数字图象处理课程设计

合集下载

数字图像处理课程设计题目和要求模板

数字图像处理课程设计题目和要求模板

数字图像处理课程设计题目和要求模板数字图像处理课程设计题目和要求12020年4月19日文档仅供参考数字图像处理课程设计内容、要求题目一:图像处理软件1、设计内容及要求:(1)、独立设计方案,实现对图像的十五种以上处理(比如:底片化效果、灰度增强、图像复原、浮雕效果、木刻效果等等)。

(2)、参考photoshop软件,设计软件界面,对处理前后的图像以及直方图等进行对比显示;(3)、将实验结果与其它软件实现的效果进行比较、分析。

总结设计过程所遇到的问题。

2、参考方案(所有参考方案若无特殊说明,均以matlab为例说明):(1)实现图像处理的基本操作学习使用matlab图像处理工具箱,利用imread()语句读入图像,例如image=imread(flower.jpg),对图像进行显示(如imshow(image)),以及直方图计算和显示。

(2)图像处理算法的实现与显示12020年4月19日文档仅供参考针对课程中学习的图像处理内容,实现至少十五种图像处理功能,例如模糊、锐化、对比度增强、复原操作。

改变图像处理的参数,查看处理结果的变化。

自己设计要解决的问题,例如引入噪声,去噪;引入运动模糊、聚焦模糊等,对图像进行复原。

(3)参照“photoshop”软件,设计图像处理软件界面可设计菜单式界面,在功能较少的情况下,也能够设计按键式界面,视功能多少而定;参考matlab软件中GUI设计,学习软件界面的设计。

题目二:数字水印1、设计内容及要求:为保护数字图像作品的知识产权,采用数字水印技术嵌入水印图像于作品中,同时尽可能不影响作品的可用性,在作品版权发生争执时,经过提取水印信息确认作品版权。

一般情况下,水印图像大小要远小于载体图像,嵌入水印后的图像可能遇到噪声、有损压缩、滤波等方面的攻击。

因此,评价水印算法的原则就是水印的隐藏性和抗攻击性。

根据这一要求,设计水印算法。

(1)、查阅文献、了解数字水印的基本概念。

数字图像处理课设要求

数字图像处理课设要求

《数字图像处理》课程设计一、目的和任务1、进一步深入理解数字图像处理的基本概念、基础理论以及解决问题的基本思想方法,掌握基本的处理技术。

2、培养学生了解处理技术相关的应用领域,阅读各类图像处理文献的能力。

3、能够运用一门高级语言编写简单的图像处理软件,实现对图像进行的基本处理。

4、了解与课程有关的工程技术规范,能正确解释和分析实验结果。

二、实验内容1图像变换1了解图像变换的意义和手段;2熟悉离散傅里叶变换、离散余弦变换、离散小波变换的基本性质;3熟练掌握图像变换的方法及应用;4通过实验了解二维频谱的分布特点;5通过本实验掌握利用MA TLAB编程实现数字图像的变换。

2图像增强1掌握灰度直方图的概念及其计算方法;2熟练掌握直方图均衡化和直方图规定化的计算过程;3熟练掌握空间域滤波中常用的平滑和锐化滤波器;4掌握色彩直方图的概念和计算方法;5利用MATLAB程序进行图像增强。

3图像分割1 体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响;2 使用MatLab 软件进行图像的分割;3 能够自行评价各主要算子在无噪声条件下和噪声条件下的分割性能;4 能够掌握分割条件(阈值等)的选择;5 完成规定图像的处理并要求正确评价处理结果,能够从理论上作出合理的解释。

三、需要提交的报告1. 课程设计报告(1份,A4纸打印,同时包括一份电子版)报告内容:叙述实验过程;提交实验的原始图像和结果图像。

2. 完整的程序系统(电子方式提交)每位同学创建一个文件夹,名为“学号+姓名”,包含以上两项。

统一交给班长。

四、设计报告的的规范设计结束后要写出课程设计报告,以作为整个课程设计评分的书面依据和存档材料。

设计报告以规定格式的电子文档书写、打印并装订,排版及图、表要清楚、工整。

内容及要求如下:封面:《数字图像处理》课程设计班级:姓名:学号:指导教师:完成日期:正文:1. 题目2. 实验目的3. 实验原理4. 实验步骤5. 实验结果6.参考文献五、成绩评定标准出勤20%,课程设计说明书50%,成果展示30%。

