【最新】中考数学总复习学案:第14课时 反比例函数图象和性质
第14讲 反比例函数的性质及其图象

考点二、反比例函数表达式的确定
确定解析式的方法仍是待定系数法。由于在反比例函 数y=k/x中,只有一个待定系数,因此只需要一对对应值或 图像上的一个点的坐标,即可求出k的值,从而确定其解析 式。
对于反比例函数y=3/x,下列说法正确的是( ) A.图象经过点(1,-3) B.图象在第二、四象限 C.x>0时,y随x的增大而增大 D.x<0时,y随x增大而减小 解析: A.∵反比例函数y=3/x,
在x轴的正半轴上,若点D在
(x<0)
【考点】反比例函数图象
上点的坐标特征;平行四 边形的性质.
完成过关测试:第
题.
完成课后作业:第
题.
故答案为:没有实数根.
小结:此题综合考查了反比例函数的图象与性质、一 元二次方程根的判别式.注意正确判定a的取值范围是 解决问题的关键.
【例题2】(2016·深圳市)如图,四边形ABCO是平行四
边形,OA=2,AB=6,点C在x轴的负半轴上,将▱ABCO
绕点A逆时针旋转得到▱ADEF,AD经过点O,点F恰好落
正比例函数y=6x的图象与反比例函数y=6/x的图象的交点
位于( )
A.第一象限
B.第二象限
C.第三象限
D.第一、三象限
解析:
【例题1】关于x的反比例函数 y a 4 的图象如
x
图,A,P为该图象上的点,且关于原点成中心对
称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于
点B.若△PAB的面积大于12,则关于x的方程 a 1 x2 x 1 0 的根的情况是 没有实数根 .
∴xy=3,故图象经过点(1,3),故此选项错误; B.∵k>0,∴图象在第 一、三象限,故此选项错误; C.∵k>0,∴x>0时,y随x增大而减小,故此选项错误; D.∵k>0,∴x<0时,y随x增大而减小,故此选项正确.
九年级数学反比例函数的图像和性质课件

12
的图象,你发现了什么?
6
5
4
3
2
1
y y=
1)反比例函数的图像由两条曲线组成。
12
-5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1
-2
-3
-4
-5
-6
2)图象关于原点成中心对称。
3)图像位于一、三象限。
x
y=
6
x•y=6
4)y随x的增大而减少。
5)函数图像与坐标轴无交点。
01
用平滑曲线顺次连接各点,就得到y=
3
4
4
3
2
1
-4 -3 -2 -1
0 1
-1
-2
-3
-4
12
的图象。
12
5
-5
【描点】
y=
-5
-6
2
5
6 x
01
反比例函数图像
观察反比例函数 y=
6
5
4
3
2
1
y y=
6
和y=
6
x
- - -3 -2 - 0 1 2 3 4 5 6
-1
5 4
1
-2
-3
-4
-5
一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数
是一种特殊的一次函数。
图像与性质:
01
二次函数知识点回顾
概念:
图像与性质:
一般地,形如=ax 2 + +(a、b、c是常数,a≠0)的函数叫做
二次函数
01
反比例函数知识点回顾
反比例函数的图象与性质教案

反比例函数的图象与性质教案•相关推荐反比例函数的图象与性质教案范文(通用8篇)作为一名教师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。
那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的反比例函数的图象与性质教案范文,欢迎阅读与收藏。
反比例函数的图象与性质教案篇1教学目标知识与技能:1、进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2、体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3、培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力、情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重难点1) 重点:画反比例函数图象并认识图象的特点。
2)难点:画反比例函数图象。
教学关键:教师画图中要规范,为学生树立一个可以学习的模板。
教学方法:激发诱导,探索交流,讲练结合三位一体的教学方式。
教学手段:教师画图,学生模仿。
教具:三角板,小黑板。
学法:学生动手、动眼,、动耳、采用自主,合作、探究的学习方法。
教学过程一:课前检测:1、什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。
)2、反比例函数的定义中需要注意什么?(1)k为常数,k0(2)从y= 中可知x作为分母,所以x不能为零。
二:激发兴趣导入新课问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?y=kx+b y=kxK0 一、二、三一、三b0 一、三、四K0 一、二、四二、四b0 二、三、四问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?可以问题3:画图象的步骤有哪些呢?(1)列表(2)描点(3)连线(教学片断:师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
反比例函数图像和性质ppt课件

