《整式的乘除》全章复习与巩固(提高)巩固练习
浙教版七年级数学下册 第3章 整式的乘除 全章复习和巩固(提高)巩固练习

整式的乘除全章复习与巩固(提高)巩固练习一.选择题1.(2019秋﹒长白县期末)设a ,b 是实数,定义*的一种运算如下:a*b=(a+b)2,则下列结论有:①a*b=0,则a=0且b=0 ②a*b=b*a ③a*(b+c)=a*b+a*c ④a*b=(-a)*(-b) 正确的有( )个. A .1 B .2 C .3 D .42. (2019秋﹒白云区期末)化简(x+4)(x-1)+(x-4)(x+1)的结果是( ) A .2x 2-8 B .2x 2-x-4 C .2x 2+8 D .2x 2+6x3. 对于任意的整数n ,能整除代数式()()()()3322n n n n +--+-的整数是( )A.4B.3C.5D.24.若()()2x a x b x px q ++=++,且0p >,0q <,那么a b ,必须满足条件( ).A.a b ,都是正数B. a b ,异号,且正数的绝对值较大C.a b ,都是负数D. a b ,异号,且负数的绝对值较大5.化简222222(53)2(53)(52)(52)x x x x x x x x ++-+++-++-的结果是( )A .101x +B .25C .22101x x ++ D .以上都不对 6.(2019•日照)观察下列各式及其展开式:()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++ ()4432234464a b a a b a b ab b +=++++()554322345510105a b a a b a b a b ab b +=+++++…请你猜想()10a b +的展开式第三项的系数是( ) A .36 B .45 C .55 D .667. 下列各式中正确的有( )个:①a b b a -=-;② ()()22a b b a -=-; ③()()22a b b a -=--;④()()33a b b a -=--;⑤()()()()a b a b a b a b +-=---+;⑥ ()()22a b a b +=-- A. 1 B. 2 C. 3 D. 48.(2019秋﹒海淀区期末)已知长方形ABCD 可以按图示方式分成九部分,在a ,b 变化的过程中,下面说法正确的有( )①图中存在三部分的周长之和恰好等于长方形ABCD 的周长 ②长方形ABCD 的长宽之比可能为2③当长方形ABCD 为正方形时,九部分都为正方形④当长方形ABCD 的周长为60时,它的面积可能为100. A .①② B .①③ C .②③④ D .①③④二.填空题 9. 如果k mx x ++212是一个完全平方式,则k 等于_______. 10.若21=+mx ,34=+my ,则用含x 的代数式表示y 为______. 11.已知2226100m m n n ++-+=,则mn = . 12.若230x y <,化简|)(21|276y x xy --⋅-=_________.13.(2019春•成都)已知A=(2x+1)(x ﹣1)﹣x (1﹣3y ),B=﹣x 2﹣xy ﹣1,且3A+6B 的值与x 无关,则y= . 14. 设实数x ,y 满足2214202x y xy y ++--=,则x =_________,y =__________. 15.16.如果()()22122163a b a b +++-=,那么a b +的值为____ __.三.解答题17.已知222450a b a b ++-+=,求2243a b +-的值. 18. ()2222a b c a b c ++=++,0abc ≠,求111a b c++=________. 19.计算:20002000200020001998357153)37(++⨯ 20. (2019•内江)(1)填空:()()a b a b -+=;()()22a b a ab b -++=;()()3223a b a a b ab b -+++=.(2)猜想:()()1221···+n n n n a b a a b ab b -----+++= (其中n 为正整数,且n≥2).(3)利用(2)猜想的结论计算:98732222222-+-⋅⋅⋅+-+.21.(2020﹒于都县模拟)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a 2+2ab+b 2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a 3+3a 2b+3ab 2+b 3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.【答案与解析】 一.选择题1. 【答案】B ;2. 【答案】A ;3. 【答案】C ;【解析】()()()()223322945n n n n n n +--+-=--+=-. 4. 【答案】B ;【解析】由题意00a b ab +><,,所以选B. 5. 【答案】B ;【解析】原式=()22225352525x x x x ++--+==.6. 【答案】B ;【解析】解:()2222a b a ab b +=++()3322333a b a a b ab b +=+++()4432234464a b a a b a b ab b +=++++()554322345510105a b a a b a b a b ab b +=+++++()6654233245661520156a b a a b a b a b a b ab b +=++++++()77652433425677213535217a b a a b a b a b a b a b ab b +=+++++++第8个式子系数分别为:1,8,28,56,70,56,28,8,1; 第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1, 则()10a b +展开式第三项的系数为45.故选B . 7. 【答案】D ;【解析】②④⑤⑥正确. 8. 【答案】B ;二.填空题 9. 【答案】2116m ; 【解析】2221112244x mx k x mx m ⎛⎫++=+⨯+ ⎪⎝⎭.所以k =2116m .10.【答案】224y x x =-+【解析】∵21=-mx ,∴222234323(2)3(1)24=+=+=+=+-=-+mmm y x x x .11.【答案】-3;【解析】()()22222610130,1,3m m n n m n m n ++-+=++-==-=.12.【答案】78x y【解析】因为230x y <,所以0y <,原式=676778112||222xy x y xy x y x y ⎛⎫-=-⨯-= ⎪⎝⎭. 13.【答案】2;【解析】解:∵A=(2x+1)(x ﹣1)﹣x (1﹣3y )=2x 2﹣2x+x ﹣1﹣x+3xy=2x 2﹣2x+3xy ﹣1B=﹣x 2﹣xy ﹣1,∴3A+6B=6x 2﹣6x+9xy ﹣3﹣6x 2﹣6xy ﹣6=﹣6x+3xy ﹣9=(﹣6+3y )x ﹣9, 由结果与x 无关,得到﹣6+3y=0,解得:y=2.故答案为:2.14.