七年级数学不等式与不等式(组)练习题

合集下载

(必考题)初中七年级数学下册第九单元《不等式与不等式组》经典练习题(含答案解析)

(必考题)初中七年级数学下册第九单元《不等式与不等式组》经典练习题(含答案解析)

一、选择题1.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤2.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <- 3.若a b >,则下列结论不一定成立的是( )A .a c b c ->-B .22ac ab >C .c a c b -<-D .a c b c +>+4.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤5.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .26.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >0 7.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( ) A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a8.下列变形中,不正确的是( )A .若a>b ,则a+3>b+3B .若a>b ,则13a>13b C .若a<b ,则-a<-bD .若a<b ,则-2a>-2b.9.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( ) A .a >1B .a≤2C .1<a≤2D .1≤a≤210.若a b <,则下列不等式中不正确的是( ) A .11+<+a b B .a b ->-C .22a b --<--D .44a b < 11.不等式325132x x ++≤-的解集表示在数轴上是( ) A .B .C .D .12.关于x 的不等式620x x a-≤⎧⎨≤⎩有解,则a 的取值范围是( )A .a <3B .a≤3C .a≥3D .a >3 13.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤214.若线段4、4、m 能构成三角形,且使关于x 的不等式组23834x m x m >-⎧⎨-+≥-⎩有解的所有整数m 的和为( ) A .6 B .1C .2D .315.不等式1322x x -+>的解在数轴上表示正确的是( ) A . B .C .D .二、填空题16.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.17.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.18.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.19.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________. 20.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______.21.不等式12x -<的正整数解是_______________.22.若关于x 的不等式组13420x a x ⎧->⎪⎨⎪-≥⎩无解,a 则的取值范围为___________.23.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.24.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____ 25.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.26.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.三、解答题27.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .28.解下列不等式组: (1)3(1)51124x x x x -<+⎧⎨-≥-⎩(2)3(2)421152x x x x --≥⎧⎪-+⎨>⎪⎩29.解不等式组2536x x +<⎧⎨-<⎩,并把解集在数轴上表示出来.30.若关于x 的方程23244x m m x -=-+的解不小于7183m --,求m 的取值范围.。

人教版七年级数学下册第九章不等式和不等式组练习(含答案)

人教版七年级数学下册第九章不等式和不等式组练习(含答案)

第九章不等式与不等式组一、单项选择题1.假如莱州市2019 年 6 月 1 日最高气温是33o C ,最低气温是24o C ,则当日莱州市气温t o C的变化范围是()A .t33B.t33C.24t 33D.24t33 2.以下说法正确的选项是()A . 5 是不等式x 5 0 的解B. 6 是不等式x 5 10 的解集C.x 3 是不等式x 30 的解集D.x 5 是不等式 x 510 的解集3).若 a b ,则以下不等式不建立的是(A .ac2bc2B. a 4 b 4C. 1 a 1 b D.1 2a1 2b2 24 |a| x 的一元一次不等式,则 a 的值是().若 ( a 1)x 3 0 是对于A .1 B.C.1 D. 05.在数轴上表示不等式1 1 的解集,正确的选项是()1- x≥2 2A .B.C.D.6.某种商品的进价为900元,销售的标价为1650元,后出处于该商品积压,商品准备打折销售,但要保证收益率不低于10% ,则最多可打()A.6折B.7折C.8折D.9折x87.若不等式组有解,那么n 的取值范围是()x nA . n 8B . n 8C . n 8D . n 88.若对于 x 、 y3x y 1 a 的解知足xy 505 ,则 a的二元一次方程组3y 1的取值范围x 是( ).A . a 2018B . a 2018C . a 505D . a 5059.运转程序以下图, 从 “输入实数 x ”到 “结果能否 18 ”为一次程序操作, 若输入后 x 程序操作进行了两次就停止,则x 的取值范围是 ()14 B .14 C .14 x 6D . x 6A . xx 8333a ba b 1 3 10.阅读理解: 我们把d 称作二阶队列式, 规定它的运算法例为=ad ﹣ bc ,比如2 4cc d=1×4﹣ 2× 3=﹣ 22 3 x ,假如1 > 0,则 x 的解集是( )xA . x >1B . x <﹣ 1C .x > 3D . x <﹣ 3二、填空题11.若不等式 (a - 2)x > a - 2 能够变形为 x < 1,则 a 的取值范围为 _____.12.已知不等式 3x - a0 的正整数解正是 1,2,3,4,那么 a 的取值范围是 _________________.x 2⋯1 的解集为 _____.13.不等式组2x 3x9 1614.迪士尼乐园开门前已经有400 名旅客在排队检票.检票开始后,均匀每分钟又有120 名旅客前来排队.已知一个检票口每分钟能检票15 人,若要使排队现象在开始检票10分钟内消逝,则起码开放___个检票口.三、解答题15.阅读以下资料:数学识题:已知x y 2 ,且x1,y0 ,试确立x y 的取值范围.问题解法: Q x y 2 ,x y 2.又 Q x 1 ,y 2 1 , y 1 .又Q y 0 ,1 y 0 .①同理得 1 x 2 .①由①①得 1 1 y x 0 2 ,x y 的取值范围是0 x y 2 .达成任务:(1)在数学识题中的条件下,写出2x 3 y 的取值范围是_____.(2)已知x y 3,且x 2 ,y0,试确立x y 的取值范围;(3)已知 y 1 ,x1,若x y a 建立,试确立x y 的取值范围(结果用含 a 的式子表示).16.解不等式(组)(1)3 x 1 1 x 2x1( 2)22x 12( x 1) 1 x2x y m 3 0, 求 m 的取值范围.17.已知对于 x, y 的方程组y2m 的解 xy x18.跟着 “一带一路 ”国际合作顶峰论坛在北京举行, 中国同 30 多个国家签订经贸合作协议,某厂准备生产甲、 乙两种商品共 8 万件销往 “一带一路 ”沿线国家和地域. 已知甲种商品的销售单价为 900 元,乙种商品的销售单价为600 元.( 1)已知乙种商品的销售量不可以低于甲种商品销售量的三分之一,则最多能销售甲种商品多少万件?(2)在( 1)的条件下,要使甲、乙两种商品的销售总收入不低于5700 万元,恳求甲种商品销售量的范围.19.益马高速通车后, 将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一田户需要将 A ,B 两种农产品按期运往益阳某加工厂,每次运输A ,B 产品的件数不变,本来每运一次的运费是 1200 元,此刻每运一次的运费比本来减少了300 元, A ,B 两种产品本来的运费和此刻的运费(单位:元∕件)以下表所示:品种A B本来的运费45 25此刻的运费30 20( 1)求每次运输的农产品中 A ,B 产品各有多少件;( 2)因为该田户诚实守信,产质量量好,加工厂决定提升该田户的供货量,每次运送的总件数增添 8 件,但总件数中 B 产品的件数不得超出A 产品件数的 2 倍,问产品件数增添后,每次运费最少需要多少元答案1. D 2. C 3. A 4. A 5. B 6. A 7. A8. B9. B10. A11. a<212.12a1513. 3≤x<514. 1115.( 1) 1 2x 3 y 4 ;(2)x y 的取值范围是 1 x y 3;(3)x y 的取值范围是 2 a x y a 2 .16.( 1)x 2;(2) 3 x 117. 1 m 16 万件18.( 1)最多销售甲种商品 6 万件;( 2)范围为3万件到19.( 1)每次运输的农产品中 A 产品有10 件,每次运输的农产品中 B 产品有30 件,( 2)产品件数增添后,每次运费最少需要1120 元。