反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。
2024年中考数学一轮复习考点精讲课件—反比例函数的图象、性质及应用

其中,两个变量之间的函数关系可以用如图所示的图象表示的是( )
A.①②
B.①③
C.②③
D.①②③
【详解】解:由函数图象可知,这两个变量之间成反比例函数关系,
①矩形的面积= ⋅ ,因此矩形的面积一定时,一边长y与它的邻边x可以用形如 = ≠ 0 的式子表
示,即满足所给的函数图象;
②耕地面积= ⋅ ,因此耕地面积一定时,该村人均耕地面积S与全村总人口n可以用形如 =
这个函数图象上的点是(
)A. 1,6
1
B. − 2 , 12 ,
C. −2, −3
2
D.
3
,4
2
6
【对点训练1】(2019·吉林长春·中考模拟)如图,函数y=(x>0)、y=(x>0)的图象将第一象限分成了A、
B、C三个部分.下列各点中,在B部分的是( )
即:反比例函数的图象关于直线y=±x成轴对称,关于原点成中心对称.
反比例 待定系数法求反比例函数解析式的一般步骤:
函数解
析式的
确定方
法
k
1)设反比例函数的解析式为y = (k为常数,k≠0);
x
2)把已知的一对x,y的值带入解析式,得到一个关于待定系数k的方程;
3)解方程求出待定系数k;
4)将所求的k值代入所设解析式中.
【例3】(2022上·山东枣庄·九年级校考期末)已知函数 = ( + 1)
是
【详解】∵函数 = ( + 1)
.
2 −5
2 −5
是关于的反比例函数,则的值
是关于的反比例函数,
∴ + 1 ≠ 0,2 − 5 = −1,
∴ = ±2,
专题14反比例函数及其应用(知识点总结+例题讲解)-2021届中考数学一轮复习

2021年中考数学 专题14 反比例函数及其应用(知识点总结+例题讲解)一、反比例函数、图像、性质:1.反比例函数的概念: (1)定义:一般地,函数ky x(k 是常数,k ≠0)叫做反比例函数; (2)变形:反比例函数的解析式也可以写成y=kx -1或xy=k(k ≠0)的形式;(3)自变量x 的取值范围:x ≠0的一切实数,函数的取值范围也是一切非零实数。
【例题1】下列函数是y 关于x 的反比例函数的是( ) A .y =1x−1 B .y =1x 3C .y =−3xD .y =−x4【答案】C【解析】利用反比例函数定义进行分析即可.解:A 、不是y 关于x 的反比例函数,故此选项不合题意; B 、不是y 关于x 的反比例函数,故此选项不合题意; C 、是y 关于x 的反比例函数,故此选项符合题意;D 、不是y 关于x 的反比例函数,是正比例函数,故此选项不合题意;故选:C . 【变式练习1】若y =(a +1)x a2−2是反比例函数,则a 的取值为( )A .1B .﹣1C .±1D .任意实数【答案】A【解析】先根据反比例函数的定义列出关于a 的方程组,求出a 的值即可. 解:∵此函数是反比例函数,∴{a +1≠0a 2−2=−1,解得a =1.故选:A .2.反比例函数的图象:(1)反比例函数的图像是双曲线;它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限;它们关于原点对称;(2)反比例函数关于直线y=x和y=-x成轴对称;(对称中心:原点)(3)由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图【例题2】(2020•德州)函数y=kx象可能是( )【答案】D【解析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.和y=﹣kx+2(k≠0)中,解:在函数y=kx的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四当k>0时,函数y=kx象限,故选项A、B错误,选项D正确;的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三当k<0时,函数y=kx象限,故选项C错误。
反比例函数的图像和性质ppt课件

探究新知
k
一般地,反比例函数 y 的图象是双曲线,它具有以下性质:
x
(1)当k>0时,图象的两个分支分别在第一、三象限内,在
每一象限内,y的值随x值的增大而减小;
(2)当k<0时,图象的两个分支分别在第二、四象限内,在
每一象限内,y的值随x值的增大而增大.
k 的正负决定反比例函数所在的象限和增减性
大而减小.
探究新知
k
当k=-2,-4,-6时,反比例函数 y
的图象(如图),它们有哪
x
些共同特征?
y
6
2
y=
x
6
4
y=
4
x
2
–6
–4
–2 O
–2
y
y
y=
4
6
x
2
4
6
–6
–4
–2 O
–2
4
2
2
ቤተ መጻሕፍቲ ባይዱ
x
6
x
2
4
6
–6
–4
–2 O
–2
–4
–4
–4
–6
–6
–6
追问(1):函数图象分别位于哪几个象限内?
函数的图象都位于二、四象限.
随堂练习
1.(1)已知点(-6,y1), (-4,y2)在反比例函数 =
试比较 y1, y2的大小
(2)已知点(6,y3), (4,y4)在反比例函数 =
比较 y3, y4的大小
函数 =
−6
的图像上,试
y
(3)已知点(-4,y5), (6,y6)在反比例
−6
的图像上,试比较
反比例函数的图象和性质教案(完美版)