【答案】2;4;【解析】等式两边同乘以4,得:224216480x y xy y ++--=222448160x xy y y y -++-+=()()22240x y y -+-=∴2,4,x y y ==∴ 2x =.15.【答案】32; 【解析】原式2002233313222⎛⎫=⨯⨯÷= ⎪⎝⎭. 16.【答案】±4;【解析】由题意得()()2222163,464,4a b a b a b +-=+=+=±. 三.解答题 17.【解析】解:22245a b a b ++-+222144a a b b =+++-+()()22120a b =++-=∵()()2210,20a b +≥-≥∴1,2a b =-=()22243214237a b +-=⨯-+⨯-=.18.【解析】解:222222222a b c a b c ab ac bc ++=+++++所以2220,0ab ac bc ab ac bc ++=++=即 因为0abc ≠,等式两边同除以abc ,111a b c++=0. 19.【解析】 解:===()()20002000199819982000200031573715+⨯+ ==.20.【解析】解:(1)()()a b a b -+=22a b -;()()22a b a ab b -++=33a b -; ()()3223a b a a b ab b -+++=44a b -.(2)由(1)的规律可得: 原式=n na b -,(3)987328642222222(21)(22222)342-+-⋅⋅⋅+-+=-++++=21.【考点】完全平方公式.完全平方公式解:(1)如图, 则(a+b)5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5; (2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5. =(2-1)5,=1.【点评】本题考查了完全式的n 次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.。
(完整版)《整式的乘除》提高测试题加答案(可编辑修改word版)

整式的乘除 提高测试(二)选择题(每小题 2 分,共计 16 分)13.计算(-a )3·(a 2)3·(-a )2 的结果正确的是……………………………() (A )a 11 (B )a 11 (C )-a 10 (D )a 1314.下列计算正确的是………………………………………………………………()(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2 (C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =1 15.4m ·4n 的结果是……………………………………………………………………( ) (A )22(m +n ) (B )16mn (C )4mn (D )16m +n 16.若 a 为正整数,且 x 2a =5,则(2x 3a )2÷4x 4a 的值为………………………()5 (A )5(B )(C )25 (D )10217. 下列算式中, 正确的是 ……………………………………………………………… ( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )( 1 )-2=1= 13329(C )(0.00001)0=(9999)0(D )3.24×10-4=0.000032418.(-a +1)(a +1)(a 2+1)等于………………………………………………( )(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 4(四)计算(每小题 5 分,共 10 分) 23.9972-1001×999.1111122.(1-22 )(1-32 )(1-42 ) (1)92 )(1-102)的值.(五)解答题(每小题 5 分,共 20 分)23.已知 x + 1 =2,求 x 2+ 1 x x 2,x 4+ 1x4 的值.a 2b 2 24.已知(a -1)(b -2)-a (b -3)=3,求代数式-ab 的值.225.已知 x 2+x -1=0,求 x 3+2x 2+3 的值.⎨26.若(x 2+px +q )(x 2-2x -3)展开后不含 x 2,x 3 项,求 p 、q 的值.13, 【答案】B .14【答案】C . 15【答案】A .16 【答案】A .17 【答案】C .18 【答案】D .(四)计算(每小题 5 分,共 10 分)23.9972-1001×999.【提示】原式=9972-(1000+1)(1000-1)=9972-10002+1=(1000-3)2-10002+1 =10002+6000+9-10002+.【答案】-5990.1 1 1 1 1 22.(1-22)(1-32)(1-42 ) (1)92)(1-102)的值.【提示】用平方差公式化简,1 1 11 1 1 11原式=(1- )(1+ )(1- )(1+ )…(1- )(1+ )(1-)(1+)=21 32 4 32339 10 11 1 9 910101111 · · · · …· ··= ·1·1·1·…·. 【答案】.2 23 3 48 9 102 1020(五)解答题(每小题 5 分,共 20 分)23.已知 x + 1=2,求 x 2+ 1x x 2,x 4+ 1x4 的值.【提示】x 2+ 1 x2 =(x + 1)2-2=2,x 4+ 1 xx 4=(x 2+ 1x2 )2-2=2.【答案】2,2.(a - b )2 124.【答案】由已知得 a -b =1,原式== ,或用 a =b +1 代入求值.2225.已知 x 2+x -1=0,求 x 3+2x 2+3 的值.【答案】4.【提示】将 x 2+x -1=0 变形为(1)x 2+x =1,(2)x 2=1-x ,将 x 3+2x 2+3 凑成含(1),(2)的形式,再整体代入,降次求值.26.若(x 2+px +q )(x 2-2x -3)展开后不含 x 2,x 3 项,求 p 、q 的值. 【答案】展开原式=x 4+(p -2)x 3+(q -2p -3)x 2-(3p +28)x -3q ,x 2、x 3 项系数应为零,得⎧ p - 2 = 0 ⎩q - 2 p - 3 = 0.∴ p =2,q =7.。
《整式的乘除》全章复习与巩固(提高)知识讲解

《整式的乘除》全章复习与巩固(提高)【学习目标】1. 掌握幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方: (n 为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算 1、(2015春•南长)已知228x y +=,993y x -=,求x+2y 的值.【思路点拨】根据原题所给的条件,列方程组求出x 、y 的值,然后代入求解.【答案与解析】解:根据3(2)22x y +=,2933y x -=,列方程得:, 解得:, 则x+2y=11.【总结升华】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.2、(1)已知246122,9,5===a b c ,比较,,a b c 的大小.(2)比较3020103,9,27大小。