新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( )A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个 5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( )A. 30x-45≥300B. 30x+45≥300C. 30x-45≤300D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( ) A .40 B .45 C .51 D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1 D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个.12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 . 14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 .15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 .三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案:一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B二、填空题:11、312、 ≤a≤13、a≥214、515、40%×85+60%x≥90三、解答题:16、(1)4×s 0.8>100. (2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-b a=1. ∴b=-a ,b >0.∴不等式by >a 的解集为y >a b=-1, 即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2. (2)∵2m -mx 2>12x -1,∴2m-mx >x -2. ∴-mx -x >-2-2m.∴(m+1)x <2(1+m).∵该不等式有解,∴m+1≠0,即m≠-1.当m >-1时,不等式的解集为x <2;当x <-1时,不等式的解集为x >2.19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算.20、(1)解不等式①,得x <52人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是( )A .B .C .D .2.若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 3.如果 的解集是 ,那么 的取值范围是( )A .B .C .D .4.如图,天平左盘中物体A 的质量为 ,,天平右盘中每个砝码的质量都是1g,则 的取值范围在数轴上可表示为( )A .B .C .D .5.已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥26.将不等式组的解集在轴上表示出来,应是( ) A . B .C .D .7.不等式组>的整数解的个数为()A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B13.﹣9<x≤﹣314.>15.3组.16.317.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级数学下册:第九章《不等式与一次不等式组》单元测试人教版七年级数学下册:第九章不等式及不等式组单元测试(时间:60分钟,满分:100分)一、选择题(每题3分,共24分)1.当1≤x≤2时,ax+2>0,则a 的取值范围是( ).A .a >﹣1B .a >﹣2C .a >0D .a >﹣1且a≠02.若不等式组12x x k<≤⎧⎨>⎩ 有解,则k 的取值范围是( ).A.2k <B. 2k ≥C.1k <D. 12k ≤<3.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( ).A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩4.不等式组9511x x x m +<+⎧⎨>+⎩的解集是2>x ,则m 的取值范围是( ).A.2≤mB. 2≥mC.1≤mD. 1>m5.不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( ). A 、2-<x B 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥16.如图,用两根长度均为Lcm的绳子,分别围成一个正方形和圆.则围成的正方形和圆的面积比较().A.正方形的面积大B.圆的面积大C.一样大D.根据L的变化而变化7.某商场的老板销售一种商品,他要以利润不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售().A.80元B.100元 C.120元D.160元8. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A.5 B.4 C.3 D.2二、填空题(每题5分,共40分)9.已知关于x的不等式组的整数解共有个,则的取值范围为.10.已知方程组⎩⎨⎧=+=-7325ayxyax的解满足⎩⎨⎧<>yx,则a的取值范围.11. 若不等式组⎩⎨⎧->+<121mxmx无解,则m的取值范围是.12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.13.已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围 .14.如果关于x的不等式组9080x ax b-≥⎧⎨-<⎩的正整数解仅为1,2,3,则a的取值范围是,b的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题(每题12分,共36分) 17.已知x 满足⎪⎩⎪⎨⎧3)12(24213120)93(33)62(18)3(35-<--->---+-x x x x x x ,化简|x -3|+|2x -1| . 18.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?19. 今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?【答案与解析】一.选择题1. 【答案】A ;【解析】当x=1时,a+2>0解得:a >﹣2;当x=2,2a+2>0,解得:a >﹣1,∴a 的取值范围为:a >﹣1.2. 【答案】A ;【解析】画数轴进行分析.3. 【答案】D ;【解析】由选项及解集可得a b 、一正一负,不防设a 正b 负代入选项验证.4. 【答案】C ;【解析】解第一个不等式得x >2,由题意可得1m +≤2,所以m ≤1.5. 【答案】C ;【解析】解第一个不等式得2x >-,解第二个不等式得1x ≤,所以不等式组的解集为21x -<≤.6. 【答案】B ;7. 【答案】C ;【解析】解:设降价x 元时商店老板才能。

