H江水利枢纽工程毕业设计

合集下载

H江水利枢纽工程毕业设计任务书

H江水利枢纽工程毕业设计任务书

H江水利枢纽工程毕业设计任务书(重点泄水闸设计)( 水利水电工程专业函授生用)农田水利河海大学水电学院目录第一部分总则一、设计目的及要求 (2)二、设计方法 (2)第二部分设计任务一、泄水闸的工程设计 (2)二、连接建筑物的设计 (3)三、设计内容和时间安排 (3)四、设计成果要求 (4)第三部分枢纽设计资料一、兴建缘由和效益 (4)二、工程等级及设计标准 (5)三、枢纽地形、地质及当地材料 (5)四、基本资料 (6)五、建筑物的设计参数 (6)六、附图 (8)七、参考文献 (8)第一部分总则一、设计目的及要求1. 巩固和加深学生的基本理论和专业知识通过实际的枢纽工程总体布置和主要建筑物(泄水闸)设计,使学生掌握枢纽布置的原则;泄水建筑物的结构选型、尺寸拟定、工作条件、作用荷载及设计依据、内容、方法、步骤等。

从而达到较全面、系统地巩固、充实。

提高所学的基础理论和专业知识。

2. 培养学生独立工作、解决实际问题的能力学生在全面了解设计任务和熟悉给定资料的基础上,学会查找规范、手册、技术文献等参考资料集前人经验,结合工程实际,在教师指导下,独立进行工程设计。

3. 训练学生的基本技能基本技能是指工程计算、编制微机电算程序、绘图和说明书的文字表达能力等。

4. 培养学生认真负责、实事求是和刻苦钻研的工作作风二、设计方法1. 由于设计时间短、任务紧,应尽量避免重做或返工。

但必需认识到,设计工作是逐步深入的。

因此某些重做是正常的甚至是必要的。

2. 每个阶段设计中,趁进入角色之机,应及时收集资料,草写阶段设计说明并备全草图,这样既可及时校对、发现错误,尤为最后的文字成果整理提供了素材。

3. 在学生与教师研讨问题时,学生应在充分钻研的基础上,先提出自己的看法和意见,不能请老师代做和决断。

教师只向学生提出启发性的意见。

解决问题的途径和工作方向、建议等。

在采纳教师建议时,也必须自我消化、理解,但不强求一定纳用。

在设计过程中,提倡开拓精神,鼓励提出新的方案或见解,同时也要遵循严肃认真的科学态度。

水利施工组织毕业设计--设计书

水利施工组织毕业设计--设计书

毕业论文摘要河流上修筑水工建筑物,关系着下游千百万人民生命财产安全。

本设计主要论述了柳村水电站施工导流、导流建筑物的形式、围堰的结构设计及稳定分析、混凝土施工等。

柳村电站枢纽位于西藏昌都地区左贡县境内怒江一级支流玉曲河上,为无调节坝后式小型水电站.该电站由拦河坝、泄洪建筑物、引水建筑物及电站厂房组成.电站设计装机容量为2×800kW,施工总工期2年。

本枢纽导流建筑物为V级,电站施工导流设计流量采用平水年平均径流流量Q=49。

36 m3/s在导流方案设计时,分别采取了全段围堰法和分段围堰共6种方案的论述,经过技术和经济论证,最终采用分段围堰法施工。

围堰材料采用草土袋,土工布防渗,经过抗滑稳定的分析,围堰符合设计标准.混凝土施工组织设计包括混凝土的配制,混凝土的浇筑,混凝土的温度控制,混凝土的养护,钢筋及模板作业等。

柳村电站枢纽为浆砌石硬壳坝,混凝土施工主要在电站厂房坝段、溢流面、上游面板及下游消能池。

关键词:施工导流,全段围堰法,分段围堰法,混凝土施工第 I 页共 56 页毕业论文AbstractBuild the water conservancy project building on the river , is concerning a great amount of people’s safety of life and property of low reaches 。

Is it expound the fact Liucun power station construct water conservancy diversion , form , structural design and steady analysis ,concert construction ,etc. of cofferdam , water conservancy diversion of building mainly to design originally。