人教版八年级上数学整式的乘除与因式分解全章复习与巩固(基础)巩固练习

【巩固练习】一.选择题1.下列各式从左到右的变化中属于因式分解的是( ).A .()()22422m n m n m n -=+-B .()()2111m m m +-=-C .()23434m m m m --=--D .()224529m m m --=-- 2.下列计算正确的是( ).A.325a a a +=B.()23624a a -=C.()222a b a b +=+D. 623a a a ÷= 3.若252++kx x 是完全平方式,则k 的值是( )A . —10 B. 10 C. 5 D.10或—104. 将2m ()2a -+()2m a -分解因式,正确的是( )A .()2a -()2m m - B .()()21m a m -+ C .()()21m a m -- D .()()21m a m --5. 下列计算正确的是( )A. 23323bx y xy x -÷=-B. ()()2223xyx y y -÷-=- C.()()33223322x y xy x y -÷-=- D. ()()32224a b a b a --÷-=6. 若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A.-15B.-2C.8D.27. 2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是() A .2)5(b a - B .2)5(b a + C .)23)(23(b a b a +- D .2)25(b a -8. 下列多项式中能用平方差公式分解的有( )①22a b --; ②2224x y -; ③224x y -; ④()()22m n ---; ⑤22144121a b -+; ⑥22122m n -+. A .1个 B .2个 C .3个 D .4个二.填空题9.化简()2m n a a ⋅=______. 10.如果229x mx -+是一个完全平方式,那么m =______.11.若221x y -=,化简()()20122012x y x y +-=________. 12. 若2330x x +-=,32266x x x +-=__________.13.把()()2011201222-+-分解因式后是___________.14.()()()()241111x x x x -++-+的值是________. 15. 当10x =,9y =时,代数式22x y -的值是________.16.下列运算中,结果正确的是___________①422a a a =+,②523)(a a =, ③2a a a =⋅,④()()33x y y x -=-,⑤()x a b x a b --=-+,⑥()x a b x b a +-=--,⑦()22x x -=-,⑧ ()()33x x -=--,⑨ ()()22x y y x -=-三.解答题17.分解因式:(1)234()12()x x y x y ---;(2)2292416a ab b -+;(3)21840ma ma m --.18. 解不等式()()()22232336x x x x +-+->+,并求出符合条件的最小整数解. 19.已知:x y a +=,xy b =,试用a b ,表示下列各式:(1)22x y +;(2)()2x y -;(3)22x y xy +. 20.某种液晶电视由于原料价格波动而先后两次调价,有三种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问三种方案调价的最终结果是否一样?为什么?【答案与解析】一.选择题1. 【答案】A ;【解析】因式分解是把多项式化成整式乘积的形式.2. 【答案】B ;3. 【答案】D ;【解析】()2221055x x x ±+=± 4. 【答案】C ;【解析】2m ()2a -+()2m a -=2m ()2a -()2m a --=()()21m a m --.5. 【答案】B ;【解析】233122bx y xy bx -÷=-;()()33223328x y xy x y -÷-=; ()()3222a b a b a --÷-=-.6. 【答案】D ;【解析】2(3)(5)28x x x x -+=+-.7. 【答案】A【解析】2222)(4)(12)(9b a b a b a ++-+-=()()()22325a b a b a b -++=-⎡⎤⎣⎦.8. 【答案】D ;【解析】③④⑤⑥能用平方差公式分解.二.填空题9. 【答案】()22m n m n a a a +⋅=.10.【答案】±3;【解析】()2222293233x mx x x x -+=±=±⨯+. 11.【答案】1;【解析】()()()()()201220122012201222201211x y x y x y x y x y +-=+-=-==⎡⎤⎣⎦. 12.【答案】0;【解析】()3222662362360x x x x x x x x x +-=+-=⨯-=.13.【答案】20112;【解析】()()()()()201120122011201120112221222-+-=--=--=.14.【答案】-2;【解析】()()()()()()()242241111111x x x x x x x -++-+=-+-+ 44112x x =---=-.15.【答案】19;【解析】()()()()2210910919x y x y x y -=+-=+-=. 16.【答案】③⑤⑥⑨;【解析】在整式的运算过程中,符号问题和去括号的问题是最常犯的错误,要保证不出现符号问题关键在于每一步的运算都要做到有根据,能够用定理法则指导运算.三.解答题17.【解析】解:(1)234()12()x x y x y ---=224()[3()]4()(32)x y x x y x y y x ---=--;(2)22292416(34)a ab b a b -+=-;(3)()()()2218401840202ma ma m m a a m a a --=--=-+. 18.【解析】解:()()()22232336x x x x +-+->+ 2224129636139913x x x x x x x ++-++>+>->- 符合条件的最小整数解为0,所以0x =.19.【解析】解:(1)()222222x y x y xy a b +=+-=-;(2)()()22244x y x y xy a b -=+-=-; (3)()22x y xy xy x y ab +=+=.20.【解析】解:设a 为原来的价格(1) 由题意得:()()110%110%0.99a a +-=(2)由题意得:()()110%110%0.99a a -+=(3)由题意得:()()120%120% 1.20.80.96a a a +-=⨯=. 所以前两种调价方案一样.。
第三章 整式的乘除复习巩固练习(含答案)

