重点考点--一元二次方程的特殊解法举例
一元二次方程的几种特殊解法-精品文档

一元二次方程的几种特殊解法关于一元二次方程的解法,有常用的有配方法、公式法、十字相乘法等。
但是有些一元二次方程可以有特殊的解法,使得方程的求解更加简便。
下面介绍几种特殊的方法。
一、利用一元二次方程的性质解题1.一元二次方程的一般形式:ax2+bx+c=0,(a≠0)。
若满足:ac±b+1=0,则两根为x1=±c,x2=±■。
证明:如果ac+b+1=0,则ac=-b-1,由求根公式得:x=■=■=■,即:x1=■=■,x2=■=■=■=c,如果ac-b+1=0,则ac=b-1,由求根公式得:x=■=■=■,即:x1=■=■,x2=■=■=■=-c。
例1 求解一元二次方程2x2-11x+5=0。
解析:这个一元二次方程显然有解,除了用十字相乘法,运用上述性质更加简便。
根据原方程,系数a=2,b=-11,c=5。
根据计算观察,ac+b+1=0。
根据上述性质,原方程的两根x1=■,x2=5。
2.一元二次方程的一般形式:ax2+bx+c=0,(a≠0)。
若满足,a±b+c=0,则两根为x1=±1,x2=±■。
证明:如果a+b+c=0,则a=-b-c,由求根公式得:x=■=■=■,即:x1=■=■=1,x2=■=■。
如果a-b+c=0,则a=b-c,由求根公式得:x=■=■=■,即:x1=■=■=-1 x2=■=-■。
例2 求解一元二次方程56x2+127x-183=0。
解析:这个方程的系数比较大,用传统的求根公式、十字相乘法等计算量大,容易出错。
方程的系数a=56,b=127,c=-183,根据观察a+b+c=0。
根据上述性质,原方程的两根x1=1,x2=-■。
二、积差法求解一元二次方程积差法就是把一元二次方程的二次项与一次项因式分解,常数项因式分解,使得等号两边各因式的差相等,根据大小写出等式进而求方程的解。
1.二次项系数变为1,常数项为正数,如x2+bx+c=0(c>0)的一元二次方程。
一元二次方程竞赛解题方法

一元二次方程竞赛解题方法一元二次方程是初中教材的重点内容,也是竞赛题的特点。
除了掌握常规解法外,注意一些特殊或灵活的解法,往往能事半功倍。
以下是一些解题方法:一、换元法例如,考虑方程$x^2-2x-5|x-1|+7=0$的所有根的和。
我们可以令$y=|x-1|$,则原方程变为$y^2-2y-5y+7=0$,化简后得到$y=1$或$y=-5$,即$|x-1|=1$或$|x-1|=5$。
进一步解得$x=-1.0.2.6$,因此所有根的和为$7$,选项C。
二、降次法例如,考虑已知$\alpha。
\beta$是方程$x^2-x-1=0$的两个实数根,求$a^4+3\beta$的值。
我们可以利用方程$x^2-x-1=0$的性质,即$x^2=x+1$,将$a^4+3\beta$表示为$a^2(a^2+3\beta)$,再用$\alpha^2=\alpha+1$和$\beta^2=\beta+1$代入,得到$a^2(a^2+3\beta)=a^2(\alpha+1)(\alpha^2+3\beta^2)=a^2(\alpha+ 1)(4\alpha+3)$,因此$a^4+3\beta=4a^3+4a^2+a^2(\alpha+1)(4\alpha+3)=4a^3+4a^2+3 a^2+4a^3+3a^2=8a^3+6a^2$,选项B。
三、整体代入法例如,考虑二次方程$ax^2+bx+c=0$的两根为$x_1.x_2$,记$S_1=x_1+1993x_2.S_2=x_1^2+1993x_2^2.\dots。
S_n=x_1^n+1993x_2^n$,求证$aS_{1993}+bS_{1992}+cS_{1991}=0$。
我们可以将$x_1.x_2$表示为$x_1=\frac{-b+\sqrt{b^2-4ac}}{2a}$和$x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}$,然后利用数列求和公式,得到$S_1=-\frac{b}{a}+1993\frac{-b-\sqrt{b^2-4ac}}{2a}$,$S_2=\frac{b^2-2ac}{a^2}+1993\frac{b^2-2ac+2b\sqrt{b^2-4ac}}{4a^2}$,$S_3=-\frac{b^3-3abc+2a\sqrt{b^2-4ac}(b^2-ac)}{a^3}+\dots$。
一元二次方程的解法总结

一元二次方程的解法总结一元二次方程是代数学中最基本的方程形式之一,求解一元二次方程有多种方法,本文将对几种常见的解法进行总结。