E江水利枢纽工程毕业设计计算书

E江水利枢纽工程毕业设计计算书
河海水工2015福建水利电力职业技术学院继教中心201711泄洪能力12调洪演算21坝顶高程计算22坝顶宽度23坝坡与马道24坝体排水25大坝防渗体31粘性土料设计32坝壳砂砾料设计1241计算方法1242计算断面及计算情况的选择1443计算结果1444渗透稳定验算1651计算方法1652上下游坝坡折线滑动法计算1653稳定成果分析1861河床部分62坝肩处理2071坝的防渗体排水设备2072反滤层设计2073护坡设计2074坝顶布置2281进口建筑物2282洞身断面型式和尺寸2383出口消能段2493计算工况2494平洞段底坡的确定2495洞内水面曲线2496出口消能验算2510隧洞的细部构造27101洞身衬砌27102衬砌分缝止水27103灌浆27104排水2710527106锚筋加固271调洪演算11泄洪能力本次根据确定的泄洪方式进行泄流能力分析根据无压隧洞自由计算其过流能力泄流公式按下式计算
粘性土的填筑含水量W为:
W=WP+B·IP
式中:
WP——土的塑限;
IP——土的塑性指数;
B——稠度系数,对高坝可取-0.1~0.1之间,低坝可取0.1~0.2之间,本设计取B=0.07。
设计最优含水量为:
用下述公式计算最大干容重作为校核参考:
=
式中:
∆s──土粒的比重;
va──压实土的含气量,粘土可取0.05,砂质粘土取0.04,壤土可取0.03,本设计取为0.05。
堰顶水头
H(m)
b=8m
泄流量
(m3/s)
1.0
12.9
1.0
15.0
1.0
17.2
3.0
67.0
3.0
78.1
3.0
89.3
5.0
144.1

H江水利枢纽工程毕业设计

H江水利枢纽工程毕业设计

毕业设计设计题目土坝枢纽施工组织设计专业水利水电工程年级2012水工(1)班姓名陈广兵学号**********指导教师王润英、陈海雄、胡秀君日期2014年04月13120110935目录1 工程兴建缘由和效益 (1)2 设计基本资料 (1)2.1 工程等级及设计标准 (1)2.2 枢纽地形、地质及当地材料 (2)2.3 基本资料 (3)2.4 建筑物的设计参数 (4)3 主要设计成果 (7)3.1 枢纽总体布置 (7)3.2 水闸设计 (7)4 水闸水力设计 (10)4.1 堰型、堰顶高程的确定 (10)4.2 水闸净宽确定 (11)4.3 校核泄流能力 (12)4.4 闸室总宽度的确定 (18)5 水闸消能防冲设计 (18)5.1 消力池设计 (18)5.2 海漫设计 (22)5.3 防冲槽设计 (23)6 闸室布置 (23)6.1 闸室结构布置 (23)6.2 长度拟定 (27)6.3 其他尺寸拟定 (28)7 闸基防渗排水设计 (29)7.1 拟定地下轮郭线 (29)7.2 渗流计算 (29)8 闸门及启闭机设计 (37)8.1 闸门设计 (37)231201109358.2 启闭机选型 (37)9 闸室稳定计算 (37)9.1 闸室稳定计算 (38)9.2 闸室沉降计算 (44)10 两岸连接建筑物设计 (44)10.1 上游翼墙计算 (45)10.2 下游翼墙计算 (51)10.3 上游护坡 (58)10.4 下游护坡 (58)11 闸底板配筋计算 (58)11.1 不平衡剪力计算 (59)11.2 不平衡剪力分配值的计算 (59)11.3 底板作用荷载计算 (60)11.4 弯距计算 (63)331201109351工程兴建缘由和效益涵江位于我国华东地区,流向自东向西北,全长375km,流域面积176万km²,是鄱阳湖水系的主要支流,也是长江水系水路运输网的组成部分。

该流域气候温和,水量充沛,水面平缓,含沙量小,对充分开发这一地区的水路运输具有天然的优越条件。

水利水电工程专业毕业设计

水利水电工程专业毕业设计

本科毕业论文(设计)论文(设计)题目:《七家田水电站设计》学院:土木工程学院专业:水利水电工程班级:水电112班学号: **********学生姓名:***指导教师:***2015年6月5日贵州大学本科毕业设计诚信责任书本人郑重声明:本人所呈交的毕业设计,是在导师的指导下独立进行研究所完成。

毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。

特此声明。

设计作者签名:余官荣日期:2015 年6月5日目录1.摘要 (1)2.前言 (2)3.方案比较 (3)3.1坝址选择 (3)3.2厂址选择 (7)3.3坝型选择 (7)4.枢纽布置 (9)4.1坝体布置 (9)4.2取水口布置 (9)4.3厂房和公路布置 (10)5.坝高的确定 (10)5.1水文资料 (10)5.2 坝区工程地质资料 (24)6.应力计算 (27)6.1正常蓄水位加温降 (27)6.2设计洪水位加温降 (28)6.3校核洪水位加温降 (28)7.坝肩稳定计算 (28)7.1稳定分析方法 (28)7.2稳定计算方法 (28)7.3计算结果 (30)8.溢流坝段设计 (30)8.1溢流曲线 (30)8.2闸孔设计 (31)8.3消能设计 (31)9.冲沙底孔设计 (31)10.进水口设计 (32)11.厂房设计 (32)11.1概况及基本资料 (32)11.2厂区枢纽平面布置 (35)11.3主厂房设计 (36)12.结论 (38)13参考文献 (39)14致谢 (40)15.附录 (40)15.1坝顶高程确定 (40)15.1.特征水位计算 (40)15.1.2坝顶高程 (43)15.2拱冠梁设计计算 (45)15.2.1坝底高程 (45)15.2..2坝底厚度 (45)15.2.3确定上游面曲线 (45)15.2.4拱圈厚度曲线 (45)15.2.5圆心连线的无确定 (46)15.2.6顶拱半径图 (47)15.2.7坝体左岸半边拱的圆心连线 (48)15.2.8坝体右岸半边拱的圆心连线 (48)15.3应力计算 (50)15.3.1正常蓄水位加温降,左半拱 (50)15.3.2正常蓄水位加温降,右半拱 (55)15.3.3设计洪水位加温降,左半拱 (59)15.3.4设计洪水位加温降,右半拱 (65)15.3.5校核洪水位加温降,左半拱 (69)15.3.6校核洪水位加温降,右半拱 (75)15.4坝肩稳定计算 (79)15.4.1正常蓄水位加温降,左半拱 (81)15.4.2设计洪水位加温降,左半拱 (82)15.4.3校核洪水位加温降,左半拱 (83)15.4.4正常蓄水位加温降,右半拱 (84)15.4.5设计洪水位加温降,右半拱 (84)15.4.6校核洪水位加温降,右半拱 (85)15.5溢流剖面计算 (86)15.5.1顶部曲线段 (86)15.5.2溢流面大样图 (87)15.5.3挑距计算 (88)15.5.4冲坑深度计算 (89)15.5.5综上 (90)15.6进水口设计 (90)15.6.1压力钢管直径计算 (90)15.6.2最小淹没深度计算 (90)15.6.3调压井计算 (91)15.7厂房尺寸计算 (91)1.摘要:本设计为一个水电站的设计,主要设计水电站水工部分,不涉及电方面。

水工建筑物重力坝毕业设计模板

水工建筑物重力坝毕业设计模板

水工建筑物重力坝毕业设计模板××水力发电枢纽工程重力坝设计一、前言1、流域概况及枢纽任务××是罗江上的一条南北向大支流,河流全长295公里,流域面积850平方公里。

流域形状略呈菱形,上下游狭窄,中游宽大,河道坡陡流急,具有暴涨暴落的特性。

本枢纽工程以发电为主,兼顾防洪、灌溉,对航运和木材筏运也适当加以解决。

水库总库容22.6亿立方米,装机容量24.8万千瓦,灌溉上游农田130万亩,确保减免昌州市(福州市)及附近50万亩农田和南江县(南平县)的洪灾。

2、经水文、水利调洪演算确定:死水位200.15m;发电正常水位215.5m,相应下游水位163.88m;设计洪水位216.22m,相应下游水位169.02m,通过河床式溢洪道下泄流量5327.70m3/s;校核洪水位217.14m,相应下游水位169.52m,通过河床式溢洪道下泄流量6120.37 m3/s;泥沙淤积高程174.6m,淤沙干容重14.1KN/m3(浮容重=8.71 KN/m3),孔隙率n=0.45内摩擦角为φ=15o;电站进水口底板高程为186.20m(坝式进水口)。

3、气象资料相应洪水季节50年重现期最大风速的多年平均值为17.3m/s,相应设计洪水位时吹程2.54km,相应校核洪水位时吹程2.66km。

4、地质勘测资料坝址处河床地面高程为146.10m,河床可利用基岩高程为140m,坝与基岩之间摩擦系数为0.7,基岩允许抗压强度为6.3Mpa ,坝基渗透系数(扬压力折减系数或剩余水头系数)α1α2可分别取0.25,0.34。