七年级数学下册不等式与不等式组练习题

七年级数学下册不等式与不等式组练习题

七年级数学下册不等式与不等式组练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____2.已知关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,那么实数m 的取值范围是__________. 3.已知3a ≤,则负整数=a _____.4.已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____. 5.已知函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,则m =_____. 6.若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.二、单选题7.在二元一次方程12x +y =8中,当y <0时,x 的取值范围是( ).A .23x <B .23x >-C .23x >D .23x <- 8.已知x a <的解中最大的整数解为3,则a 的取值范围为( )A .34x <<B .34x <≤C .34x ≤<D .34x ≤≤9.下列结论:①一个数和它的倒数相等,则这个数是±1和0;①若﹣1<m <0,则21m m m <<;①若a +b <0,且0b a>,则33a b a b +=--;①若m 是有理数,则|m |+m 是非负数;①若c <0<a <b ,则(a ﹣b )(b ﹣c )(c ﹣a )>0;其中正确的有( )A .1个B .2个C .3个D .4个10.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个11.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠ 12.已知方程3a 1a a 44a --=--,且关于x 的不等式a x b <≤只有4个整数解,那么b 的取值范围是( ) A .23b <≤ B .34b <≤ C .23b ≤< D .34b ≤<三、解答题13.在数轴上有A ,B 两点,其中点A 所对应的数是a ,点B 所对应的数是1.已知A ,B 两点的距离小于3,请你利用数轴.(1)写出a 所满足的不等式;(2)数﹣3,0,4所对应的点到点B 的距离小于3吗.14.解方程:-314x x +=.15.比较大小:和4;和12.参考答案:1.12y <- 【分析】根据不等式的性质可得b a-2=,0a >,进而可得0b <,据此即可求解. 【详解】解:①关于x 的不等式ax <-b 的解集x <2,①b x a<-,b a -2=,0a >, 0b ∴<,∴关于y 的不等式by >a 的解集为a y b<, 2b a=-, ①1=2a b - ∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a=-是解题的关键. 2.m <94且m ≠0##m ≠0且m <94 【分析】根据判别式①>0时一元二次方程有两个不相等的实数根求解不等式即可.【详解】解:①关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,①①=(2m -3)2-4m (-2+m )=-4m +9>0,且m ≠0,解得:m <94且m ≠0, 故答案为:m <94且m ≠0. 【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,熟练掌握一元二次方程根与判别式的关系是解答的关键,注意二次项系数不为0.3.1-,2-,3-.【分析】直接根据绝对值的概念可得a 的取值范围,然后列举出负整数即可.【详解】①3a ≤,①33a -≤≤.①a 为负整数,①a 为1-,2-,3-.故答案为:1-,2-,3-.【点睛】此题主要考查绝对值的概念及一元一次不等式组的整数解,正确理解绝对值的概念是解题关键. 4.1a >.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a 的代数式表示出x y -,再根据0x y ->,即可求得a 的取值范围,本题得以解决.【详解】解:235423x y a x y a +=⎧⎨+=+⎩①②①-①,得33x y a -=-①0x y ->①330a ->,解得1a >,故答案为:1a >.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键. 5.-3【分析】根据解析式是关于x 的一次函数,只经过二、四象限可知函数为正比例函数,k <0,b =0,列方程与不等式求解即可.【详解】解:函数y =(2m ﹣4)x +m 2﹣9是关于x 的一次函数,①函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,①224090m m -⎧⎨-=⎩<, 解得23m m ⎧⎨=±⎩<, ①m =3>2舍去,m =-3<2,满足条件,①m=-3,故答案为-3.【点睛】本题考查一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程,掌握一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程是解题关键.6.1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=-- 去分母得:323x x -+-=-解得:1x =经检验,1x =是分式方程的解把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则. 7.C【解析】略8.B【分析】根据x a <的解中最大的整数解为3,则3x =是不等式的解,则3a >,同时4x =不是不等式的解,则4a ≤,从而求解.【详解】解:①x a <的解中最大的整数解为3,①3x =是不等式的解,则3a >,又①同时4x =不是不等式的解,则4a ≤,①34a <≤,故选B .【点睛】本题主要考查了不等式的整数解,解题的关键在于能够熟练掌握相关知识进行求解.9.C【分析】根据绝对值的性质,倒数的性质,不等式的性质,有理数的运算法则依次判断即可.【详解】①0没有倒数,①①错误.①﹣1<m <0, ①1m<0,2m >0, ①①错误.①a +b <0,且0b a>,①a <0,b <0,①a +3b <0,①|a +3b |=﹣a ﹣3b .①①正确.①|m |≥﹣m ,①|m |+m ≥0,①①正确.①c <0<a <b ,①a ﹣b <0,b ﹣c >0,c ﹣a <0,①(a ﹣b )(b ﹣c )(c ﹣a )>0正确,①①正确.故选:C .【点睛】本题考查绝对值,倒数,不等式的性质,有理数的运算法则,正确掌握相关法则是求解本题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11.D【分析】方程为一元二次方程,故a ≠0,再结合根的判别式:当24b ac -≥0时,方程有实数根;即可求解.【详解】解:①原方程为一元二次方程,且有实数根,①a ≠0,24b ac -≥0时,方程有实数根;①2(2)40a --≥,解得:a ≤1,①1a ≤且0a ≠,故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练地掌握根的判别式与根的关系是解题的关键.当24b ac -≥0时,方程有实数根,当24b ac -<0时,方程无实数根.12.D【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:分式方程去分母得:3-a -a 2+4a =-1,即a 2-3a -4=0,分解因式得:(a -4)(a +1)=0,解得:a =-1或a =4,经检验a =4是增根,分式方程的解为a =-1,当a =-1时,由a <x ≤b 只有4个整数解,得到3≤b <4.故选:D .【点睛】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键. 13.(1) −2<a<4;(2) 小于3【分析】根据数轴上两点之间的距离为这两个数差的绝对值,列出不等式并解出结果.【详解】解:(1)根据题意得:|a −1|<3,得出−2<a <4,(2)由(1)得:到点B 的距离小于3的数在−2和4之间,①在−3,0,4三个数中,只有0所对应的点到B 点的距离小于3.【点睛】本题考查了数轴上两点之间的距离为两个数差的绝对值,以及解不等式,难度适中.14.x =32 或x =﹣54【分析】利用绝对值的性质,将方程转化为314xx +﹣=或314x x +﹣=﹣,再分情况讨论: 当3x +1>0时可得到|3x +1|=3x +1;当3x +1<0时可得到|3x +1|=-3x -1,分别求出对应的方程的解即可. 【详解】解:原方程式化为-314x x +=或31-4xx +﹣=, 当3x +1>0时,即x >﹣13, 由-314x x +=得-3-14x x =,①x =﹣52与x >﹣13 不相符,故舍去; 由-31-4x x +=得314x x﹣﹣=﹣,①x=32,符合题意;当3x+1<0时,即x<﹣13,由-314x x+=得314x x++=,①x=34与x<﹣13不相符,故舍去;由-31-4x x+=得314x x++=﹣,①x=﹣54,符合题意;故原方程的解是x=32或x=﹣54.【点睛】本题主要考查的是含有绝对值符号的一元一次方程的解法.分类讨论是解题的关键.15.412<【分析】(1)根据无理数的估算即可得;(22,由此即可得.(1)解:1216<,4.(2)解:34<,<2,121<-11<,12<.【点睛】本题考查了实数的大小比较、无理数的估算,熟练掌握无理数的估算是解题关键.。