方法一:因式分解法对于形如ax^2+bx+c=0的一元二次方程,首先需要将其因式分解为两个一次方程的乘积形式。
例如:x^2+5x+6=0可以分解为(x+2)(x+3)=0,然后令每个因式等于零,解得x=-2和x=-3,即为方程的解。
方法二:配方法当一元二次方程无法直接因式分解时,可以尝试使用配方法。
配方法的基本思路是将方程中的二次项与一次项配对,并进行变量代换。
具体步骤如下:1. 将方程形式为ax^2+bx+c=0,其中a≠0。
2. 将方程两边同时除以a,得到x^2+(b/a)x+(c/a)=0。
3. 将方程右侧的常数项c/a拆分为两个数的乘积,使得这两个数之和等于b/a,即将其配对。
4. 在方程左侧增加与拆分后的两个数相等的数,构成一个完全平方项的形式。
即在x^2+(b/a)x上加上一个常数d/d,使得(x+d)^2=x^2+(b/a)x+d^2。
5. 将方程重新写为扩展后的形式(x+d)^2+d^2=c/a,这就是已经变量代换后的方程。
6. 将方程左侧完全平方项展开,并与方程右侧常数项进行化简,得到新方程x^2+2dx+d^2-d^2=c/a,即x^2+2dx=(c/a-d^2)。
7. 整理方程,得到(x+d)^2-d^2=(c/a-d^2)。
8. 使用平方差公式,将等式左侧进行运算,得到(x+d-d)(x+d+d)=(c/a-d^2)。
9. 化简等式左侧,得到(x+2d)(x)=(c/a-d^2)。
10. 若c/a-d^2≥0,即存在实数解,解方程(x+2d)(x)=(c/a-d^2),得到x+2d=0或x=c/a-d^2。
11. 解方程x+2d=0,得到x=-2d,然后将其代入方程(x+2d)(x)=c/a-d^2中,求解得到剩下的解。
方法三:求根公式法求根公式是一元二次方程的一种解法,通过使用求根公式,可以直接求得方程的解。
一元二次方程的解法与应用

一元二次方程的解法与应用一元二次方程是高中数学中的重要概念之一,它在数学和物理等领域中有着广泛的应用。
本文将介绍一元二次方程的解法以及一些实际应用。
一、一元二次方程的解法一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为已知常数,且a≠0。
解一元二次方程的方法主要有两种:因式分解法和求根公式法。
1. 因式分解法当一元二次方程可以被因式分解为两个一次因式的乘积时,可以利用因式分解法解方程。
例如,对于方程x^2 - 4x + 3 = 0,可以将其分解为(x - 1)(x - 3) = 0。
由此可得方程的两个解为x = 1和x = 3。
2. 求根公式法求根公式是解一元二次方程的常用方法,它通过求解方程的判别式来得到方程的解。
一元二次方程的判别式为Δ = b^2 - 4ac,当Δ大于0时,方程有两个不相等的实根;当Δ等于0时,方程有两个相等的实根;当Δ小于0时,方程没有实根,但可以有复数解。
根据求根公式,一元二次方程的解可表示为x = (-b ± √Δ) / (2a)。
其中,±表示正负两个解,√Δ表示判别式的平方根。
二、一元二次方程的应用一元二次方程在日常生活、工程、物理学等领域中有着广泛的应用。
下面将介绍一些常见的应用场景。
1. 抛物线的运动轨迹一元二次方程的图像为抛物线,抛物线在物理学中有着重要的应用。
例如,通过解一元二次方程,可以确定抛物线的顶点坐标、对称轴方程以及抛物线的开口方向。
这些信息对于研究物体的运动轨迹和确定最优解等问题具有重要意义。
2. 工程中的应用一元二次方程在工程中也有广泛的应用。
例如,在桥梁设计中,通过解一元二次方程可以确定桥梁的最大跨度和最小支撑点等参数。
此外,在建筑物的设计过程中,一元二次方程可以模拟物体的运动、变形等情况,从而优化建筑结构。
3. 经济学中的应用一元二次方程在经济学中有一些实际应用的例子。
例如,通过解一元二次方程,可以确定某个企业的成本函数和收益函数之间的平衡点,即企业达到盈亏平衡的产量和价格。
一元二次方程及其解法(一)特殊的一元二次方程的解法—知识讲解