数字图像处理matlab课程设计

数字图像处理matlab课程设计

数字图像处理matlab课程设计一、课程目标知识目标:1. 理解数字图像处理的基本概念,掌握图像的表示和存储方式;2. 学会使用MATLAB软件进行数字图像处理,掌握相关函数和工具箱的使用方法;3. 掌握图像增强、滤波、边缘检测等基本图像处理技术;4. 了解图像分割、特征提取等高级图像处理技术。

技能目标:1. 能够运用MATLAB进行图像读取、显示和保存操作;2. 能够独立完成图像的增强、滤波等基本处理操作;3. 能够运用边缘检测算法对图像进行处理,提取关键特征;4. 能够根据实际需求选择合适的图像处理技术,解决实际问题。

情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣,激发其学习热情;2. 培养学生的团队合作意识,使其学会在团队中分享和交流;3. 培养学生严谨的科学态度,使其注重实验数据的真实性;4. 培养学生的创新思维,鼓励其探索新方法,提高解决问题的能力。

本课程旨在通过数字图像处理MATLAB课程设计,使学生在掌握基本理论知识的基础上,运用MATLAB软件进行图像处理实践。

课程注重理论与实践相结合,培养学生具备实际操作能力,并能运用所学知识解决实际问题。

针对学生的年级特点,课程目标既注重知识技能的传授,又关注情感态度价值观的培养,为学生今后的学习和工作奠定基础。

二、教学内容1. 数字图像处理基础- 图像表示与存储(RGB、灰度、二值图像)- 图像类型转换- MATLAB图像处理工具箱介绍2. 图像增强- 直方图均衡化- 伽玛校正- 图像锐化3. 图像滤波- 均值滤波- 中值滤波- 高斯滤波- 双边滤波4. 边缘检测- 索贝尔算子- 拉普拉斯算子- Canny边缘检测5. 图像分割- 阈值分割- 区域生长- 分水岭算法6. 特征提取与描述- 霍夫变换- SIFT算法- ORB算法教学内容根据课程目标进行选择和组织,注重科学性和系统性。

教学大纲明确分为六个部分,分别对应数字图像处理的基础知识、图像增强、滤波、边缘检测、图像分割和特征提取与描述。

数字图像处理的课程设计

数字图像处理的课程设计

数字图像处理的课程设计一、课程目标知识目标:1. 理解数字图像处理的基本概念,掌握图像的数字化表示方法;2. 掌握图像处理的基本操作,如图像变换、滤波、增强和复原;3. 了解常见的图像分割和特征提取方法,并应用于实际问题;4. 掌握图像压缩的基本原理及常用算法。

技能目标:1. 能够运用图像处理软件进行基本的图像编辑和操作;2. 能够编写简单的数字图像处理程序,实现对图像的基本处理功能;3. 能够运用所学的图像处理方法解决实际问题,如图像去噪、图像增强等;4. 能够对图像进行有效的压缩,以适应不同的应用场景。

情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣和热情,激发其探索精神;2. 培养学生的团队合作意识,学会与他人共同解决问题;3. 增强学生的实际操作能力,使其认识到理论与实践相结合的重要性;4. 引导学生关注图像处理技术在日常生活和各领域的应用,提高其科技素养。

课程性质:本课程为高年级选修课程,旨在使学生掌握数字图像处理的基本原理和方法,培养其实际应用能力。

学生特点:学生具备一定的数学基础和编程能力,对图像处理有一定了解,但尚未深入学习。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,以实际应用为导向,提高学生的动手能力和创新能力。