- 1 -第三章整式的乘除复习巩固练习一.选择题1. 化简 2a 3 + a 2·a 的结果等于( A 、 3 a 3B 、 2 a 3C 、 3 a 6D 、 2 a 62. 下列计算中, (1a m ·a n =a mn (2(a m +n 2=a 2m +n (3(2a n b 3·(-61ab n -1 =-31a n +1b n +2,(4a 6÷a 3= a 3正确的有 (A.0个B.1个C.2个D.3个 3. 已知 a <0,若 -3a n ·a 3的值大于零,则 n 的值只能是 (A. n 为奇数B. n 为偶数C. n 为正整数D. n 为整数 4. 若 (x -1(x +3=x 2+mx +n ,那么 m , n 的值分别是 (A. m =1, n =3B. m =4, n =5C. m =2, n =-3D. m =-2 , n =3 5. 化简 (x +y +z 2-(x +y -z 2的结果是 (A.4yzB.8xyC.4yz +4xzD.8xz 6. 如果 a , b , c 满足 a 2+2b 2+2c 2-2ab -2bc -6c +9=0,则 abc 等于 ( A.9 B.27 C.54 D.81 7. 设 ((A b a b a +-=+223535,则 A =(A. 30abB. 60abC. 15abD. 12ab 8. 已知 , 5, 3==bax x 则 =-ba x 23(A.2527 B. 109C. 53D. 529.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是(A . (2222a b a ab b -=-+ B . (2222b ab a b a ++=+C . (ab a b a a 2222+=+D . ((22a b a b a b +-=-- 2 -nm aba10.如果 (x +p (x +1的乘积中不含 x 的项,那么 p 等于( A 、 1 B 、-1 C 、 0 D 、-2 二、填空题11. 计算:32( x x -=·322(3 a a -÷=12.. 已知 (3x -2 0有意义 , 则 x 应满足的条件是 _________________ . 13. 方程((((41812523=-+--+x x x x 的解是 _______ 14. 当 2y – x =5时, ((6023252-+---y x y x15.若 4x 2+kx +25=(2x -5 2,那么 k 的值是 16.若 1007=+y x , 2x y -=,则代数式 22x y -的值是17. 一个正方形的边长增加了 cm 2,面积相应增加了 232cm ,则这个正方形的边长为 ____ ((((221112++++-+--a b a b a b a =_____________ 19. 如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:① (2a +b (m +n ; ② 2a (m +n +b (m +n ; ③ m (2a +b +n (2a +b ; ④ 2am +2an +bm +bn ,你认为其中正确的有___________________(填序号 20. 若 622=-n m ,且 3=-n m , 则 =+n m . 三、解答题21. 计算下列各题: (1 ((((233232222x y x xy y x ÷-+-⋅ (2 ((222223366m m nm n m -÷--18. 计算:- 3 -22. 先化简,再求值: (1 2b 2+(a +b (a -b - (a -b 2,其中 a =-3, b =21.(2 (x +3 (x ﹣ 3﹣ x (x ﹣ 2 ,其中 x =4.(3 22(2 2, 3a b b a b --=-=, 其中 .23. 请计算:[]222 ( ( (21c a c b b a -+-+- 若 a =2012, b =2013, c =2014,你能很快求出 ac bc ab c b a ---++2 22的值吗?- 4 -24. 按下列程序计算,把答案写在表格内:(1填写表格:(2请将题中计算程序用代数式表达出来,并给予化简.25. 小明家的住房结构如图所示,小明的爸爸打算把卧室以外的部分都铺上地砖,至少需要多少 m 2的地砖?如果每 1m 2地砖的价格是 a 元钱, 则购买地砖至少需要多少钱?26. 若 (x 2+mx -8 (x 2-3x +n 的展开式中不含 x 2和 x 3项 , 求 m 和 n 的值- 5 -27. 某城市为了鼓励居民节约用水, 对自来水用户按如下标准收费:若每月每户用水不超过 a 吨,每吨 m 元;若超过 a 吨,则超过的部分以每吨 2m 元计算. • 现有一居民本月用水 x 吨,则应交水费多少元?28. 化简求 22(2 (2 2(2(2 a b a b a b a b ++---+的值,其中 26279ba ==.29. (1计算并观察下列各式:(1(1 x x -+=2(1(1 x x x -++=; 32(1(1 x x x x -+++=(2从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格. (1 x -( =61x -; (3利用你发现的规律计算:65432(1(1 x x x x x x x -++++++; (4利用该规律计算:23201314444. +++++ 参考答案一、选择题题号答案 1 A 2 C 3 B 4 C 5 C 6 B 7 B 8A 9 C 10B 二、填空题 11. x 5 9a 4 12. x 2 3 2 13. x=3 14. 50 15. -20 16. 201417. 7 18. 4a 4ab 2b 2 19. ①②③④ 20. 2 三、解答题 21.计算下列各题:(1)2 x y3 2 xy 2 x y 2 x 2 3 3 2 解 : 原式 2 x 7 y 3 8 x 9 y 3 2 x 2 2 x 7 y 34 x 7 y 3 6 x 7 y 3 (2) 6m n 6m n 3m 2 2 2 2 3m 2 解 : 原式2n 2n 2 1 22.(1)解:原式=2b2+a2-b2-a2+2ab-b2=2ab. 当 a=-3,b= 1 1 时,原式=2× (-3× =-3. 2 2 (2)解:原式=x2﹣9﹣x2+2x=2x﹣9,当 x=4 时,原式=2× 4﹣9=﹣1.(3)解:原式 4a 4ab b b 2 2 2 4a 2 4ab 2 将 a=-2,b=3 代入上式得上式 4( 2 4 ( 2 3 16 24 40 -6- 23.请计算: 1 (a b 2 (b c 2 (a c 2 2 2 2 2 若 a =2012,解原式 =2013, c =2014,你能很快求出 a b c ab bc ac 的值吗? 1 (a b( a b (b c(b c (a c( a c 2 1 2 a ab ab b 2 b 2 bc bc c 2 a 2 2 1 2a 2 2b 2 2c 2 2ab 2ac 2bc 2 a 2 b 2 c 2 ab ac bc 由上面计算我们可以发现, a b c ab ac bc 2 2 2 1 a b 2 b c 2 a c 2 2 当a 2012 , b 2013, c 2014时 a 2 b 2 c 2 ab ac bc 1 1 2 1 2 2 2 3 2 1 a b 2 bc 2 a c 2 2 24.按下列程序计算,把答案写在表格内: n 平方 +n n -n 答案 (1填写表格:输入n 输出答案 3 1 1 2 1 —2 1 —3 1 … … (2请将题中计算程序用代数式表达出来,并给予化简.解 : ( n 2 n n n n 1 n 1 25.