人教版七年级下册数学第九章不等式与不等式组精选计算题100道

人教版七年级下册数学第九章不等式与不等式组精选计算题100道

不等式与不等式组(100道)用不等式表示:1、a 与1的和是正数;2、x 的21与y 的31的差是非负数;3、x 的2倍与1的和大于3;4、a 的一半与4的差的绝对值不小于a .5、x 的2倍减去1不小于x 与3的和;6、a 与b 的平方和是非负数;7、y 的2倍加上3的和大于-2且小于4; 8、a 减去5的差的绝对值不大于解不等式(组),并在数轴上表示它们的解集9、213-x (x-1)≥1;10、234-≥--x11、⎩⎨⎧>+>-821213x x x12、⎩⎨⎧<-<-x x x 332312 13、)7(4)54(3)13(2-->+--x x x x ; 14、42713752--≥+-x x x ; 15、⎩⎨⎧<+>-81312x x16、⎩⎨⎧-≥++<-7255223x x x x17、 ⎩⎨⎧->++>+x x x x 421132218、8223-<+x x19、x x 4923+≥-20、)1(5)32(2+<+x x 21、0)7(319≤+-x22、31222+≥+x x 23、223125+<-+x x 24、5223-<+x x 25、234->-x 26、)1(281)2(3--≥-+y y 27、1213<--m m 28、)2(3)]2(2[3-->--x x x x29、215329323+≤---x x x 30、41328)1(3--<++x x 31、 )1(52)]1(21[21-≤+-x x x 32、22416->--x x33、x x x 212416-≤-- 34、7)1(68)2(5+-<+-x x 35、46)3(25->--x x36、1215312≤+--x x 37、31222-≥+x x 38、8223-<+x x 39、x x 4923+≥-40、)1(5)32(2+<+x x41、0)7(319≤+-x 42、31222+≥+x x 43、 223125+<-+x x 44、7)1(68)2(5+-<+-x x45、)2(3)]2(2[3-->--x x x x46、1215312≤+--x x 47、 215329323+≤---x x x 48、11(1)223x x -<- 49、)1(52)]1(21[21-≤+-x x x 50、41328)1(3--<++x x 51、⋅->+-+2503.0.02.003.05.09.04.0x x x 52、⎩⎨⎧≥-≥-.04,012x x53、⎩⎨⎧>+≤-.074,03x x54、⎪⎩⎪⎨⎧+>-<-.3342,121x x x x55、-5<6-2x <3.56、⎪⎩⎪⎨⎧⋅>-<-322,352x x x x57、⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx58、⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x59、.234512x x x -≤-≤- 60、532(1)314(2)2x x x -≥⎧⎪⎨-<⎪⎩61、⎪⎩⎪⎨⎧≥--+.052,1372x x x φ62、⎪⎩⎪⎨⎧-<-->+.43)1(4,1321x x x x63、14321<--<-x64、-(x+1)<6+2(x-1)65、()31x 2221x ->- 66、1132x x +-<67、3-x-14≥2+3(x+1)868、361633->---x x 69、9-411x>x +3270、x -3x-24 ≥2(1+x)3-171、⎩⎨⎧-++-148112x <x >x x72、⎪⎩⎪⎨⎧--+≤+x <x x 21352113273、-7≤2(13)7x +≤9 74、4100,54,11213.x x x x x -<⎧⎪+>⎨⎪-≥+⎩75、⎩⎨⎧-≤-+-x x x >x 31421325)(76、⎩⎨⎧-≤-+-xx x >x 31421325)(77、5(x+2)≥1-2(x-1) 78、2731205y y y +>-⎧⎪-⎨≥⎪⎩79、42x --3<522x +80、32242539x x x x x +>⎧⎪->-⎨⎪->-⎩81、x 取什么值时,代数式251x-的值不小于代数式4323+-x的值 82、K 取何值时,方程k x 332-=5(x-k)+1的解是非负数83、k 为何值时,等式|-24+3a|+0232=⎪⎭⎫⎝⎛--b k a 中的b 是负数? 3a-18是多少? 84、若方程组212x y x y m +=⎧⎨-=⎩的解x 、y 的值都不大于1,求m 的取值范围85、若a 同时满足不等式042<-a 和213>-a ,化简 21---a a .86、已知方程组⎩⎨⎧+=---=+a y x ay x 317的解,x 为非正数,y 为负数(1)求a 的取值范围(2)化简|a-3|+|a+2|(3)在a 的取值范围中,当a 为何整数时,不等式2ax+x >2a+1的解为x <1 87、求不等式组⎩⎨⎧-≥--<-15764653x x xx 的自然数解。