通过本课程的学习,使学生能够达到上述课程目标,为未来进一步学习和研究打下坚实基础。

二、教学内容1. 数字图像基础:包括图像的数字化表示、图像质量评价、颜色模型等基本概念;- 教材章节:第1章 数字图像处理基础2. 图像增强:介绍直方图均衡化、图像平滑、锐化等增强方法;- 教材章节:第3章 图像增强3. 图像复原:涉及图像退化模型、逆滤波、维纳滤波等复原方法;- 教材章节:第4章 图像复原4. 图像分割与特征提取:包括阈值分割、边缘检测、区域生长等分割方法,以及特征点的提取和描述;- 教材章节:第5章 图像分割与特征提取5. 图像压缩:介绍图像压缩的基本原理,如JPEG、JPEG2000等压缩算法;- 教材章节:第6章 图像压缩6. 数字图像处理应用:分析图像处理在医学、遥感、计算机视觉等领域的应用案例;- 教材章节:第7章 数字图像处理应用教学进度安排:1. 数字图像基础(2学时)2. 图像增强(4学时)3. 图像复原(4学时)4. 图像分割与特征提取(6学时)5. 图像压缩(4学时)6. 数字图像处理应用(2学时)三、教学方法为提高教学效果,本课程将采用以下多样化的教学方法:1. 讲授法:教师通过系统的讲解,使学生掌握数字图像处理的基本概念、原理和方法。

《数字图像处理》实验教案

《数字图像处理》实验教案

《数字图像处理》实验教案一、实验目的1. 使学生了解和掌握数字图像处理的基本概念和基本算法。

2. 培养学生运用数字图像处理技术解决实际问题的能力。

3. 提高学生使用相关软件工具进行数字图像处理操作的技能。

二、实验内容1. 图像读取与显示:学习如何使用相关软件工具读取和显示数字图像。

2. 图像基本操作:学习图像的旋转、缩放、翻转等基本操作。

3. 图像滤波:学习使用不同类型的滤波器进行图像去噪和增强。

4. 图像分割:学习利用阈值分割、区域增长等方法对图像进行分割。

5. 图像特征提取:学习提取图像的边缘、角点等特征信息。

三、实验环境1. 操作系统:Windows或Linux。

2. 编程语言:Python或MATLAB。

3. 图像处理软件:OpenCV、ImageJ或MATLAB。

四、实验步骤1. 打开相关软件工具,导入图像。

2. 学习并实践图像的基本操作,如旋转、缩放、翻转等。

3. 学习并实践图像滤波算法,如均值滤波、中值滤波等。

4. 学习并实践图像分割算法,如全局阈值分割、局部阈值分割等。

5. 学习并实践图像特征提取算法,如Canny边缘检测算法等。

五、实验要求1. 每位学生需独立完成实验,并在实验报告中详细描述实验过程和结果。

2. 实验报告需包括实验目的、实验内容、实验步骤、实验结果和实验总结。

3. 实验结果要求清晰显示每个步骤的操作和效果。

4. 实验总结部分需对本次实验的学习内容进行归纳和总结,并提出改进意见。

六、实验注意事项1. 实验前请确保掌握相关软件工具的基本使用方法。

3. 在进行图像操作时,请尽量使用向量或数组进行处理,避免使用低效的循环结构。

4. 实验过程中如需保存中间结果,请使用合适的文件格式,如PNG、JPG等。

5. 请合理安排实验时间,确保实验报告的质量和按时提交。

七、实验评价1. 实验报告的评价:评价学生的实验报告内容是否完整、实验结果是否清晰、实验总结是否到位。

2. 实验操作的评价:评价学生在实验过程中对图像处理算法的理解和运用能力。

数字图像处理matlab课程设计

数字图像处理matlab课程设计

数字图像处理matlab课程设计一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论和方法,学会使用MATLAB软件进行图像处理和分析。