一元二次方程及其解法(一)特殊的一元二次方程的解法—知识讲解(基础)【学习目标】1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法和因式分解法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法和因式分解法中的分类讨论与换元思想.【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.要点二、特殊的一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、关于一元二次方程的判定1.判定下列方程是不是一元二次方程:(1); (2).【答案】(1)是;(2)不是.【解析】(1)整理原方程,得,所以. 其中,二次项的系数,所以原方程是一元二次方程. (2)整理原方程,得,所以 . 其中,二次项的系数为,所以原方程不是一元二次方程.【总结升华】识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.举一反三:【变式】判断下列各式哪些是一元二次方程.①21x x ++;②2960x x -=;③ 2102y =;④215402x x -+=; ⑤ 2230x xy y +-=;⑥ 232y =;⑦ 2(1)(1)x x x +-=.【答案】②③⑥.【解析】①21x x ++不是方程;④215402x x -+=不是整式方程;⑤ 2230x xy y +-=含有2个未知数,不是一元方程;⑦ 2(1)(1)x x x +-=化简后没有二次项,不是2次方程. ②③⑥符合一元二次方程的定义.类型二、一元二次方程的一般形式、各项系数的确定2.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数:(1)-3x 2-4x+2=0; (2).【答案与解析】(1)两边都乘-1,就得到方程3x 2+4x-2=0.各项的系数分别是: a=3,b=4,c=-2.(2)两边同乘-12,得到整数系数方程6x 2-20x+9=0.各项的系数分别是:.【总结升华】一般地,常根据等式的性质把二次项的系数是负数的一元二次方程调整为二次项系数是正数的一元二次方程;把分数系数的一元二次方程调整为整数系数的一元二次方程.值得注意的是,确定各项的系数时,不应忘记系数的符号,如(1)题中c=-2不能写为c=2,(2)题中不能写为.举一反三:【变式】将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项系数和常数项:(1)2352x x =-; (2)(1)(1)2a x x x +-=-.【答案】(1)235+2=0x x -,二次项系数是3、一次项系数是-5、常数项是2.(2)(1)(1)2a x x x +-=-化为220,ax x a +--=二次项系数是a 、一次项系数是1、常数项是-a-2.类型三、一元二次方程的解(根)3. 如果关于x 的一元二次方程x 2+px+q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( )A .-3,2B .3,-2C .2,-3D .2,3【答案】A ;【解析】∵ x =2是方程x 2+px+q =0的根,∴ 22+2p+q =0,即2p+q =-4 ①同理,12+p+q =0,即p+q =-1 ②联立①,②得24,1,p q p q +=-⎧⎨+=-⎩ 解之得:3,2.p q =-⎧⎨=⎩ 【总结升华】由方程根的定义得到关于系数的方程(组),从而求出系数的方法称为待定系数法,是常用的数学解题方法.即分别用2,1代替方程中未知数x 的值,得到两个关于p 、q 的方程,解方程组可求p 、q 的值.类型四、用直接开平方法解一元二次方程4.解方程(1)3x 2-24=0; (2)5(4-3n)2=320.【答案与解析】(1)把方程变形为3x 2=24,x 2=8.开平方,得原方程的根为x=或x=-.(2)原方程可化为(4-3n)2=64,所以有4-3n=8或4-3n=-8.所以,原方程的根为n=-或n=4.【总结升华】应当注意,形如=k(k≥0)的方程是最简单的一元二次方程,“开平方”是解这种方程最直接的方法.“开平方”也是解一般的一元二次方程的基本思路之一.举一反三:【变式1】用直接开平方法求下列各方程的根:(1)x2=361;(2)2y2-72=0;(3)5a2-1=0;(4)-8m2+36=0.【答案】(1)∵ x2=361,∴ x=19或x=-19.(2)∵2y2-72=0,2y2=72,y2=36,∴ y=6或y=-6.(3)∵5a2-1=0,5a2=1,a2=,∴a=或a=-.(4)∵-8m2+36=0,-8m2=-36,m2=,∴m=或m=-.【变式2】解下列方程:(1)(x+5)2=225;(2)(3y-2)2=27; (3)3(b+4)2=96.【答案】(1)∵ (x+5)2=225,∴ x+5=15或x+5=-15.所以,原方程的根为x=10或x=-20.