精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。

人教版七年级数学 下册 第九章 不等式与不等式组 练习题

人教版七年级数学 下册 第九章  不等式与不等式组 练习题

第九章 不等式与不等式组测试1 不等式及其解集课堂学习检测一、填空题1.用不等式表示:(1)m -3是正数______; (2)y +5是负数______; (3)x 不大于2______; (4)a 是非负数______;(5)a 的2倍比10大______; (6)y 的一半与6的和是负数______;(7)x 的3倍与5的和大于x 的31______; (8)m 的相反数是非正数______.2.画出数轴,在数轴上表示出下列不等式的解集: (1)⋅>213x (2)x ≥-4.(3)⋅≤51x(4)⋅-<312x二、选择题3.下列不等式中,正确的是( ). (A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 4.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-35.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围在数轴上可表示为( ).三、解答题6.利用数轴求出不等式-2<x ≤4的整数解.综合、运用、诊断一、填空题7.用“<”或“>”填空: (1)-2.5______5.2;(2)114-______125-; (3)|-3|______-(-2.3);(4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不小于-4的相反数”,用不等式表示为______. 二、选择题9.如果a 、b 表示两个负数,且a <b ,则( ). (A)1>ba (B)ba <1 (C)ba 11< (D)ab <110.如图,在数轴上表示的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 三、判断题13.不等式5-x >2的解集有无数个. ( ) 14.不等式x >-1的整数解有无数个. ( ) 15.不等式32421<<-x 的整数解有0,1,2,3,4. ( ) 16.若a >b >0>c ,则.0>cab( )四、解答题17.若a 是有理数,比较2a 和3a 的大小.拓展、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d b,则b +d 的值为_________. 测试2 不等式的性质课堂学习检测一、填空题1.已知a <b ,用“<”或“>”填空: (1)a +3______b +3; (2)a -3______b -3; (3)3a ______3b ; (4)2a______2b ;(5)7a -______7b-; (6)5a +2______5b +2;(7)-2a -1______-2b -1; (8)4-3b ______6-3a .2.用“<”或“>”填空: (1)若a -2>b -2,则a ______b ; (2)若33ba <,则a ______b ; (3)若-4a >-4b ,则a ______b ;(4)22ba -<-,则a ______b .3.不等式3x <2x -3变形成3x -2x <-3,是根据______.4.如果a 2x >a 2y (a ≠0).那么x ______y . 二、选择题5.若a >2,则下列各式中错误的是( ). (A)a -2>0 (B)a +5>7 (C)-a >-2 (D)a -2>-4 6.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >0 7.若a >b ,且c 为有理数,则( ). (A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 2 8.若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 三、解答题9.根据不等式的基本性质解下列不等式,并将解集表示在数轴上. (1)x -10<0.(2).62121+->x x(3)2x ≥5.(4).131-≥-x 10.用不等式表示下列语句并写出解集:(1)8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.综合、运用、诊断一、填空题11.已知b <a <2,用“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0; (3)(a -2)(a -b )______0.12.已知a <b <0.用“>”或“<”填空:(1)2a ______2b ; (2)a 2______b 2; (3)a 3______b 3; (4)a 2______b 3; (5)|a |______|b |; (6)m 2a ______m 2b (m ≠0). 13.不等式4x -3<4的解集中,最大的整数x =______. 14.关于x 的不等式mx >n ,当m ______时,解集是m nx <;当m ______时,解集是mn x >. 二、选择题15.若0<a <b <1,则下列不等式中,正确的是( ).,11;11;1;1ba b a b a b a <><>④③②① (A)①③ (B)②③ (C)①④ (D)②④16.下列命题结论正确的是( ).①若a >b ,则-a <-b ;②若a >b ,则3-2a >3-2b ;③8|a |>5|a |. (A)①②③ (B)②③ (C)③ (D)以上答案均不对 17.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <1 三、解答题18.当x 取什么值时,式子563-x 的值为(1)零;(2)正数;(3)小于1的数.拓展、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解一元一次不等式课堂学习检测一、填空题1.用“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则a b______0;(3)若a -b <0,则a ______b ;(4)当x >x +y ,则y ______0. 2.当a ______时,式子152-a 的值不大于-3. 3.不等式2x -3≤4x +5的负整数解为______. 二、选择题4.下列各式中,是一元一次不等式的是( ). (A)x 2+3x >1 (B)03<-y x (C)5511≤-x(D)31312->+x x5.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ).(A)0 (B)-3 (C)-2 (D)-1三、解下列不等式,并把解集在数轴上表示出来 6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1. 8.⋅-->+22531x x 9.⋅-≥--+612131y y y四、解答题 10.求不等式361633->---x x 的非负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.综合、运用、诊断一、填空题12.若x 是非负数,则5231x-≤-的解集是______.13.使不等式x -2≤3x +5成立的负整数是______.14.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 二、选择题15.下列各对不等式中,解集不相同的一对是(______).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2+x )≥2(2x -1) (D)x x ->+414321与3x >-116.如果关于x 的方程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ). (A)b a 53> (B)a b 53≥ (C)5a =3b (D)5a ≥3b三、解下列不等式 17.