通过本课程的学习,学生应达到以下具体目标:1.理解数字图像处理的基本概念、原理和算法。

2.熟悉MATLAB图像处理工具箱的使用。

3.能够运用数字图像处理的基本算法解决实际问题。

4.能够使用MATLAB进行图像处理和分析,撰写相关的程序代码。

情感态度价值观目标:1.培养学生的创新意识和团队协作精神。

2.培养学生对数字图像处理技术的兴趣,提高其综合素质。

二、教学内容根据课程目标,本课程的教学内容主要包括以下几个部分:1.数字图像处理基本概念:图像处理的基本概念、图像数字化、图像表示和图像变换。

2.图像增强和复原:图像增强、图像去噪、图像复原。

3.图像分割和描述:图像分割、图像特征提取和描述。

4.图像形态学:形态学基本运算、形态学滤波、形态学重建。

5.MATLAB图像处理工具箱的使用:MATLAB图像处理工具箱的基本功能、常用图像处理函数。

6.图像处理实例分析:结合实际案例,分析数字图像处理技术的应用。

三、教学方法为了实现课程目标,本课程将采用以下教学方法:1.讲授法:通过讲解图像处理的基本概念、原理和算法,使学生掌握图像处理的基本知识。

2.案例分析法:通过分析实际案例,使学生了解数字图像处理技术在实际中的应用。

3.实验法:通过上机实验,使学生熟练掌握MATLAB图像处理工具箱的使用,提高学生的实际操作能力。

4.讨论法:学生进行课堂讨论,激发学生的思维,培养学生的创新意识和团队协作精神。

四、教学资源为了支持教学内容和教学方法的实施,本课程将采用以下教学资源:1.教材:《数字图像处理(MATLAB版)》。

2.参考书:相关领域的经典教材和论文。

3.多媒体资料:教学PPT、视频教程等。

4.实验设备:计算机、MATLAB软件、图像处理相关硬件设备。

五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。

数字图像处理课程设计opencv

数字图像处理课程设计opencv一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论、方法和OpenCV编程技能。

通过本课程的学习,学生应能理解数字图像处理的基本概念,掌握常用的图像处理算法,并能够运用OpenCV库进行实际的图像处理操作。

具体来说,知识目标包括:1.理解数字图像处理的基本概念和原理。

2.掌握数字图像处理的基本算法和常用技术。

3.熟悉OpenCV库的基本结构和功能。

技能目标包括:1.能够运用OpenCV库进行数字图像处理的基本操作。

2.能够编写简单的数字图像处理程序。

3.能够分析和解决数字图像处理实际问题。

情感态度价值观目标包括:1.培养对数字图像处理的兴趣和热情。

2.培养学生的创新意识和实践能力。

3.培养学生的团队合作精神和沟通交流能力。

二、教学内容本课程的教学内容主要包括数字图像处理的基本理论、方法和OpenCV编程实践。

教学大纲如下:1.数字图像处理概述1.1 数字图像处理的基本概念1.2 数字图像处理的应用领域2.图像处理基本算法2.1 图像滤波2.2 图像增强2.3 图像边缘检测3.OpenCV库的使用3.1 OpenCV库的基本结构3.2 OpenCV库的基本功能4.图像处理实例分析4.1 图像去噪实例4.2 图像增强实例4.3 图像边缘检测实例三、教学方法本课程采用多种教学方法相结合的方式,包括讲授法、讨论法、案例分析法和实验法等。

1.讲授法:通过教师的讲解,使学生掌握数字图像处理的基本理论和方法。

2.讨论法:通过小组讨论,激发学生的思考,培养学生的创新意识和实践能力。

3.案例分析法:通过分析实际案例,使学生能够将理论知识应用于实际问题。

4.实验法:通过实验操作,使学生掌握OpenCV库的基本功能,并能够编写实际的图像处理程序。

四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备等。

1.教材:选用《数字图像处理》(李航著)作为主要教材,辅助以相关参考书籍。

数字图像处理课程设计

数字图像处理课程设计一、课程目标知识目标:1. 学生能够理解数字图像处理的基本概念,掌握图像的数字化过程、图像格式和颜色空间等基础知识;2. 学生能够掌握图像处理的基本操作,如图像的读取、显示、保存和变换;3. 学生能够了解并运用图像滤波、边缘检测、图像分割等常用算法;4. 学生能够理解图像特征提取和描述的基本方法,并应用于图像识别和分类。

技能目标:1. 学生能够运用编程语言(如Python)和相关库(如OpenCV)进行数字图像处理实践操作;2. 学生能够运用图像处理技术解决实际问题,如图像增强、图像复原和图像分析;3. 学生能够通过实际案例,掌握图像处理算法的选择和优化方法;4. 学生能够运用所学知识,开展小组合作,共同完成图像处理项目。

情感态度价值观目标:1. 学生培养对数字图像处理技术的兴趣和热情,增强学习动力;2. 学生树立正确的图像处理观念,遵循学术道德,不侵犯他人隐私;3. 学生培养团队协作精神,学会与他人分享和交流,提高沟通能力;4. 学生能够认识到数字图像处理技术在日常生活和各行各业中的应用价值,激发创新意识。