(2)∵ (3y-2)2=27,∴ 3y-2=或3y-2=-.所以,原方程的根为y=或y=.(3)原方程可化为(b+4)2=32,所以有b+4=或b+4=-.所以,原方程的根为b=-4+或b=-4-.类型五、因式分解法解一元二次方程5.用因式分解法解下列方程:(1)3(x+2)2=2(x+2); (2)(2x+3)2-25=0.【答案与解析】(1)移项.得3(x+2)2-2(x+2)=0,(x+2)(3x+6-2)=0.∴ x+2=0或3x+4=0,∴ x 1=-2,243x =-. (2)(2x+3-5)(2x+3+5)=0,∴ 2x-2=0或2x+8=0,∴ x 1=1,x 2=-4.【总结升华】(1)中方程求解时,不能两边同时除以(x+2),否则要漏解.用因式分解法解一元二次方程必须将方程右边化为零,左边用多项式因式分解的方法进行因式分解.因式分解的方法有提公因式法、公式法、二次三项式法及分组分解法.(2)可用平方差公式分解.6.解下列一元二次方程:(1)(2x+1)2+4(2x+1)+4=0; (2)(31)(1)(41)(1)x x x x --=+-.【答案与解析】(1)(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0. 即2(23)0x +=,∴ 1232x x ==-. (2) 移项,得(3x-1)(x-1)-(4x+1)(x-1)=0,即(x-1)(x+2)=0,所以11x =,22x =-.【总结升华】解一元二次方程时,一定要先从整体上分析,选择适当的解法.如 (1)可以用完全平方公式.用含未知数的整式去除方程两边时,很可能导致方程丢根,(2)容易丢掉x =1这个根.举一反三:【变式】()()()21 85860;x x +-++= (2)3(21)42x x x +=+ 【答案】(1)(x+8-2)(x+8-3)=0(x+6)(x+5)=0X 1=-6,x 2=-5.(2)3x(2x+1)-2(2x+1)=0(2x+1)(3x-2)=0 1212,23x x =-=.。
初中数学重点梳理:一元二次方程

一元二次方程知识定位一元二次方程是数学竞赛中经常出现的一些特殊形式的方程中的一种。
要熟练掌握一元二次方程的定义及定理以及解法和根的判别。
同时一元二次方程的实际应用题,本节我们通过一些实例的求解,旨在介绍数学竞赛中一元二次方程相关问题的常见题型及其求解方法。
本讲将通过例题来说明这些方法的运用。
知识梳理1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法)①2(0)x a a =≥ 解为:x a =②2()(0)x a b b +=≥ 解为:x a b +=③2()(0)ax b c c +=≥ 解为:ax b c +=±④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+ (2)因式分解法:提公因式分,平方公式,平方差,十字相乘法如:20(,0)()0ax bx a b x ax b +=≠⇔+=此类方程适合用提供因此,而且其中一个根为0290(3)(3)0x x x -=⇔+-= 230(3)0x x x x -=⇔-= 3(21)5(21)0(35)(21)0x x x x x ---=⇔--=22694(3)4x x x -+=⇔-= 2241290(23)0x x x -+=⇔-=24120(6)(2)0x x x x --=⇔-+= 225120(23)(4)0x x x x +-=⇔-+=(3)配方法①二次项的系数为“1”的时候:直接将一次项的系数除于2进行配方,如下所示:2220()()022P P x Px q x q ++=⇔+-+= 示例:22233310()()1022x x x -+=⇔--+=②二次项的系数不为“1”的时候:先提取二次项的系数,之后的方法同上:22220 (0)()0 ()()022b b bax bx c a a x x c a x a c a a a++=≠++=⇒-⇒++= 222224()()2424b b b b aca x c x a a a a -⇒+=-⇒+=示例:22221111210(4)10(2)2102222x x x x x --=⇔--=⇔--⨯-= (4)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b acx a a -+=①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,24b b acx -±-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=- ③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根。