5、建筑材料有关数据5.1 龄期为90天,强度等级C15标号的混凝土允许抗压强度为4.3Mpa。

5.2 砂石料有3个主要料场:5.2.1 房村料场位于坝上游右岸22公里处,与公路边小山丘相连,附近河岸地形开阔,可供加工堆存之用,分布呈长方形,长1350m,宽234m,表土层3~4m,露出水面0~7m。

水利施工组织毕业设计-计算书

水利施工组织毕业设计-计算书

毕业论文毕业设计计算书设计题目:水利枢纽施工组织设计及主体工程施工设计毕业论文目录1导流方案水力计算 (1)1.1全段围堰法,遂洞导流 (1)1。

1.1全段围堰法,粘土斜墙带水平铺盖围堰,遂洞导流 (1)1。

1.2全段围堰法,塑料斜墙带水平铺盖围堰,遂洞导流 (5)1。

1.3全段围堰法,混凝土心墙围堰,遂洞导流 (8)1.2分段围堰法导流计算 (12)1.2。

1围堰堰顶高程以上的超高d计算 (12)1.2.2一期围堰尺寸计算 (12)1。

2.3分段导流法,二期梳齿导流 (15)2。

土石方量和费用计算 (17)2。

1一期土方量 (17)2。

2二期土方量 (18)2。

3土工布用量计算 (20)2。

3。

1 一期导流土工布用量 (20)2.3.2二期导流土工布用量 (20)2.4过水围堰损失费用 (21)3、围堰的稳定分析 (21)3。

1一期围堰稳定分析 (21)3.1.1 一期上游围堰 (21)3。

1。

2 一期下游围堰 (22)3.1.3 一期纵向围堰 (22)3。

2二期围堰稳定分析 (24)3.2.1 二期上游围堰 (24)3.2.2 二期下游围堰 (24)3。

2。

3 二期纵向围堰 (24)4主体工程施工 (25)4.1柳村电站混凝土工程量 (25)4.2拌和站的确定 (26)4.3运输汽车的确定 (26)4。

4混凝土水灰比 (27)毕业论文第 1 页 共 30 页1导流方案水力计算1.1全段围堰法,遂洞导流1。

1.1全段围堰法,粘土斜墙带水平铺盖围堰,遂洞导流(1)围堰的各个参数如下:围堰顶宽为五米;上游边坡为1:2.5,下游边坡为1:1.5;护坡厚度为0。

5米,下设0.3米的垫层;塑料斜墙1。

6mm ,宽度为1.4米;保护层为砂砾石,厚度为1。

5米;斜墙长度取4倍水头,接头处取3米;反滤层,取为1米;(2)隧洞各个参数如下:洞轴线长l=331。

266m ;隧洞进口与主河流交角为α=34°;隧洞出口与主河流交角为α=30°;隧洞转弯半径ρ=100m;隧洞转角θ=35°;进口直线段长158。

水闸毕业设计

水闸毕业设计
三、闸墩
闸墩采用C20钢筋混凝土,中墩厚度按构造要求拟定为160CM,缝墩厚度按构造要求拟定为80CM,长度与闸底板顺水流方向长度相等为2000CM。
四、闸上交通桥
闸上交通桥采用C30钢筋混凝土,总宽度为900CM,采用T型结构。
闸上交通桥的布置可以有两个布置方案,即布置在上游侧和布置在下游侧,后者交通桥可以免受风浪的影响;前者在上游侧风浪较大时,风浪对交通桥会产生顶托,从而增加交通桥的造价。
4、抗倾稳定和抗浮稳定
一、渗透稳定计算
1、渗透稳定验算
渗透计算采用直线比例法。地下轮廓线从钢筋混凝土铺盖至消力池前端,水平长度有85米。
设计情况取为如下两种:
根据以上数据可得,最大的水位差为校核时的情况,具体数字为5.5米。据此可的平均渗透坡降J=5.5/85=0.0.065,参照《水闸设计规范(SD133-84)C值取为3~4,则临界地下轮廓线的长度为L=C*H=(3~4)×5.5=(16.5~22)米<85米,防渗长临界地下轮廓线的长度基本满足所布置的地下轮廓线的长度。