在线分享文档:麦群超反比例函数的图象和性质【知识与技能】1. 会用描点法画反比例函数的图象;2. 理解反比例函数的性质.【过程与方法】 经历实验操作、探索思考、观察分析的过程中,培养学生探究、归纳及概括的能力.【情感态度】在通过画图探究反比例函数图象及其性质过程中,发展学生的合作交流意识,增强求知欲望.【教学重点】画反比例函数图象,理解反比例函数的简单性质【教学难点】 理解反比例函数性质,能用性质解决简单的问题.一、情境导入,初步认识问题 我们知道,一次函数y = 6x 的图象是一条直线,那么反比例函数y =6x 的图象是什么形状呢?你能用“描点”的方法画出函数的图象?【教学说明】教师提出问题,学生思考、交流,尝试着解决问题,教师巡视,关注学生的画图,及时纠正个别同学在画图中的不足和失误之处,帮助学生尽可能得到其合适的图象.二、思考探究,获取新知问题1 在同一坐标系中画出反比例函数y =6x 和y =12x的图象; 【教学说明】将全班同学分成两大组,分别完成问题y =6x 、y =12x的画图,在学生探索画反比例函数的图象过程中,教师应给予恰当点拨:如学生列表时,由于自变量x ≠0,故在x <0和x >0时,应各取三个以上的数据,以便使描点画图更精确些;在连线上,x <0和x >0 的两个分支应根据变化趋势用平滑曲线连接,但它们是不能相交的;列表中数据,描点时点的位置等不能出错,以保证图象更能反映出反比例函数的性质.在线分享文档让每个人平等地提升自我:麦群超 问题2 反比例函数y =-6x 和y =-12x的图象有什么共同特点?它们之间有什么关系?反比例函数y = 6x 和y =-6x的图象呢?同学间相互交流. 【教学说明】让两组同学分别交流,找出图象的特征,教师可分别参与讨论,帮助学生获取正确认知. 【归纳结论】由图象可发现:(1)它们都是由两条曲线组成,并且随|x|的不断增大(或减 小),曲线越来越接近x 轴(或y 轴),但这两条曲线永不相交;(2) y = 6x 和y =-6x 及y =12x 和y =-12x 的图象分别关于x 轴对称,也关于y 轴对称. 思考 观察函数y = 6x 和y =-6x 以及y =12x 和y =-12x 的图象. (1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限? (3)在每个象限内y 随x 的变化如何变化? 【归纳结论】反比例函数y =k x 的图象及其性质: (1)反比例函数y=k x (k 为常数,且k 0)的图象是双曲线; (2)当k >0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 随x 值的增大而减小;(3)当k <0时,双曲线的两个分支分别位于第二、四象限,在每个象限内y 随x 值的增大而增大.三、典例精析,掌握新知例 如图,一次函数y = kx 十b 的图象与反比例函数y =m x 的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标;(2)求出两函数的解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值. 【分析】(1)观察图象,可直接写出A 、B 两点的坐标;(2)利用A 、B 两点的坐标,用待定系数法建立方程组求解,可确定两函数的解析式;(3 )通过两函数的交点A 、B 的坐标得出答案.解:(1)观察图象可知A ( -6,-2),B (4,3)在线分享文档地提升自我By :麦群超(2)由点B 在反比例函数y =m x 的图象上,所以把B (4,3)代入y =m x 得3 =4m ,故m =12,所以y=12x.由点A 、B 在一次函数y =kx 十b 的图象上,所以把A 、B 两点坐标代入y = kx 十b 得14326+2,1k b k k b b ⎧+==⎧⎪⎨⎨-=-⎩⎪=⎩解得 . 所以一次函数解析式为y = 12x+1.(3)由图象可知,当一6<x <0或x >4时,一次函数的函数值大于反比例函数的函数值.【教学说明】本例有一定难度,教师可将题目展开,分步讲解,辅导学生克服对大题的恐惧.本题考查了从图象获取信息,应用待定系数法确定反比例函数与一次函数的关系式,以及利用图象比较函数值的大小等知识点. 四、运用新知,深化理解 1 .若反比例函数 y =21m x -的图象的一个分支在第三象限,则m 的取值范围是 . 2.如图是某一函数的一部分,则这个函数的表达式可能是( )A.y=5xB.y=-x+3C.y=-6xD.y=4x 【教学说明】学生独立完成,然后相互交流,谈谈自己的看法,教师应参与学生的讨论, 加深学生对反比例函数的图象及其性质的认识和理解,从而更好地掌握本节知识.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分. 