一元二次方程及其解法

一元二次方程及其解法一元二次方程是数学中常见的一类方程,形式为ax^2 + bx + c = 0,其中a、b、c是已知常数,且a ≠ 0。
解一元二次方程的方法有多种,包括因式分解法、配方法、公式法和完成平方法等。
本文将逐一介绍这些解法,并通过例子加深理解。
一、因式分解法当一元二次方程可以因式分解时,可以利用因式分解的形式将方程解出。
具体步骤如下:1. 将方程ax^2 + bx + c = 0进行因式分解,得到(ax + m)(x + n) = 0的形式;2. 根据分解得到的(x + m)(x + n) = 0,可得到两个线性方程x + m = 0和x + n = 0;3. 解两个线性方程,即可得到方程的解x = -m和x = -n。
例如,解方程2x^2 + 5x + 3 = 0:1. 将方程因式分解为(2x + 1)(x + 3) = 0;2. 得到两个线性方程2x + 1 = 0和x + 3 = 0;3. 解得x = -1/2和x = -3。
二、配方法当一元二次方程无法直接因式分解时,可以利用配方法将其转化为可因式分解的形式。
具体步骤如下:1. 对方程ax^2 + bx + c = 0,将b项的系数b拆分成两个数p和q,使得p + q = b且pq = ac;2. 将方程重写为ax^2 + px + qx + c = 0,并进行合并得到ax^2 +(p+q)x + c = 0;3. 将方程的前两项进行因式分解,并重写为a[x^2 + (p+q)x] + c = 0;4. 提取公因式,得到a[x(x + (p+q))] + c = 0;5. 将方程重新整理为a(x + p)(x + q) = 0的形式;6. 根据分解得到的(x + p)(x + q) = 0,可得到两个线性方程x + p = 0和x + q = 0;7. 解两个线性方程,即可得到方程的解x = -p和x = -q。
例如,解方程2x^2 + 7x + 3 = 0:1. 将方程配成2x^2 + 6x + x + 3 = 0;2. 可以选择p = 3和q = 1,满足p + q = 7且pq = 6;3. 将方程重写为2x(x + 3) + (x + 3) = 0,并合并得到2x(x + 3) + (x +3) = 0;4. 提取公因式,得到(x + 3)(2x + 1) = 0;5. 因式分解后得到(x + 3)(2x + 1) = 0;6. 得到两个线性方程x + 3 = 0和2x + 1 = 0;7. 解两个线性方程,即可得到方程的解x = -3和x = -1/2。
一元二次方程解法例子

一元二次方程解法例子一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为实数,且a不等于0。
解一元二次方程的常用方法有因式分解法、配方法、求根公式以及图像法等。
下面将分别以这些方法为例,详细介绍解一元二次方程的步骤和原理。
一、因式分解法:因式分解法是一种常用的解一元二次方程的方法,适用于方程可以通过因式分解得到的情况。
具体步骤如下:1. 将方程移到一边,使方程等于0。
2. 尝试将方程进行因式分解,将其拆分为两个一次因式的乘积。
3. 令每个一次因式等于0,解出对应的一次方程。
4. 得到方程的解。
例如,解方程x^2 - 5x + 6 = 0:1. 将方程移到一边,得到x^2 - 5x + 6 = 0。
2. 尝试将方程因式分解,得到(x - 2)(x - 3) = 0。
3. 令每个一次因式等于0,解出x - 2 = 0和x - 3 = 0,得到x = 2和x = 3。
4. 方程的解为x = 2和x = 3。
二、配方法:配方法是解一元二次方程的另一种常用方法,适用于方程无法通过因式分解得到的情况。
具体步骤如下:1. 将方程移到一边,使方程等于0。
2. 通过添加或减去一个适当的常数,将方程转化为一个完全平方的形式。
3. 对得到的完全平方进行求根运算,得到方程的解。
例如,解方程2x^2 + 7x - 3 = 0:1. 将方程移到一边,得到2x^2 + 7x - 3 = 0。
2. 通过添加或减去一个适当的常数,将方程转化为一个完全平方的形式。