水压力计算表
稳定分析表
水平抗滑稳定计算表
基底压力分布图
可见水平抗滑稳定满足要求。
根据N63.5=20,可以查规范推知[R]=300Kpa,基底压力满足要求。
一、
以闸门为界,将水闸闸室分为上下游两段计算不平衡剪力,在分析时分三种计算工况进行。
1、竣工期的不平衡剪力计算
2、竣工期的闸墩集中荷载计算
3、竣工期的闸底板均不荷载计算
一、设计任务
1、消能防冲设备形式的选择
2、消力池深度和消力池长度的确定
3、海漫长度的计算
4、防冲槽的设计
5、上下游两岸护坡的设计
6、消能防冲设备的构造
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1 综合说明 (3)1.1工程概况 (3)1.2设计依据 (3)1.3毕业设计成果(泄水闸) (4)2 水文 (8)2.1流域概况 (8)2.2气象 (8)2.3洪水 (8)3 工程地形、地质 (9)3.1闸址地形 (9)3.2闸址地质 (9)3.3当地建筑材料 (9)3.4地震烈度 (9)4 工程布置及建筑物 (10)4.1设计依据 (10)4.1.1 工程等级及建筑物级别 (10)4.1.2 设计基本资料 (10)4.2工程总体布置 (11)4.2.1 船闸的布置 (12)4.2.2 水电站的布置 (12)4.2.3 泄水闸的布置 (12)4.3主要建筑物(泄水闸) (13)4.3.1闸孔设计 (13)4.3.2 消能防冲设计 (15)4.3.3 防渗排水设计 (19)4.3.4 闸室的布置 (22)4.3.5 闸室稳定计算 (25)4.3.6 闸室底板结构计算 (28)4.3.7 两岸连接建筑物设计 (32)附图:图01 枢纽平面布置图图02 水闸平面图及剖面图图03 水闸上游立视图图04 水闸底板配筋图图05 上下游翼墙剖面图1 综合说明1.1 工程概况函江位于我国华东地区。

流向自东向西北,全长375km,流域面积176 万km2,是鄱阳湖水系的重要支流,也是长江水系水路运输网的组成部分。

该流域气候温和,水量充沛,水面平缓,含砂量小,对充分开发这一地区的航运具有天然的优越条件。

流域内有耕地700多万亩,矿藏资源十分丰富,工矿企业较发达,有国家最大的有色金属冶炼工程铜基地及腹地内的建材轻工。

原材料及销售地大部分在长江流域各省、市地区,利用水运的条件十分优越。

流域梯级开发后,将建成一条长340km通航千吨级驳船的航道和另一条长50km 通航300吨级驳船的航道,并与长江、淮河水系相互贯通形成一个江河直达的上游水路运输网。

同时也为沿江各县市扩大直流灌溉创造有利条件。

对促进沿河地区的工农业发展具有重要的作用,社会和经济效益十分显著。

本工程以航运为主体,兼任泄洪、发电、灌溉、供水和适应战备需要的综合开发工程。

本次毕业设计主要对枢纽总体布置方案进行定性的论证和对枢纽中的泄水闸进行全面的结构选型设计。

1.2 设计依据1、函江枢纽毕业设计任务书;2、《水闸设计规范》(SL265─2001);3、《水力计算手册》(武汉水利电力学院水力学教研室编)4、《水工设计手册》第6册过坝与泄水建筑物;5、《水工钢筋混凝土设计手册》1999年;6、《水利水电钢闸门设计规范》DL/T 5039-95;7、《水利水电工程初步设计报告编制规程》(DL5021-93)1.3 毕业设计成果(泄水闸)1.3.1枢纽总体布置根据《水闸设计规范》SL265-2001第4.1.6条规定:水闸枢纽中的船闸、泵站或水电站宜靠岸布置,但船闸不宜与泵站或水电站布置在同一岸侧,船闸、泵站或水电站与水闸的相对位置,应能保证满足水闸通畅泄水及各建筑物安全运行的要求。