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4).15)2(22537313-+≤--+x x x(5)).1(32)]1(21[21-<---x x x x(6)⋅->+-+2503.0.02.003.05.09.04.0x x x四、解答题18.x 取什么值时,代数式413--x 的值不小于8)1(32++x 的值.19.已知关于x 的方程3232xm x x -=--的解是非负数,m 是正整数,求m 的值.20.已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.21.已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围.拓展、探究、思考一、填空题22.(1)已知x <a 的解集中的最大整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最小整数为-2,则a 的取值范围是______. 二、解答题23.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有一个整数解; (2)x 一个整数解也没有.24.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.25.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.测试4 实际问题与一元一次不等式课堂学习检测一、填空题 1.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______. 2.6月1日起,某超市开始有.偿.提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 二、选择题3.三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ).(A)13cm (B)6cm (C)5cm (D)4cm4.商场进了一批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ).(A)900元(B)920元(C)960元(D)980元三、解答题5.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?6.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?综合、运用、诊断一、填空题7.若m>5,试用m表示出不等式(5-m)x>1-m的解集______.8.乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,列出的不等式为______.二、选择题9.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人(B)3人(C)4人(D)5人10.某市出租车的收费标准是:起步价7元,超过3km时,每增加1km加收2.4元(不足1km 按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km,那么x的最大值是( ).(A)11 (B)8 (C)7 (D)5三、解答题11.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?12.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?拓展、探究、思考13.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x 名工人制造甲种零件,其余工人制造乙种零件. (1)若此车间每天所获利润为y (元),用x 的代数式表示y .(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?14.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?测试5 一元一次不等式组(一)课堂学习检测一、填空题 1.解不等式组⎩⎨⎧>--<+②①223,423x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______.2.解不等式组⎪⎩⎪⎨⎧-≥--≥-②①21,3212x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______.3.用字母x 的范围表示下列数轴上所表示的公共部分:二、选择题 4.不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ).(A)x <-4(B)x >2(C)-4<x <2(D)无解5.不等式组⎩⎨⎧>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x (C)32-<x (D)无解三、解下列不等式组,并把解集表示在数轴上6.⎩⎨⎧≥-≥-.04,012x x7.⎩⎨⎧>+≤-.074,03x x8.⎪⎩⎪⎨⎧+>-<-.3342,121x x x x9.-5<6-2x <3.四、解答题10.解不等式组⎪⎩⎪⎨⎧<-+≤+321),2(352x x x x 并写出不等式组的整数解.综合、运用、诊断一、填空题11.当x 满足______时,235x-的值大于-5而小于7. 12.不等式组⎪⎪⎩⎪⎪⎨⎧≤-+<2512,912x x x x 的整数解为______.二、选择题13.如果a >b ,那么不等式组⎩⎨⎧<<b x a x ,的解集是( ). (A)x <a (B)x <b(C)b <x <a(D)无解14.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1三、解答题 15.求不等式组73123<--≤x 的整数解.16.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.18.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.拓展、探究、思考19.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.测试6 一元一次不等式组(二)课堂学习检测一、填空题1.直接写出解集:(1)⎩⎨⎧->>3,2x x 的解集是______;(2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><3,2x x 的解集是_______;(4)⎩⎨⎧-<>3,2x x 的解集是______.2.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是______.二、选择题 3.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ).(A)1个(B)2个(C)3个(D)4个4.若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1(D)1≤k <2三、解下列不等式组,并把解集在数轴上表示出来5.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x6.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx7.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x8..234512x x x -≤-≤-综合、运用、诊断一、填空题9.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______.10.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式组11.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x12.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x三、解答题13.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?14.