【答案】1.m >122. C 五、师生互动,课堂小结 本节课学习了哪些知识?在知识应用过程中需要注意什么?你有哪些收获?1.布置作业:从教材“习题”中选取.在线分享文档让每个人平等2.完成创优作业中本课时的“课时作业”部分.“反比例函数的图象和性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用.在学习反比例函数图象和性质时k >0时,双曲线的两个分支在一、三象限;k <0时,双曲线的两个分支在二、四象限),学生可由画法观察图象得知.而增减性由解析式y =k x (k 0)可得到,学生也容易理解.但从图象观察增减性较难,借助计算机的动态演示就容易多了,所以本课教学最好用多媒体,因为运用多媒体比较函数图象,可以使学生更直观、更清楚地看清函数的变化,从而使学生加深对函数性质的理解.通过本课的教学,教师可深刻地体会到运用信息技术可加强数学课堂教学中的灵活性、直观性. 虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14课时 反比例函数图象和性质
一、选择题
1.对于反比例函数2
y x
=
,下列说法不正确...的是( ) A .点(21)--,在它的图象上
B .它的图象在第一、三象限
C .当0x >时,y 随x 的增大而增大
D .当0x <时,y 随x 的增大而减小
2.(2008烟台)在反比例函数12m
y x
-=
的图象上有两点A ()11,x y ,B ()22,x y ,当120x x <<时,有12y y <,则m 的取值范围是( ) A .0m < B.0m > C.12m <
D.12
m > 3.(2008徐州)如果点(3,-4)在反比例函数k
y x
=的图象上,那么下列各点中,在此图象上的是( )
A.(3,4)
B. (-2,-6)
C.(-2,6)
D.(-3,-4) 4.(2008恩施)如图,一次函数y1=x-1与反比例函数y2=x
2
的图像交于点A (2,1),B (-1,-2),则使y1>y2的x的取值范围是( )
A.x>2
B.x>2 或-1<x<0
C.-1<x<2
D.x>2 或x<-1
5.(2008济南)如图:等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y =x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线k
y x
=(k ≠0)与ABC ∆有交点,则k 的取值范围是( ) A .1
k << C .14k ≤≤
D .14k <≤
二、填空题
6. (2008河北)点(231)
P m -,在反比例函数1
y x
=的图象上,则m = . 7.老师给出了一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质,甲:第一象限内有它的图象;乙:第三象限内有它的图象;丙:在每个象限内,y 随x 的增大而减小.请你
写一个满足上述性质的函数解析式_________________. 8.(2008新疆)在函数1y x =
的图象上有三个点的坐标分别为(1,1y )、(12
,2y )、(3-,3y )
,函数值y 1、y 2、y 3的大小关系是 . 9.(2008福州)如图,在反比例函数2
y x
=
(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的
面积从左到右依次为123S S S ,,,则123S S S ++
10.(2008兰州)如图,已知双曲线k
y x
=
(0x >)经过矩形OABC 的边AB BC ,的中点F E ,,且四边形OEBF 的面积为2,则k = .
11.如图,已知A(-4,2)、B(n ,-4)是一次函数y kx b =+ 的图象与反比例函数m
y x
=
的图象的两个交点. (1) 求此反比例函数和一次函数的解析式;
(2) 根据图象写出使一次函数的值小于反比例函数的值 的x 的取值范围.
12.(2008巴中)为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y (mg )与燃烧时间x (分钟)成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg .据以上信息解答下列问题: (1)求药物燃烧时y 与x 的函数关系式.
2
y x =
x
y O
P 1 P 2
P 3
P 4 1
2 3 4
(第9题)
第9题图
第11题图
(2)求药物燃烧后y与x的函数关系式.
(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?
第12题图。