课程性质:本课程为实践性较强的学科,注重理论知识与实际应用的结合。

学生特点:高中年级学生,具备一定的数学和编程基础,对图像处理技术有一定了解,好奇心强,喜欢动手实践。

教学要求:教师应注重启发式教学,引导学生主动探究,培养学生的实践能力和创新精神。

教学过程中,关注学生的个体差异,提供个性化指导,确保课程目标的达成。

同时,注重过程性评价,全面评估学生的学习成果。

二、教学内容1. 数字图像处理基础- 图像的数字化过程- 常见图像格式及颜色空间- 图像的读取、显示和保存2. 图像处理基本操作- 图像变换(几何变换、灰度变换)- 图像增强(直方图均衡化、空间滤波)- 图像复原(逆滤波、维纳滤波)3. 图像滤波与边缘检测- 常用滤波算法(均值滤波、中值滤波、高斯滤波)- 边缘检测算法(Sobel算子、Canny算子)4. 图像分割- 阈值分割(全局阈值、局部阈值)- 区域分割(区域生长、分裂合并)5. 图像特征提取与描述- 基本特征(颜色特征、纹理特征、形状特征)- 特征描述(HOG描述子、SIFT描述子)6. 图像识别与分类- 基本分类算法(K最近邻、支持向量机)- 深度学习方法(卷积神经网络)7. 实践项目- 图像增强与复原- 边缘检测与图像分割- 特征提取与图像分类教学内容安排与进度:1. 第1-2周:数字图像处理基础2. 第3-4周:图像处理基本操作3. 第5-6周:图像滤波与边缘检测4. 第7-8周:图像分割5. 第9-10周:图像特征提取与描述6. 第11-12周:图像识别与分类7. 第13-14周:实践项目教材关联:教学内容与教材章节紧密关联,涵盖《数字图像处理》教材中的基础知识和实践应用。

数字图像处理教案

数字图像处理教案【篇一:数字图像处理教案】《数字图像处理》课程教案【篇二:《图像处理》教案】图像处理辅助工具:计算机、网络、教材分析:本节课是河南大学出版社出版和河南电子音像出版社的七年级信息技术上册第三章第七节的内容。