已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.拓展、探究、思考15.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利用不等关系分析实际问题课堂学习检测列不等式(组)解应用题1.一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?2.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?3.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?4.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?综合、运用、诊断5.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.拓展、探究、思考6.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B问:这400间板房最多能安置多少灾民?第九章 不等式与不等式组测试11.(1)m -3>0;(2)y +5<0;(3)x ≤2;(4)a ≥0;(5)2a >10; (6)2y +6<0;(7)3x +5>3x;(8)-m ≤0.2.3.D . 4.C . 5.A . 6.整数解为-1,0,1,2,3,4. 7.(1)>;(2)>;(3)>;(4)>;(5)<;(6)>. 8..4523≥-x 9.A . 10.B . 11.D . 12.D . 13.×. 14.√. 15.√. 16.×. 17.当a >0时,2a <3a ;当a =0时,2a =3a ;当a <0时,2a >3a . 18.x ≤3a,且x 为正整数1,2,3. ∴9≤a <12. 19.+3或-3.测试21.(1)<;(2)<;(3)<;(4)<;(5)>;(6)<;(7)>;(8)<. 2.(1)>;(2)<;(3)<;(4)>.3.不等式两边加(或减)同一个数(或式子),不等号的方向不变. 4.>. 5.C . 6.C . 7.D . 8.D . 9.(1)x <10,解集表示为(2)x >6,解集表示为(3)x ≥2.5,解集表示为(4)x ≤3,解集表示为10.(1)8+2y >0,解集为y >-4. (2)3a -7<0,解集为37<a . 11.(1)>;(2)>;(3)<. 12.(1)<;(2)>;(3)<;(4)>;(5)>;(6)<. 13.1. 14.<0;>0. 15.B . 16.D . 17.C .18.(1)x =2;(2)x >2;(3)311<x . 19.∵-m 2-1<0,⋅--<∴12m nx20.当a >0时,a b x >;当a <0时,ab x <.1.(1)<;(2)>;<;(3)<;(4)<. 2.≤-5. 3.-4,-3,-2,-1. 4.D . 5.D . 6.x >-1,解集表示为7.x ≥-3,解集表示为8.x >6,解集表示为9.y ≤3,解集表示为10.413<x 非负整数解为0,1,2,3. 11.x >-8,负整数解为-7,-6,-5,-4,-3,-2,-1.12.0≤x ≤4. 13.-3,-2,-1. 14.a <4. 15.B . 16.D . 17.(1)x ≥6. (2)625≤y . (3)y <5. (4)23-≥x . (5)x <-5. (6)x <9. 18.57≤x . 19.m ≤2,m =1,2. 20.p >-6. 21.①+②;3(x +y )=2+2m .∵x +y <0.∴2+2m <0.∴m <-1. 22.(1)3<a ≤4;(2)-3≤a <-2. 23.(1)2<a ≤3;(2)1.7<a ≤2. 24.⋅-<4k kx 25.A -B =7x +7.当x <-1时,A <B ;当x =-1时,A =B ;当x >-1时,A >B .测试41.x >1. 2.8. 3.B . 4.B .5.设原来每天能生产x 辆汽车.15(x +6)>20x .解得x <18,故原来每天最多能生产17辆 汽车. 6.设答对x 道题,则6x -2(15-x )>60,解得4111>x ,故至少答对12道题. 7.⋅--<mmx 51 8.(10-2)x ≥72-5×2. 9.C . 10.B . 11.设应降价x 元出售商品.225-x ≥(1+10%)×150,x ≤60. 12.设后面的时间每小时加工x 个零件,则250300)32250300(⨯-≥--x ,解得x ≥60. 13.(1)y =-400x +26000, 0≤x ≤20;(2)-400x +26000≥24000, x ≤5, 20-5=15. 至少派15人去制造乙种零件.14.(1)1308元;1320元. (2)大于4000份时去乙厂;大于2000份且少于4000份时去甲厂;其余情况两厂均可.测试5 1..2;21;2-<<-<x x x 2..361;3;61≤≤≤≥x x x3.(1)x >-1; (2)0<x <2; (3)无解. 4.B . 5.B . 6.421≤≤x ,解集表示为7.x ≥0,解集表示为8.无解. 9.1.5<x <5.5解集表示为10.-1≤x <3,整数解为-1、0、1、2. 11.-3<x <5. 12.-2,-1,0. 13.B . 14.C . 15.-10<x ≤-4,整数解为-9,-8,-7,-6,-5,-4. 16.-1<x <4. 17.-721<k <25.(⎩⎨⎧<--=<-=015213,02513k y k x ) 18.①-②得:y -x =2k -1,∵0<y -x <1 ∴0<2k -1<1 ∴.121<<k 19.解得⎪⎩⎪⎨⎧>+≥.2,34x a x 于是234≤+a ,故a ≤2;因为a 是自然数,所以a =0,1或2. 20.不等式组的解集为a ≤x <2,-4<a ≤-3.测试6 1.(1)x >2;(2)x <-3;(3)-3<x <2;(4)无解. 2.31<x <76. 3.B . 4.A . 5.(1)x >6,解集表示为6.-6<x <6,解集表示为7.x <-12,解集表示为8.x ≤-4,解集表示为9.7;0. 10.-1<k <3. 11.无解. 12.x >8. 13.由2<x =328-k <10,得1<k <4,故整数k =2或3. 14..532.5,23<<-⎩⎨⎧-=+=m m y m x 15.不等式组的解集为2-3a <x <21,有四个整数解,所以x =17,18,19,20,所以16≤2-3a <17,解得⋅-≤<-3145a 测试71.设以后几天平均每天挖掘x m 3的土方,则(10-2-2)x ≥600-120,解得x ≥80. 2.设该市由甲厂处理x 吨垃圾,则7150)700(4549555550≤-+x x ,解得x ≥550. 3.解:设宿舍共有x 间.⎩⎨⎧+<-+>.204)1(8,2048x x x x 解得5<x <7. ∵x 为整数,∴x =6,4x +20=44(人).4.(1)二班3000元,三班2700元; (2)设一班学生有x 人,则⎩⎨⎧><200051200048x x 解得3241511139<<x ∵x 为整数.∴x =40或41. 5.(1)61942385=÷ 单独租用42座客车需10辆.租金为320×10=3200; 125660385=÷ 单独租用60座客车需7辆.租金为460×7=3220.(2)设租用42座客车x 辆,则60座客车需(8-x )辆.⎩⎨⎧<-+≥-+.3200)8(460320,385)8(6042x x x x 解得⋅≤<1855733x x 取整数,x =4,5.当x =4时,租金为3120元;x =5时,租金为2980元. 所以租5辆42座,3辆60座最省钱. 6.设生产A 型板房m 间,B 型板房(400-m )间. 所以⎩⎨⎧≤-+≤-+.12000)400(4126,24000)400(7854m m m m解得m ≥300.所以最多安置2300人.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-2A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a 1 b1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。