小明家的住房结构如图所示,小明的爸爸打算把卧室以外的部分都铺上地砖,至少需要多少 m2 的地砖?如果每 1m2 地砖的价格是 a 元钱,则购买地砖至少需要多少钱?解 : 面积为4 x 4 y xy 4 xy 11xy 需钱为 : 11xya元 -7- 26.若(x2+mx-8 (x2-3x+n的展开式中不含 x2 和 x3 项,求 m 和 n 的值解 x 2 mx 8 x 2 3 x n 4 3 2 3 2 x 3 x nx mx 3mx mnx 8 x 2 24 x 8n x 4 (m 3 x 3 (n 3m 8 x 2 (mn 24 x 8n 不含x 3和x 2项m 3 0 m 3, n 17 n 3m 8 0 28.某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过 a 吨,每吨 m 元;若超过 a 吨,则超过的部分以每吨 2m 元计算.现有一居民本月用水 x 吨,则应交水费多少元?解 : 如果x a, 应交水费mx 如果x a 应交水费 : am 2m( x a 2mx am 28.解:原式= (a 3b ,求得 a 3, b 3 2 当 a 3 时, (a 3b =144 2 当 a 3 时, (a3b =36 2 29.(1) x 1, x 1, x 1 2 3 4 (2) x x x x x 1 (3) x 1 5 4 3 2 7 2013 (4) (1 4 4 4 4 2 3 (4 1 42014 1 1 4 42 43 42013 = 4 2014 1 3 -8-。
06《整式的乘除》全章复习与巩固(提高)知识讲解

《整式的乘除》全章复习与巩固(提高)
【学习目标】
1. 掌握幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;
2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;
3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;
【知识网络】
【要点梳理】
要点一、幂的运算
1.同底数幂的乘法:
(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:
(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:
(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).
同底数幂相除,底数不变,指数相减.
5.零指数幂:()0
10.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n n a a
-=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.。
华东师大初中数学八年级上册《整式的乘除》全章复习与巩固--知识讲解(提高)(精选)
《整式的乘除》全章复习与巩固—知识讲解(提高)【学习目标】1. 理解正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍. ()2222a b a ab b +=++;2222)(b ab a b a +-=- 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、(2016春•东台市期中)已知:5a =4,5b =6,5c =9,(1)52a +b 的值;(2)5b -2c 的值;(3)试说明:2b =a +c .【思路点拨】根据同底数幂的乘法、幂的乘方、同底数幂的除法等即可得答案.【答案与解析】解:(1)52a +b =52a ×5b =(5a )2×5b =42×6=96(2)5b ﹣2c =5b ÷(5c )2=6÷92=6÷81=227(3)5a +c =5a ×5c =4×9=3652b =62=36,因此5a +c =52b 所以a +c =2b .【总结升华】本题考查了幂的相关运算,熟记法则的同时要注意逆用公式才是解题关键. 举一反三:【变式】(1)已知246122,9,5===a b c ,比较,,a b c 的大小.(2)比较3020103,9,27大小。
华东师大初中数学八年级上册《整式的乘除》全章复习与巩固--知识讲解(提高)
《整式的乘除》全章复习与巩固—知识讲解(提高):【学习目标】1. 理解正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差. 22()()a b a b a b +-=-要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍. ()2222a b a ab b +=++;2222)(b ab a b a +-=- 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、(2016春•东台市期中)已知:5a =4,5b =6,5c =9,(1)52a +b 的值;(2)5b -2c 的值;(3)试说明:2b =a +c .【思路点拨】根据同底数幂的乘法、幂的乘方、同底数幂的除法等即可得答案.【答案与解析】解:(1)52a +b =52a ×5b =(5a )2×5b =42×6=96(2)5b ﹣2c =5b ÷(5c )2=6÷92=6÷81=227(3)5a +c =5a ×5c =4×9=3652b =62=36,因此5a +c =52b 所以a +c =2b .【总结升华】本题考查了幂的相关运算,熟记法则的同时要注意逆用公式才是解题关键. 举一反三:【变式】(1)已知246122,9,5===a b c ,比较,,a b c 的大小.(2)比较3020103,9,27大小。
《整式的乘除》全章复习与巩固--巩固练习(提高)
【巩固练习】 一.选择题1.若二项式42164m m +加上一个单项式...后构成的三项式是一个完全平方式,则这样的单项式的个数有( ).A .1个B .2个C .3个D .4个2. 已知:△ABC 的三边长分别为a b c 、、,那么代数式2222b c ac a -+-的值( )A.大于零B.等于零C.小于零 D 不能确定 3. 下列因式分解正确的是( ).A.()()2292323a b a b a b -+=+-B.()()5422228199a ab a a b ab -=+-C.()()2112121222a a a -=+- D.()()22436223x y x y x y x y ---=-+- 4.(2015•邵阳)已知a+b=3,ab=2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65. 若4821-能被60或70之间的两个整数所整除,这两个数应当是( ) A .61,63 B .61,65 C .63,65 D .63,676. 乘积22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭应等于( ) A .512 B .12 C .1120 D .237. 