这节课主要内容是:认识windows自带的图像处理软件---画图程序的窗口,并且会使用各种画图工具。

本节课形象直观,灵活有趣,可以充分调动学生的手和脑,培养学生学习计算机的兴趣,使学生掌握一种简单有趣的绘图方法。

学情分析:前面的学习学生已经对计算机了有一定的了解,他们认识电脑鼠标、键盘、显示器等硬件设备,还掌握了常用的应用软件操作。

对于本节windows自带的应用程序----“画图”小学也接触过画图程序,有的使用的还相当熟练。

所以我采用的学法是学生自主探究、合作交流、实践创新等方式,以学生“练”为本,把学习的主动权交给学生。

教学方法:演示法、任务驱动、赏识教育、自我探究、协作交流、合作学习教学重点1、画图程序工具的熟练使用;2、应用“画图”程序绘制出自己的作品。

教学难点修改自己的图像教学目标知识与技能:(1)认识“画图”程序的窗口;(2)学会各种画图工具的使用;(3)学会利用“橡皮”对图像的修改。

过程与方法:(1)通过启动画图程序,学生认识windows的窗口,培养学生一反三的能力。

(2)通过使用画图工具绘画,培养学生认真、细致操作的习惯,并且培养学生思维的活跃性与创新能力。

(3)通过对图像的修改学习,培养学生观察、分析的能力,进一步培养学生的审美能力。

情感态度与价值观:通过学生亲自动手绘制作品,充分发挥小组合作,互帮互学,培养学生团体合作,积极参与的精神,及动手能力。

培养学生的创新精神从而创造出具有中学生特色的作品,进一步培养学生的信息素养。

教学过程:教师活动学生活动设计意图一、创设情景,导入新课(3分钟)问题导入:“同学们,你们喜欢画画吗?”学生齐答:“喜欢”。

“ 我们班有很多以此来激发学生学习的欲望和兴趣,想自己创造出更优秀的作品,自然地引出本课的内容。

matlab数字图像处理课程设计

matlab数字图像处理课程设计一、课程目标知识目标:1. 学生能理解数字图像处理的基本概念,掌握图像的表示方法和存储格式。

2. 学生能掌握MATLAB软件的基本操作,并运用其进行数字图像处理。

3. 学生能掌握图像的灰度变换、图像滤波、边缘检测等基本图像处理技术。

4. 学生能了解频域图像处理的基本原理,并运用MATLAB进行频域滤波。

技能目标:1. 学生能够运用MATLAB软件进行数字图像的读取、显示和保存。

2. 学生能够运用MATLAB实现基本的图像处理算法,如灰度变换、滤波等。

3. 学生能够分析图像处理算法的效果,并进行相应的参数调整。

4. 学生能够运用所学知识解决实际问题,如图像增强、边缘检测等。

情感态度价值观目标:1. 学生对数字图像处理产生兴趣,培养主动学习和探究的精神。

2. 学生通过实践操作,培养团队合作意识和解决问题的能力。

3. 学生能够认识到数字图像处理在科技、医疗、安全等领域的广泛应用,增强社会责任感。

4. 学生能够遵循学术道德,尊重他人成果,树立正确的价值观。

课程性质:本课程为数字图像处理相关学科的教学实践,旨在通过MATLAB软件的使用,使学生掌握数字图像处理的基本方法和技能。

学生特点:学生具备一定的数学基础和编程能力,对图像处理有一定了解,但实践经验不足。

教学要求:结合课本内容,注重理论与实践相结合,强调学生的动手实践能力,培养解决实际问题的能力。

通过课程目标的具体分解,使学生在学习过程中能够达到预期的学习成果,为后续深入学习打下坚实基础。

二、教学内容本课程教学内容围绕以下几部分展开:1. 数字图像处理基础理论- 图像的表示与存储格式- 图像处理的基本操作(读取、显示、保存)2. MATLAB软件操作- MATLAB界面与基本操作- MATLAB图像处理工具箱的使用3. 灰度变换与图像增强- 灰度变换函数及其应用- 直方图均衡化与规定化4. 图像滤波- 空域滤波器设计- 频域滤波器设计- 常用滤波算法(如高斯滤波、中值滤波等)5. 边缘检测- 基本边缘检测算法(如Sobel、Prewitt)- 高级边缘检测算法(如Canny)6. 频域图像处理- 频域变换(傅里叶变换、DCT等)- 频域滤波(低通、高通、带通滤波器)教学大纲安排如下:1. 基础理论(1课时)2. MATLAB软件操作(2课时)3. 灰度变换与图像增强(2课时)4. 图像滤波(2课时)5. 边缘检测(2课时)6. 频域图像处理(2课时)教学内容与教材章节紧密关联,通过以上安排,使学生系统掌握数字图像处理的基本概念、方法和技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计课程名称___ 数字图像处理课程设计__题目名称一个简单的“photoshop”软件学生学院信息工程学院专业班级电子信息工程学号学生姓名指导老师2014年 1 月 3 日一、课程设计题目设计内容及要求:1、独立设计方案,实现对图像的3种处理。

2、利用VC++实现软件框架:有操作菜单、能显示某项操作前后的图像。

3、查找相关算法,至少实现3种功能,比如:灰度增强、直方图显示、浮雕等等(底片化、二值化及平滑等实验内容不计算在内)。

4、将实验结果与其他软件实现的效果进行比较、分析。

总结设计过程所遇到的问题。

二、课程设计目的数字图像处理,就是用数字计算机及其他有关数字技术,对图像进行处理,以达到预期的目的。

随着计算机的发展,图像处理技术在许多领域得到了广泛应用,数字图像处理已成为电子信息、通信、计算机、自动化、信号处理等专业的重要课程。

数字图像处理课程设计是在完成数字图像处理的相关理论的学习后,进行的综合性训练课程,其目的主要包括:1、使学生进一步巩固数字图像处理的基本概念、理论、分析方法和实现方法;2、增强学生应用VC++编写数字图像处理的应用程序及分析、解决实际问题的能力;3、尝试将所学的内容解决实际工程问题,培养学生的工程实践能力,提高工科学生的就业能力。