这里可以通过添加3/2来转化方程,得到2x^2 + 7x + 3/2 - 3 - 3/2 = 0,化简得到2x^2 + 7x - 3/2 = (x + 3/2)^2 - 25/4 = 0。
3. 对得到的完全平方进行求根运算,得到x + 3/2 = ±√(25/4),即x + 3/2 = ±5/2,解得x = -3/2 ± 5/2,即x = -4或x = 1/2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的特殊解法举例
解一元二次方程并不是中考单独考查的重点,但它是解题的工具,许多题目都要用到它。
熟练掌握解一元二次方程的方法,做到解题快速、准确,是提高成绩必不可少的。
常规的公式法等这里不再赘述,只对有些特殊方程特殊解法做一些介绍。
一、当方程含未知数的项与完全平方式相近并且系数较大时,常采用配方法解这个方程。
例1 解方程x 2-12x=9964。
分析:此题常数项绝对值较大,因数较多,采用因式分解法、公式法都不简便,应考虑配方法。
解:原方程即x 2-12x +36=10000,(x -6)2=1002。
两边开方,得x -6=±100,即x 1=106,x 2=-94。
二、若一元二次方程ax 2+bx +c=0的系数满足a ±b +c=0时,x=±1是方程的根,这时可先将方程左端分解出因式x=±1。
例2 解方程9406x 2-8289x -1117=0。
分析:这个方程各项系数的绝对值都比较大,用公式法解计算量很大。
仔细观察原方程,发现各项系数的和为零,故方程有一根为1。
因此方程左边可分解为(x -1)(9406x +1117),则另一根为x=-9406
1117。
解:观察可知方程有一根为1,则。
∴ x 1=1,x 2=-
94061117。
三、当二次项系数比较复杂时,常将二次项系数化为1或化为完全平方数。
例3 解方程169x 2-39x -2=0。
分析:这个方程的二次项169x 2=(13x)2,一次项-39x=-3(13x),故可将13x 整体解出。
解:原方程即 (13x)2-3·(13x)-2=0。
解得 13x=2173+或13x=2
173-。
∴ x 1=26173+,x 2=26
173-。
例4 解方程6x 2+19x +10=0。
解:将原方程两边同乘以6,得到 (6x)2+19·(6x)+60=0。
解得 6x=-15或6x=-4。
∴ x 1=-25,x 2=-3
2。
四、对于广义的“一元二次方程”,可采用换元法求解。
例5 解方程x
x x ++2226+62422++x x x =3。
解:令x
x x ++2226=t ,则原方程转化为t +t 2=3,即t 2-3t +2=0。
解得t 1=2,t 2=1。
当x
x x ++2226=2时,解得x 1=3191+-,x 2=3191--; 当x
x x ++2226=1时,解得x 3=-3,x 4=2。
经检验x 1、x 2、x 3、x 4都是原方程的根。
例6 解方程(x -1)(x -2)(x -3)(x -4)=48。
解:原方程即[(x -1)(x -4)][(x -2)(x -3)]=48,
即 (x 2-5x +4)( x 2-5x +6)=48。
设x 2-5x +5=y ,则原方程变为(y -1)(y +1)=48。
解得y 1=7,y 2=-7。
当x 2-5x +5=7时,解得x 1=2335+,x 2=2
335-。
当x 2-5x +5=-7时,△=(-5)2-4×1×12=-23<0,无实数解。
原方程的根为x 1=2335+,x 2=2
335-。
说明:本题的换元法也称为平均值换元法,因为y=2
)65()45(22+-++-x x x x = x 2
-5x +5。
另本题也可设y= x 2-5x +4或y= x 2-5x +6,同学们不妨试试看,并比较几种换元法的异同点。
例7 解方程6x 4-35x 3+62x 2-35x +6=0。
解:经验证x=0不是方程的根,原方程两边同除以x 2,得
6x 2-35x +62-
x 35+26x =0。
即 6(221x
x +)-35(x x 1+)+62=0。
(﹡) 设y=x x 1+,则221x
x +=y 2-2。
方程(﹡)变为 6(y 2-2)-35y +62=0。
解得 y 1=
310,y 2=2
5。
当x x 1+=310时,解得x 1=3,x 2=3
1; 当x x 1+=25时,解得x 3=2,x 4=21。
说明:换元法解分式方程,是中考命题的一重点,统计2003年全国中考试卷发现,大多数省市都有这一类试题。
同学们一定要掌握这一,并能熟练运用。