因此,本设计在枢纽布置时,将泄水闸布置在河床中间,船闸布置在左岸,水电站布置在右岸。

其中:泄水闸每孔净宽10m,共35孔,高12m,直升式平板钢闸门控制,闭闸时拦截江流,稳定上游水位,开闸时泄水,排沙防淤。

设计流量9540m3/s,校核流量12350m3/s。

船闸1座,闸室有效长度为135m,净宽12m,槛上水深2.5m,闸室顶高程24.0m,底高程10.5m。

闸上公路桥设在上闸首的上游端。

水电站厂房宽15m(顺流向),长36.2m。

厂房地面高程24.5m,水轮机安装高程10.5m。

水电站设计水头3.5m,最高水头7.0m,最大引用流量225m3/s,总装机3×2200KW。

站上公路桥设在厂房的上游端。

具体布置见附图一:总平面布置图。

1.3.2 水闸设计1、水闸水力设计1)、堰型、堰顶高程闸孔采用结构简单、施工方便的无坎平底宽顶堰(平底水闸属无坎宽顶堰)。

拟定闸底板顶高程为13.0m。

2)、水闸总宽度闸室总宽度:10×35+36×1.6=407.6m。

2、水闸消能防冲设计1)、消力池消力池采用钢筋砼结构,深1.45m,消力池长L=20.8m,厚度0.8m。

2)、海漫海漫长度L=40m,海漫水平段长15m,采用60cm厚钢筋混凝土浇筑,斜坡段长25m,1:10放坡,采用60cm厚浆砌块石砌筑。

3)、防冲槽防冲槽采用梯形断面,槽深2.5m,槽底宽10m,上游设C20钢筋砼齿槽,厚50cm,下游坡比为1:2.0,单宽体积为37.5m2,冲刷坑采用抛石合金钢网石兜抛石处理。

3、闸室布置1)、闸室结构闸室采用开敞式布置,钢筋砼U型结构,闸门选择直升式平板钢闸门,液压启闭,闸上布置净7m交通桥,两侧人行道2×1.0m,总宽9.0m、宽4m工作桥和启闭房,启闭房宽11.0m,底板长度取20m。

底板采用整体式,二孔一分缝,最中间一孔,底板长度为20m,顶高程为13.0m,闸底板厚1.5m 。

闸墩长度采用与底板同长20m,。

检修门槽深25cm,宽30m;工作门槽深40cm,宽60cm。

闸墩上下游端部均采用半圆形墩头。

闸墩顶高程为25.0m。

闸墩厚度受控于闸门槽处最小厚度为50cm,中墩厚度取1.6m,缝墩厚度为2×0.8m,边墩厚度为1.6m。

公路桥布置在闸门上游侧,公路桥载重按汽-20设计,挂100校核,双车道桥面净宽7.0m,两侧人行道1×1.0m,总宽9.0m。

公路桥采用T型结构,梁底高程为25.0m,梁高1.0m,梁腹宽0.2m,梁翼宽1.6m,用5根组梁组成,两侧人行道为悬壁式。

2)、上下游翼墙上游连接采用扶壁式翼墙,圆弧连接,半径为20m,下游翼墙采用扶壁式八字型翼墙加圆弧型翼墙连接,扩散角为8°,圆弧半径为20m。

上游翼墙顶标高为25.0m,下游翼墙顶标高为25.0m。

4、闸基防渗排水设计由于本工程闸址地基主要由砂砾卵石层组成,为强透水土质,故在采用水平防渗措施的同时还必须采取垂直防渗措施。

铺盖采用C25钢筋砼结构,长20m。

铺盖与闸底板之间设水平止水。

在消力池水平段前端与闸底板连接处设置水平止水;消力池末端依次铺设碎石垫层和无纺土工布反滤,排水孔孔径15cm,间距1.5m,呈梅花形布置,顺水流方向长度为7.5m。

5、闸门及启闭机设计1)、闸门根据门顶高程及闸底标高,确定平面钢闸门高为7m,闸门净宽10m,毛宽10.6m。

2)、启闭机启闭机型号:QPQ2×3006、闸室稳定计算1)、闸室整体稳定水闸整体稳定分别对完建期、正常运用期及非常运用期三种工况进行闸室的偏心距、基底应力、基底应力的不均匀系数及沿闸室底面的抗滑稳定系数计算,均满足规范要求。