三、设计内容1、直方图显示直方图显示就是统计图像某一灰度级出现的次数,保存到一个数组中。

然后在一个直方图上画图显示出来。

2、直方图均衡化直方图就是某一灰度级的象素个数占整幅图像的象素比h=nj/N,其中nj是灰度级在j的象素数,N是总象素数,扫描整幅图像得出的h的离散序列就是图像的直方图,h求和必然=1,所以直方图可以看成是象素对于灰度的概率分布函数。

直方图均衡化算法分为三个步骤,第一步是统计直方图每个灰度级出现的次数,第二步是累计归一化的直方图,第三步是计算新的像素值。

对于彩色的图片来说,直方图均衡化一般不能直接对R、G、B三个分量分别进行上述的操作,而要将RGB转换成HSV来对V分量进行直方图均衡化的操作。

3、浮雕效果浮雕效果就是将图像的变化部分突出显示,颜色相同部分淡化处理,使图像出现浮雕效果。

实现图像浮雕效果的一般原理是,将图像上每个像素点与其对角线的像素点形成差值,使相似颜色值淡化,不同颜色值突出,从而产生纵深感,达到浮雕的效果,具体的做法是用处于对角线的2个像素值相减,再加上一个背景常数,一般为128而成。

这样颜色变化大的地方色彩就明显,颜色变化小的地方因为差值几乎为零则成黑色。

4、均值滤波图像平滑主要是为了消除噪声。

噪声并不限于人眼所能看的见的失真和变形,有些噪声只有在进行图像处理时才可以发现。

图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。

图像中的噪声往往和信号交织在一起,尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边界轮廓、线条等变的模糊不清,如何既平滑掉噪声有尽量保持图像细节,是图像平滑主要研究的任务。

这次实验采用的均值滤波,原理是采用一个3*3的模板通过这个模板的移动,进行均值滤波。

图像平滑主要是为了消除噪声。

噪声并不限于人眼所能看的见的失真和变形,有些噪声只有在进行图像处理时才可以发现。

图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。

图像中的噪声往往和信号交织在一起,尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边界轮廓、线条等变的模糊不清,如何既平滑掉噪声有尽量保持图像细节,是图像平滑主要研究的任务。

一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时系统中所要提取的汽车边缘信息也主要集中在其高频部分,因此,如何去掉高频干扰又同时保持边缘信息,是我们研究的内容。

为了去除噪声,有必要对图像进行平滑,可以采用低通滤波的方法去除高频干扰。

四、实验主要代码1、变量说明CDIB m_dib; //CDIB类bool m_bHist; //表示是否进行直方图统计int m_hist[256]; //直方图数组BYTE *m_pdata; //位图的灰度信息bool m_bLoaded; //表示是否加载了位图BITMAPINFO * m_pBMI; //位图信息头BYTE* m_pDIBData; //位图象素数据指针BYTE* m_pDumpDIBData; //位图象素数据指针BITMAPFILEHEADER bfh; //位图信息头BITMAPINFOHEADER bih; // 位图文件头2、函数说明2.1加载位图bool CDIB::LoadFromFile(LPCTSTR lpszFileName)参数:lpszFileName表示加载的位图路径和名称。

如:d:\test\123.bmp返回值:成功读取后,返回true,否则为false2.2 获取图像宽度高度int CDIB:: GetDIBWidth() 和int CDIB::GetDIBHeight()2.3显示位图void CDIB::ShowDIB(CDC *pDC, int nLeft, int nTop, int nRight, int nBottom, BYTE *pDIBData, BITMAPINFO* pBMI)参数:pDC //DC的句柄nLeft, //目标矩形左上角的X坐标nTop, //目标矩形左上角的Y坐标nRight, //目标矩形的宽度nBottom, //目标矩形的高度0, //源矩形左上角的X坐标0, //源矩形左上角的Y坐标GetDIBWidth(), //源矩形的宽度GetDIBHeight(), //源矩形的高度pDIBData, //位图图象数据的地址pBMI, //位图信息结构地址2.4 刷新显示InvalidateData()功能:将m_pdata 的信息赋值给m_pDIBData,便于显示m_pdata的信息。