(6’×2=12’) 15、134155-+x x16、 312-x ≤643-x四、解方程组(6×2=12)17、⎩⎨⎧++-xx x x 42321518、 ⎪⎩⎪⎨⎧-++≤--)12(23134122x x x x x五、解答题(8×2=16)19、代数式2131--x 的值不大于321x -的值,求x 的范围20、方程组⎩⎨⎧-=+=-323a y x y x 的解为负数,求a 的范围六、列不等式(组)解应用题 (10)22、某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题扣2分,不答不给分。

某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?七、附加题:(10’) 22、已知,x 满足⎪⎩⎪⎨⎧-+-+1411533 x x x 化简 52++-x x(二)一、选择题(4′×8=32′)1.若,a a -则a 必为( )A 、负整数 B、 正整数 C、负数 D、正数2.不等式组⎩⎨⎧+-0201 x x 的解集是( )A、12 x - B、1 x C、x 2- D、无解 3.下列说法,错误的是( )A、33- x 的解集是1- x B、-10是102- x 的解C、2 x 的整数解有无数多个 D、2 x 的负整数解只有有限多个 4.不等式组2130x x ≤⎧⎨+≥⎩的解在数轴上可以表示为( ) AC5.不等式组⎩⎨⎧--≥-31201 x x 的整数解是( ) A、-1,0 B、-1,1 C、0,1 D、无解6.若a <b <0,则下列答案中,正确的是( )A、a <b B B 、a >b C、2a <2b D 、a 3>b 27.关于x的方程a x 4125=+的解都是负数,则a 的取值范围( ) A、a >3 B、a <3- C、a <3 D、a >-38.设“○”“△”“□”表示三种不同的物体,现用天平称了两次,情况如图所 )二、填空(3×10=30)9.当x 时,代数式52+x 的值不大于零10.若x <1,则22+-x 0(用“>”“=”或“”号填空)11.不等式x 27->1,的正整数解是12. 不等式x ->10-a 的解集为x <3,则a13.若a >b >c ,则不等式组⎪⎩⎪⎨⎧c x bx a x 的解集是 14.若不等式组⎩⎨⎧--3212 b x a x 的解集是-1<x <1,则)1)(1(++b a 的值为 15.有解集2<x <3的不等式组是 (写出一个即可) 16.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 ”其中蛋白质的含量为 _____ g17.若不等式组⎩⎨⎧3x a x 的解集为x >3,则a 的取值范围是 三、解答题(5′×2+6′×2+8′+8′=38′)18.解不等式①1)1(22 ---x x ; ②341221x x +≤-- 并分别把它们的解集在数轴上表示出来19.解不等式组 ①⎪⎩⎪⎨⎧--≤--x x x x 14214)23(②⎪⎩⎪⎨⎧-≥--+356634)1(513x x x x20.关于y x ,的方程组⎩⎨⎧-=-+=+131m y x m y x 的解满足x >y 求m 的最小整数值21.一本英语书共98页,张力读了一周(7天),而李永不到一周就已读完,李永平均每天比张力多读3页,张力平均每天读多少页?(答案取整数)附加题(10)22.某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为 600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?B 卷 · 能力训练(一)一、选择题(4×8=32)1、将不等式组12(1)131322x x x x -≥+⎧⎪⎨-≤-⎪⎩的解集在数轴上表示,正确的是( ) AC2、已知,关于x 的不等式23x a -≥-的解集如图所示,则a 的值等于( )A 、 0B 、1C 、-1D 、23、已知关于x 的不等式组⎪⎩⎪⎨⎧-a x x x 12无解,则a 的取值范围是( )A 、1-≤aB 、2≥aC 、21 a -D 、1- a 或2 a4、不等式a ax 的解集为1 x ,则a 的取值范围是( )A 、0 aB 、0≥aC 、0 aD 、0≤a5、 如果0 n m ,那么下列结论不正确的是( )A 、99--n mB 、n m --C 、m n 11 D 、 1 mn 6、关于x 的方程a x 4125=+的解都是负数,则x 的取值范围是( )A 、3 a B、3- a C、3 a D、3- a 7、若x x 3223-=-,则( )A、32=x B、32 x C、32≤x D、32≥x 8、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打( )A、6折 B、7折 C、8折 D、9折二、填空:(3′×9=27′)9、已知关于x 的不等式组⎩⎨⎧--≥-1230 x a x 的整数解有5个,则a 的取值范围是________10、某商品的售价是150元,这种商品可获利润10%~20%,设这种商品的进价为x 元,则x 的值范围是_________11、满足135+-x x 的x 的最小整数是________12、如果三个连续自然数的和不大于9,那么这样自然数共有组___________13、已知02=-y x 且y x 5-,则y x ,的取值范围是x _________;y _________14、若0≠a ,则不等式b ax 的解集是_______________15、若不等式组⎩⎨⎧≤≥-mx x 032无解,则m 的取值范围是________________16、不等式组⎩⎨⎧+52013 x x 的整数解为________________ 17、当0 a 时,不等式组⎩⎨⎧a x a x 42 的解集是_____________三、解答题18、解不等式652123--≤-x x 并把解集在数轴上表示出来(7′)19、求不等式组⎪⎩⎪⎨⎧--≤--41)3(28)3(2 x x x x 的整数解 (7′)20、代数式53+x 的值是否能同时大于代数式32+x 和x -1的值? 说明理由?(8′)21、若不等式7)1(68)2(5+-+-x x 的最小整数解是方程32=-ax x 的解,求aa 144-的值 (9′)22、乘某城市的一种出租车起价是10元(即行驶路程在5Km 以内都付10元车费),达到或超过5Km 后,每增加1Km 加价1.2元,(不足1部分按1Km 计),现某人乘这种出租车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程是多少?(10′)23.附加题:(10′)某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分A 、B 、C 三类:A 类年票每张120元,持票者进入园林时,无需购买门票;B 类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C 类年票每张40元,持票者进入该园林时,需再购买门票,每次3元。

①如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使你进入该园林的次数最多的购票方式。

②求一年中进入该园林至少超过多少次时,购买A 类票比较合算。

(二)一、填空题(3′×9=27′)1. 当x 时,x 32-为正数2. 不等式组⎪⎩⎪⎨⎧≤4212x x 的整数解是3. 当m 时,b m a m 22 的b a4. 若不等式组⎩⎨⎧-+121a x a x 无解,则a 的取值范围是5. 已知不等式03≤-a x 的正整数解恰是1,2,3,4,那么a 的取值范围是6. 关于x 的方程113)1(5-+=-m x x 若其解是非正数,则m 的取值范围是7. 当a 时,2)2( x a -的解为21- x 8. 一种药品的说明书上写着“每日用量60~120mg ,分3~4次服用“则一次服用这种剂量x 应该满足9. 若关于x 的不等式⎪⎩⎪⎨⎧+++01234 k x x x 的解集为 x 2,则k 的取值范围是 二、选择题(3′×9=27′)10.m 为任意实数,下列不等式中一定成立的是( )A、3m m B、 2-m 2+m C、m m - D、a a 35 11.不等式027≥-x 的正整数解有( ) A、1个 B、2个 C、3个 D、无数个12.已知 b a 1,0-0,则a,ab,ab 2之间的大小关系是( ) A 、2ab ab a B、a ab ab 2C、 ab 2ab a D、2ab a ab 13.若x x -=-44,则x 的取值范围是( ) A、4 x B、4≤x C、4 x D、4≥x 14.b a ,表示的数如图所示,则11---b a 的的值是( )A、b a - B、2-+b a C、b a --2 D、b a +- 15.不等式⎩⎨⎧--≤-4325 x x 的解集表示在数轴上为图中的()16.不等式组⎩⎨⎧+-5321 x a x a 的解集是23+a x ,则a 的取值范围是( )A、1 a B、3≤a C、1 a 或3 a D、31≤a 17.若方程组⎩⎨⎧-=+=-323a y x y x 的解是负数,则a 的取值范围是( )A、63 a - B、6 a C、3- a D、无解 18.若不等式组⎩⎨⎧≤kx x 21有解,则k 的取值范围是( ) A、2 k B、2≥k C、1 k D、21 k ≤ 三、解答题(19~22每题7分,23题8分,24题10分)a b (D)(C)(B)19.解不等式--412x 1625-≤+x 20.15.02.02.04.0--+xx21.解不等式组⎪⎪⎩⎪⎪⎨⎧--≥+++225315632x x x x22.解不等式⎪⎪⎩⎪⎪⎨⎧++≤--+1312532)4(2)1(3 x x x x x23.若不等式组⎩⎨⎧-+nm x nm x 的解是53 x -,求不等式0 n mx -的解集。

相关文档
最新文档