下列各式中正确的有( )个:①a b b a -=-;② ()()22a b b a -=-; ③()()22a b b a -=--;④()()33a b b a -=--;⑤()()()()a b a b a b a b +-=---+;⑥ ()()22a b a b +=-- A. 1 B. 2 C. 3 D. 48. (2016•沧州校级模拟)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用含a 、b 的式子表示)( )A .(a +b )2B .(a ﹣b )2C .2abD .ab二.填空题9.(2015•游仙区模拟)已知关于x 的二次三项式x 2+2mx ﹣m 2+4是一个完全平方式,则m 的值为 . 10.若21=+mx ,34=+my ,则用含x 的代数式表示y 为______.11.已知2226100m m n n ++-+=,则mn = . 12.若230x y <,化简|)(21|276y x xy --⋅-=_________. 13.若32213x x x k --+有一个因式为21x +,则k 的值应当是_________. 14. 设实数x ,y 满足2214202x y xy y +-+=,则x =_________,y =__________. 15.已知5,3a b ab +==,则32232a b a b ab -+= .16.(2016•广安)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a +b )n (n=1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序): 请依据上述规律,写出(x ﹣)2016展开式中含x 2014项的系数是 .三.解答题17.(2015春•禅城区校级期末)请你说明:当n 为自然数时,(n+7)2﹣(n ﹣5)2能被24整除.18.(2015春•碑林区期中)图①是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为 ;(2)观察图②,三个代数式(m+n )2,(m ﹣n )2,mn 之间的等量关系是 ; (3)观察图③,你能得到怎样的代数等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n )(m+3n ); (5)若x+y=﹣6,xy=2.75,求x ﹣y 的值. 19.计算).1011()911()411()311()211(22222-⨯-⨯⨯-⨯-⨯-20.下面是某同学对多项式()()642422+-+-x x x x +4进行因式分解的过程:解:设y x x =-42原式=()()264y y +++ (第一步) =2816y y ++ (第二步)=()24+y (第三步)=()2244+-x x (第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的( )A .提取公因式 B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?______________(填彻底或不彻底)若不彻底,请直接写出因式分解的最后结果_______________. (3)请你模仿以上方法尝试对多项式()()122222++--x x x x 进行因式分解. 【答案与解析】 一.选择题1. 【答案】D ;【解析】可以是316m ±,14,616m . 2. 【答案】C ;【解析】()()()222222a ac c b a c b a c b a c b -+-=--=-+--,因为a b c 、、为三角形三边长,所以0,0a b c a b c +->--<,所以原式小于零.3. 【答案】C ;【解析】()()22933a b b a b a -+=+-;()()()()()542222228199933a ab a a b ab a a b a b a b -=+-=++-;()()()()()224362232223x y x y x y x y x y x y x y ---=+--+=+--. 4. 【答案】C ;【解析】解:∵a+b=3,ab=2, ∴a 2+b 2=(a+b )2﹣2ab =32﹣2×2 =5, 故选C.5. 【答案】C ;【解析】()()()()()482424241212212121212121-=+-=++-()()()()()()24126624122121212121216563=+++-=++⨯⨯6. 【答案】C ; 【解析】22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111111 (11112233991010314253108119) (2233449910101111121020)⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+- ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯=7. 【答案】D ;【解析】②④⑤⑥正确. 8. 【答案】D ; 【解析】解:()2﹣4×()2=﹣==ab ,故选D .二.填空题 9. 【答案】±;【解析】解:∵关于x 的二次三项式x 2+2mx ﹣m 2+4是一个完全平方式,即x 2+2mx ﹣m 2+4,∴﹣m 2+4=m 2, 解得:m=±. 故答案为:±. 10.【答案】224y x x =-+【解析】∵21=-mx ,∴222234323(2)3(1)24=+=+=+=+-=-+mmm y x x x .11.【答案】-3;【解析】()()22222610130,1,3m m n n m n m n ++-+=++-==-=.12.【答案】78x y【解析】因为230x y <,所以0y <,原式=676778112||222xy x y xy x y x y ⎛⎫-=-⨯-= ⎪⎝⎭. 13.【答案】-6;【解析】由题意,当12x =-时,322130x x x k --+=,解得k =-6.14.【答案】2;4;【解析】等式两边同乘以4,得:224216480x y xy y ++--=222448160x xy y y y -++-+=()()22240x y y -+-=∴2,4,x y y ==∴ 2x =.15.【答案】39;【解析】原式=()()()2224353439ab a b ab a b ab ⎡⎤-=+-=⨯-⨯=⎣⎦.16.【答案】﹣4032;【解析】(x ﹣)2016展开式中含x 2014项的系数,根据杨辉三角,就是展开式中第二项的系数,即﹣2016×2=﹣4032. 三.解答题 17.【解析】解:原式=(n+7+n ﹣5)(n+7﹣n+5)=24(n+1),则当n 为自然数时,(n+7)2﹣(n ﹣5)2能被24整除. 18.【解析】解:(1)阴影部分的边长为(m ﹣n ),所以阴影部分的面积为(m ﹣n )2;故答案为:(m ﹣n )2;(2)(m+n )2﹣(m ﹣n )2=4mn ;故答案为:(m+n )2﹣(m ﹣n )2=4mn ;(3)(m+n )(2m+n )=2m 2+3mn+n 2; (4)答案不唯一:(5)∵(x ﹣y )2=(x+y )2﹣4xy=(﹣6)2﹣2.75×4=25,∴x﹣y=±5.19.【解析】 解:原式=11111111111111112233441010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+-+-+- ⎪⎪⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭...... 314253119 (2233441010)=⨯⨯⨯⨯⨯⨯⨯⨯1120=. 20.【解析】 解:(1)C ;(2)不彻底;()42x -;(3)设22x x y -=,原式=()22121y y y y ++=++()()()22421211y x x x =+=-+=-.。