3、图像操作主要代码及分析3.1直方图显示void CImageProView::OnHistogram(){ //直方图显示if(m_dib.m_bLoaded!=true){AfxMessageBox("要处理的图像文件没打开");return;}int i,j;BYTE* pdata=m_dib.m_pdata;int nh=m_dib.GetDIBHeight();int nw=m_dib.GetDIBWidth();for(i=0;i<256;i++) //初始化直方图数组m_hist[i]=0;if( m_dib.m_nImType==24){for(j=0;j<nh;j++)for(i=0;i<nw;i++){ //统计直方图每个灰度级出现的次数BYTE temp=pdata[j*nw+i];m_hist[temp]++;}}m_bHist=true; //画图Invalidate(1);}实验效果截图如下:3.2直方图均衡化void CImageProView::OnEqualization() //直方图均衡化{int i,j,k,max=0,min=0;int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();int n[256]={0};//n[i]灰度值为i的像素的个数float p[256]={0.0};//p[i]灰度为i的像素个数的归一化float c[256]={0.0};//c[i]灰度为i的像素个数的累积归一化for(i=0;i<nh;i++)//统计直方图每个灰度级出现的次数{ for(j=0;j<nw;j++){ k=m_dib.m_pdata[i*nw+j];n[k]++;}}for(i=0;i<256;i++)//归一化直方图{ p[i]=(float)n[i]/(nw*nh);}for(i=0;i<256;i++)//累积归一化直方图for(j=0;j<=i;j++){ c[i]+=p[j]; }for(i=0;i<nh;i++)//找出像素的最大值和最小值{ for(j=0;j<nw;j++){ if(max<=m_dib.m_pdata[i*nw+j])max=m_dib.m_pdata[i*nw+j];if(min>=m_dib.m_pdata[i*nw+j])min=m_dib.m_pdata[i*nw+j];}}for(i=0;i<nh;i++)//直方图均衡化{ for(j=0;j<nw;j++){ m_dib.m_pdata[i*nw+j]=c[m_dib.m_pdata[i*nw+j]]*(max-min)+min+0.5;} }m_dib.UpdateData();//将修改的m_pdata的数据赋值给m_pDIBData,显示修改的结果Invalidate();//刷新屏幕}实验效果截图如下:左图是处理过后的图像,右图是原图3.3浮雕效果void CImageProView::OnRelievo() //浮雕效果{int i,j;int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();if (!m_dib.m_bLoaded){MessageBox(_T("你还没有打开一个要保存的图像文件!"));return;}for(i=0;i<nh;i++)for(j=(nw-1);j>=0;j--){m_dib.m_pdata[i*nw+j]-=m_dib.m_pdata[(i+1)*nw+j-1]+128;}m_dib.UpdateData();//将修改的m_pdata的数据赋值给m_pDIBData,显示修改的结果Invalidate(); //刷新屏幕}实验效果截图如下:左图是处理过后的图像,右图是原图3.4均值滤波void CImageProView::OnSmoth(){ //均值滤波;if(m_dib.m_bLoaded!=true){AfxMessageBox("要处理的图像文件没打开");return;}int i,j;BYTE* pdata=m_dib.m_pdata;int nh=m_dib.GetDIBHeight();int nw=m_dib.GetDIBWidth();if( m_dib.m_nImType==24) //目前仅仅对24位bmp图进行{Mask dlg;int ret=dlg.DoModal();if(ret==IDOK){ //从对话框中获取相关的模板运算的信息int* mask=dlg.mask; //模板指针int mask_width=dlg.m_width; // 模板大小float mask_coef=dlg.m_coef; //模板的系数int wid=(mask_width-1)/2; //计算运算的边界BYTE* temp=new BYTE[nh*nw]; //开辟临时内存memcpy(temp,m_dib.m_pdata,nh*nw);for(j=wid;j<nh-wid;j++) //rowfor(i=wid;i<nw-wid;i++) //col{int amount=0;for(int k=-wid;k<=wid;k++)for(int l=-wid;l<=wid;l++)amount+=temp[(j+k)*nw+i+l]*mask[(k+wid)*mask_width+l+wid];amount=int(amount*mask_coef);if(amount<0)amount=0;if(amount>255)amount=255;pdata[j*nw+i]=BYTE(amount);}m_dib.InvalidateData();delete temp;Invalidate(1);}}}实验效果截图如下:右图是处理过后的图像,左图是原图五、设计心得体会通过这次数字图像处理课程设计,本人在多方面都有所提高。

相关文档
最新文档