i X ==∑. 在置信度0.95下,μ的置信区间为___________.0.050.025((15) 1.7531,(15) 2.1315)t t ==解:μ的置信度1α-下的置信区间为/2/2(((X t n X t n αα--+- 16222110.5,[16]2, 1.4142,1615i i X S X X S n ===-===∑0.025(15) 2.1315.t =所以μ的置信区间为〔0.2535,1.2535-〕.19.最小二乘法的基本特点是使回归值与___的平方和为最小,最小二乘法的理论依据是___。

答:实际观测值;函数的极值原理。

20.某单因子试验,因子A 有 2 个水平,水平 A 1下进行 5 次重复试验,在水平A 2下进行 6 次重复试验,则总偏差平方和的自由度为〔〕。

答:10数理统计的基本概念1.某厂生产玻璃板,以每块玻璃上的泡疵点个数为数量指标,已知它服从均值为λ的泊松分布,从产品中抽一个容量为n 的样本12,,,n X X X ,求样本的分布.解 样本12(,,,)n X X X 的分量独立且均服从与总体相同的分布,故样本的分布为11221(,,,)()nn n i i i P X k X k X k P X k ======∏1!ikni i e k λλ-==∏112!!!ni i n k n e k k k λλ=-∑=0,1,i k =,1,2,,,i n =2.加工某种零件时,每一件需要的时间服从均值为1/λ的指数分布,今以加工时间为零件的数量指标,任取n 件零件构成一个容量为n 的样本,求样本分布。

相关文档
最新文档