人教版初二数学上册:整式的乘除与因式分解 全章复习与巩固(基础)巩固练习
【巩固练习】 一.选择题1.下列各式从左到右的变化中属于因式分解的是( ). A .()()22422m n m n m n -=+- B .()()2111m m m +-=- C .()23434m m m m --=-- D .()224529m m m --=-- 2.下列计算正确的是( ). A.325a a a +=B.()23624aa -=C.()222a b a b +=+D. 623a a a ÷=3.若252++kx x 是完全平方式,则k 的值是( )A . —10 B. 10 C. 5 D.10或—10 4. 将2m()2a -+()2m a -分解因式,正确的是()A .()2a -()2m m - B .()()21m a m -+ C .()()21m a m -- D .()()21m a m -- 5.(2016·桂林)下列计算正确的是( )A .()33xy xy = B .55x x x ÷=C .2353515x x x ⋅= D .2323495210x y x y x y +=6. 若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A.-15B.-2C.8D.2 7. 2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是()A .2)5(b a - B .2)5(b a + C .)23)(23(b a b a +- D .2)25(b a - 8. 下列多项式中能用平方差公式分解的有( )①22a b --; ②2224x y -; ③224x y -; ④()()22m n ---; ⑤22144121a b -+;⑥22122m n -+. A .1个 B .2个 C .3个 D .4个 二.填空题 9.化简()2m n aa ⋅=______.10.如果229x mx -+是一个完全平方式,那么m =______.11.若221x y -=,化简()()20122012x y x y +-=________.12. 若2330x x +-=,32266x x x +-=__________. 13.把()()2011201222-+-分解因式后是___________.14.()()()()241111x x x x -++-+的值是________.15.(2016·雅安)已知8a b +=,224a b =,则222a b ab +-= .16.下列运算中,结果正确的是___________①422aa a =+,②523)(aa =, ③2aa a =⋅,④()()33x y y x -=-,⑤()x a b x a b --=-+,⑥()x a b x b a +-=--,⑦()22x x -=-, ⑧ ()()33xx -=--,⑨ ()()22x y y x -=-三.解答题 17.分解因式:(1)234()12()x x y x y ---; (2)2292416a ab b -+; (3)21840ma ma m --.18. 解不等式()()()22232336x x x x +-+->+,并求出符合条件的最小整数解.19.(2015春•盐都区期中)问题:阅读例题的解答过程,并解答(1)(2): 例:用简便方法计算195×205 解:195×205 =(200﹣5)(200+5)①=2002﹣52② =39975(1)例题求解过程中,第②步变形依据是 (填乘法公式的名称). (2)用此方法计算:99×101×10001.20.某种液晶电视由于原料价格波动而先后两次调价,有三种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问三种方案调价的最终结果是否一样?为什么? 【答案与解析】 一.选择题1. 【答案】A ;【解析】因式分解是把多项式化成整式乘积的形式. 2. 【答案】B ;3. 【答案】D ;【解析】()2221055x x x ±+=± 4. 【答案】C ; 【解析】2m()2a -+()2m a -=2m ()2a -()2m a --=()()21m a m --.5. 【答案】C ;【解析】解:A 、原式=33x y ,故A 错误;B 、原式=1,故B 错误;C 、原式=515x ,故C 正确; D 、原式=237x y ,故D 错误.故选:C .6. 【答案】D ;【解析】2(3)(5)28x x x x -+=+-. 7. 【答案】A【解析】2222)(4)(12)(9b a b a b a ++-+-=()()()22325a b a b a b -++=-⎡⎤⎣⎦.8. 【答案】D ;【解析】③④⑤⑥能用平方差公式分解. 二.填空题 9. 【答案】()22m n m n aa a +⋅=.10.【答案】±3;【解析】()2222293233x mx x x x -+=±=±⨯+.11.【答案】1; 【解析】()()()()()201220122012201222201211x y x y x y x y x y +-=+-=-==⎡⎤⎣⎦.12.【答案】0;【解析】()3222662362360x x x x x x x x x +-=+-=⨯-=. 13.【答案】20112; 【解析】()()()()()201120122011201120112221222-+-=--=--=.14.【答案】-2;【解析】()()()()()()()242241111111x x x x x x x -++-+=-+-+44112x x =---=-.15.【答案】28或36;【解析】解:()()222222222a b ab a b a b ab ab ab +-++-=-=-,∵224a b =, ∴2ab =±,①当8a b +=,2ab =,()2226422228222a b a b ab ab ++-=-=-⨯=;②当8a b +=,2ab =-,()()2226422236222a b a b ab ab ++-=-=-⨯-=; 故答案为:28或36.16.【答案】③⑤⑥⑨;【解析】在整式的运算过程中,符号问题和去括号的问题是最常犯的错误,要保证不出现符号问题关键在于每一步的运算都要做到有根据,能够用定理法则指导运算.三.解答题 17.【解析】解:(1)234()12()x x y x y ---=224()[3()]4()(32)x y x x y x y y x ---=--; (2)22292416(34)a ab b a b -+=-;(3)()()()2218401840202ma ma m m a a m a a --=--=-+. 18.