2)、闸室沉降计算经分析,本次不必计算闸室的沉降量。

7、闸底板配筋经计算,面、底层钢筋均按Φ25@200配置。

8、两岸连接建筑物设计采用扶壁式挡土墙,上游翼墙顶高程25.00m,底高程12.00m。

下游翼墙顶高程25.00m,底高程10.55~12.00m。

上游挡墙高13.0m,挡墙壁厚1.0m,墙身垂直,墙身高12m,墙底板厚1.0m。

下游挡墙高13~14.45m,挡墙壁厚1.0m,墙身高度12~13.45m,底板厚度1.0 m。

翼墙两侧设置1.0×1.0m腋角,两侧悬挑4m,底板总宽11m。

上游翼墙长30m,下游翼墙长36.8m。

翼墙采用C25钢筋砼浇筑。

上游护坡,顶高程为25.0m,底高程13.0m,采用坡比为1:3,40cm厚浆砌块石护坡。

下游护坡,顶高程为25.0m,底高程13.0m,采用坡比为1:3,40cm厚浆砌块石护坡。

9、水闸特性表综上所述,水闸特性表如下:水闸特性表2 水文2.1 流域概况函江位于我国华东地区。

流向自东向西北,全长375km,流域面积176 万km2,是鄱阳湖水系的重要支流,也是长江水系水路运输网的组成部分。

该流域气候温和,水量充沛,水面平缓,含砂量小。

2.2 气象本流域属亚热带季风气候区,温暖湿润,四季分明,雨水充沛。

洪水期多年平均最大风速为20.7m/s。

2.3 洪水经计算,各设计频率洪水流量及相应坝下水位见表2-1。

洪峰流量及相应坝下水位表水位流量关系曲线见表2-2。

水位~流量关系3 工程地形、地质3.1 闸址地形闸址左岸与一座山头相接,山体顺水流方向长700米,垂直水流方向长2000米,山顶主峰标高110米,靠岸边山顶标高65米;山体周围是河漫滩冲击平原,滩面标高18.5~20.0米;沿河两岸筑有防洪大堤,堤顶宽4米,堤顶标高24.5米;闸址处河宽700米,主河槽宽500米,深泓区偏右,河床底标高13.0~13.0米,右岸滩地标高18.5米。

3.2 闸址地质闸址河床土质,主要由砂砾卵石层组成,表层为中细砂层,层厚2~5米,左厚右薄并逐渐消失;河床中层主要是砂砾卵石层,卵石含量30%~50%,粒径2~13厘米,层厚10~20米,属于强透水层,渗透系数K=1.84×10-1~5×10-2(cm/s),允许坡降J=0.15~0.25;河床底层为基岩,埋深标高从左标高10米向右标高15米以下,其岩性为上古生界二迭长兴阶灰岩及硅质岩。

河床土质资料如下:中砂:Dr =0.6,E=310kg/cm2,N63.5=20;砂砾石:Dr =0.66,E=360kg/cm2;3.3 当地建筑材料块石料:在闸址左岸的山头上有符合质量要求的块石料场,其储量50万立方米,平均运距1.0公里。

砂砾料:闸址上、下游均有宽阔的冲积台地,有大量的砂、砾料,可满足混凝土的粗、细骨料之用,运距3~5公里,且水运极为便利。

土料:闸址上游约2公里有刘家、八圩土料场,储量丰富,符合均质土坝质量要求,还有可作为土坝防渗体的粘性土,其质地良好。

3.4 地震烈度根据中国地震烈度区划图,本地区地震基本烈度为Ⅵ度,不考虑地震设防。

4 工程布置及建筑物4.1 设计依据4.1.1 工程等级及建筑物级别函江枢纽的主要建筑物有船闸、泄水闸和水电站三部分组成。

船闸的通航能力,按照五级航道标准进行设计。

水电站总装机为6600Kw,设计水头为3.5m,水闸的泄洪能力为13000m3/s。

根据《毕业设计任务书》,本工程为三等工程,主要建筑物按3级建筑物设计,次要建筑物按4级建筑物设计。

根据《毕业设计任务书》,泄水闸的设计洪水标准为50年一遇,校核洪水标准为300年一遇,最大通航洪水标准为5年一遇。

4.1.2 设计基本资料一、水位正常蓄水位:19.0m灌溉水位:19.5m设计洪水Q2%=9540m3/s,相应闸下水位H下=23.4m校核洪水Q0.33%=9540m3/s,相应闸下水位H下=23.8m二、计算水位组合1、闸孔净宽计算水位设计洪水Q2%=9540m3/s,相应闸下水位H下=23.4m;设计水位差△H=0.25m(H上=23.65m);校核洪水Q0.33%=9540m3/s,相应闸下水位H下=23.8m;计算闸上雍高水位H上(供墩顶高程用);2、消能计算水位闸上水位H上=19.5m;闸下水位H下=14.5m;下泄流量:以闸门开启度e=0.5m、e=1.0m以及全开时的泄量。

相关文档
最新文档