【解析】解:()()()22232336x x x x +-+->+2224129636139913x x x x x x x ++-++>+>->-符合条件的最小整数解为0,所以0x =. 19.【解析】 解:(1)平方差公式;(2)99×101×10001=(100﹣1)(100+1)×10001=(10000﹣1)(10000+1) =100000000﹣1 =999999920.【解析】解:设a 为原来的价格(1) 由题意得:()()110%110%0.99a a +-=(2)由题意得:()()110%110%0.99a a -+=(3)由题意得:()()120%120% 1.20.80.96a a a +-=⨯=. 所以前两种调价方案一样.附录资料:【巩固练习】 一、选择题1. (2016•长沙模拟) 如图所示,△ABC ≌△DEC ,则不能得到的结论是( ) A. AB =DE B. ∠A =∠D C. BC =CD D. ∠ACD =∠BCE2. 如图,△ABC ≌△BAD ,A 和B ,C 和D 分别是对应顶点,若AB =6cm ,AC =4cm ,BC =5cm ,则AD 的长为( )A. 4cmB. 5cmC. 6cmD. 以上都不对3. 下列说法中正确的有( )①形状相同的两个图形是全等图形 ②对应角相等的两个三角形是全等三角形 ③全等三角形的面积相等 ④若△ABC ≌△DEF ,△DEF ≌△MNP ,△ABC ≌△MNP. A.0个 B.1个 C.2个 D.3个4. (2014秋•庆阳期末)如图,△ABC ≌△A ′B ′C ,∠ACB=90°,∠A ′CB=20°,则∠BCB ′的度数为( )A.20°B.40°C.70°D.90° 5. 已知△ABC≌△DEF,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是( ) A.6cm B.7cm C.8cm D.9cm 6. 将一张长方形纸片按如图所示的方式折叠,BC 、BD 分别为折痕,则∠CBD 的度数为( )A .60°B .75°C .90°D .95°二、填空题7.(2014秋•安阳县校级期末)如图所示,△AOB ≌△COD ,∠AOB=∠COD ,∠A=∠C ,则∠D 的对应角是___________,图中相等的线段有____________________________.8. (2016•成都)如图,△ABC ≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ . 三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14. (2014秋•射阳县校级月考)如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.15. 如图,E为线段BC上一点,AB⊥BC,△ABE≌△ECD.判断AE与DE的关系,并证明你的结论.【答案与解析】一.选择题1. 【答案】C;【解析】因为△ABC≌△DEC,可得:AB=DE,∠A=∠D,BC=EC,∠ACD=∠BCE,故选C.2. 【答案】B;【解析】AD与BC是对应边,全等三角形对应边相等.3. 【答案】C;【解析】③和④是正确的;4. 【答案】C;【解析】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠BCB′=∠A′CB′﹣∠A′CB=70°.故选C.5. 【答案】A;【解析】EF边上的高=1826 6⨯=;6. 【答案】C;【解析】折叠所成的两个三角形全等,找到对应角可解.二.填空题7. 【答案】∠OBA,OA=OC、OB=OD、AB=CD;【解析】解:∵△AOB≌△COD,∠AOB=∠COD,∠A=∠C,∴∠D=∠OBA,OA=OC、OB=OD、AB=CD,故答案为:∠OBA,OA=OC、OB=OD、AB=CD.8. 【答案】120°;【解析】∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°.9. 【答案】4cm或9.5cm;【解析】DE=DF=9.5cm,EF=4cm;10.【答案】AB=DE、AC=DF、BC=EF、BE=CF, 46°;11.【答案】10,16;【解析】全等三角形面积相等,周长相等;12.【答案】40°;【解析】见“比例”设k,用三角形内角和为180°求解.三.解答题13.【解析】解:在△ABC中,∠ACB=180°-∠A-∠B,又∠A=30°,∠B=50°,所以∠ACB=100°.又因为△ABC≌△DEF,所以∠ACB=∠DFE,BC=EF(全等三角形对应角相等,对应边相等)所以∠DFE=100°EC=EF-FC=BC-FC=BF=2.14. 【解析】解:(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15. 【解析】 AE=DE ,且AE⊥DE证明:∵△ABE≌△ECD,∴∠B=∠C,∠A=∠DEC,∠AEB=∠D,AE=DE又∵AB⊥BC∴∠A+∠AEB=90°,即∠DEC+∠AEB=90°∴AE⊥DE∴AE与DE垂直且相等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学是科学的大门和钥匙--培根
数学是最宝贵的研究精神之一--华罗庚 【巩固练习】
一.选择题
1.若二项式42164m m +加上一个单项式...
后构成的三项式是一个完全平方式,则这样的单项式的个数有( ).
A .1个
B .2个
C .3个
D .4个
2. 下列运算正确的是( )
A.954a a a =+
B.33333a a a a ⋅⋅=
C.954632a a a =⨯
D.()743a a =-
3. 对于任意的整数n ,能整除代数式()()()()3322n n n n +--+-的整数是( )
A.4
B.3
C.5
D.2 4.若()()2x a x b x px q ++=++,且0p >,0q <,那么a b ,必须满足条件( ).
A.a b ,都是正数
B. a b ,异号,且正数的绝对值较大
C.a b ,都是负数
D. a b ,异号,且负数的绝对值较大 5.化简222222(53)2(53)(52)(52)x x x x x x x x ++-+++-++-的结果是( )
A .101x +
B .25
C .2
2101x x ++ D .以上都不对
6.(2015•日照)观察下列各式及其展开式: ()
2222a b a ab b +=++ ()
3322333a b a a b ab b +=+++ ()
4432234464a b a a b a b ab b +=++++ ()
5
54322345510105a b a a b a b a b ab b +=+++++ … 请你猜想()10a b +的展开式第三项的系数是( )
A .36
B .45
C .55
D .66
7. 下列各式中正确的有( )个:
①a b b a -=-;② ()()22a b b a -=-; ③()()22a b b a -=--;
④()()33a b b a -=--;⑤()()()()a b a b a b a b +-=---+;⑥ ()()22a b a b +=--
A. 1
B. 2
C. 3
D. 4
8.如图:矩形花园ABCD 中,AB =a ,AD =b ,花园中建有一条矩形道路LMPQ 及一条平行。