第1讲一元二次方程解法复习

合集下载

一元二次方程专题复习

一元二次方程专题复习

一元二次方程专题复习(一)直接开平方法→配方法要点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.类型一、用配方法解一元二次方程1.用配方法解方程x 2-7x-1=0.【答案与解析】将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x =+或x =-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边;2222()a ab b a b ±+=±(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好.类型二、配方法在代数中的应用2.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.221078Ma b a =+-+2251N a b a =+++M N -22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>3.用配方法说明:代数式x2+8x+17的值总大于0.【答案与解析】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.举一反三:【变式】求代数式 x2+8x+17的最小值4.(2014春•滦平县期末)已知x2+y2﹣4x+6y+13=0,求(x+y)2013的值.【思路点拨】采用配方法求出x、y的值,代入计算即可得到答案.【答案与解析】解:x2+y2﹣4x+6y+13=0,x2﹣4x+4+y2﹣+6y+9=0,(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,解得,x=2,y=﹣3,(x+y)2013=﹣1.【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:② 当时,右端是零.因此,方程有两个相等的实根: ③ 当时,右端是负数.因此,方程没有实根.20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,22b x a-±=240b ac ∆=-=1,22b x a=-240b ac ∆=-<5. 用公式法解下列方程.(1); (2).【总结升华】 用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程6.用公式法解下列方程:(1); (2) .【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.23310x x --=2241x x =-24b ac -24b ac -2341x x =+2100x -+=(1)(1)x x +-=240b ac -≥举一反三:【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.【巩固练习】 一、选择题1.已知关于x 的一元二次方程,用配方法解此方程,配方后的方程是( )A .B .C .D . 2.用配方法解下列方程时,配方有错误的是( )A .化为B .化为C .化为D .化为3.(2015春•张家港市校级期中)若M=2x 2﹣12x+15,N=x 2﹣8x+11,则M 与N 的大小关系为( ) A .M ≥N B . M >N C . M ≤N D . M <N 4.不论x 、y 为何实数,代数式的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-x+ =( )2; (2)x 2+px+ =( )2. 220x x m --=2(1)1x m -=+2(1)1x m +=+22(1)1x m -=+22(1)1x m +=+22990x x --=2(1)100x -=22740t t --=2781416t ⎛⎫-= ⎪⎝⎭2890x x ++=2(4)25x +=23420x x --=221039x ⎛⎫-= ⎪⎝⎭22247x y x y ++-+438.已知,则的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,∴所以方程的根为_________. 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.(2015春•重庆校级期中)a 2+b 2﹣4a+2b+5=0,则b a 的值为 .三、解答题 13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14. 用公式法解下列方程:(2) .15.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.16.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b223730216b a a b -+-+=a -2(1)210x ax --=;22222(1)()ab x a x b x a b +=+>一元二次方程专题复习(二)温故知新:1.直接开平方法2.配方法3.公式法一、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

一元二次方程复习课件

一元二次方程复习课件
32 x X 2
32 x X 2
X 32-2X
一元二次方程解法的复习
例6、有一堆砖能砌12米长的围墙,现要围一个20
平方米的鸡场,鸡场的一边靠墙(墙长7米),其余三
边用砖砌成,墙对面开一个1米宽的门,求鸡场的长
和宽各是多少米?
解:设鸡场的宽为x米,则长为(12+1-2x) =(13-2x)米,列方程得: X(13-2x)=20 解得:x1=4,x2=2.5 经检验:两根都符合题意 ∴13-2x=5或8 (舍去)
(4):主要用到的数学思想方法
分类讨论
知识聚焦
一元二次方程根的判别式
一元二次方程 ax 2
bx c 0a 0根的判式是:
b 4ac
2
一元二次方程
判别式的情况
ax bx c 0a 0
2
根的情况
定理与逆定理
b 2 4ac 0 两个不相等实根 b 2 4ac 0 两个相等实根 b 2 4ac 0 无实根(无解)
一:回顾与总结
在解答下列各小题过程中,回顾用到了哪些知识点?
① 只含有一个未知数
1:下列方程中,属于一元二次方程的是( c ) 3 (1):一元二次方程的三要素 ② 未知数的最高次数是2次 2 A : 2 x y 1 0 B : x 2x 1 0 ③ 两边是整式
1 C : x 2 x 3 0 D : 2 3x 2 0 3x
当方程中有括号时,思考方法是:
1:应先用整体思想考虑有没有简单方法; 2:若看不出合适的方法时,则把它去括号并整理 为一般形式再选取合理的方法。
变式1: 2(x-2)2+5(2-x)-3=0 2-x 变式2:

一元二次方程的解法复习课

一元二次方程的解法复习课

2
x2 4x 4 5 4
2
x 22 13
2 x2
26
2
x1
26 2 2
x2
26 2 2
例题讲解
四 公式法
一般地,对于一元二次方程 ax2+bx+c=0(a≠0)
当b2 4ac 0时,它的根是:
x b b2 4ac . b2 4ac 0 . 2a
上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法
x

2 9
2
4 17
.
4
4 16
1.化1:把二次项系数化为1; 2.移项:把常数项移到方程的右边;
3.配方:方程两边都加上一次项 系数绝对值一半的平方; 4.变形:方程左边分解因 式,右边合并同类;
x 9 17 . 44
5.开方:两边开平方;
x 9 17 .
44
x1
9
4
17
;
x2
用配方法解一元二次方程的方法的助手:
平方根的意义: 如果x2=a, 那么x= a.
完全平方式:式子 a2±2ab+b2 叫完全平方式,且 a2±2ab+b2 =(a±b)2.
用配方法解一元二次方程:
2x2-9x+8=0
解 : x2 9 x 4 0.
x2
9
2 x
4.
x2
9
2 x
9
2
9
2
4.
解:原方程变形为: (2 x)2 9 16
直接开平方得:
2 x 3
4
x1
5 4
x2
11 4
(2) x(x 2) 1 0

一元二次方程复习课件

一元二次方程复习课件

初三数学第21章一元二次方程复习讲义一、一元二次方程的定义方程中只含有一个未知数,•并且未知数的最高次数是2,•这样的整式的方程叫做一元二次方程,通常可写成如下的一般形式:ax 2+bx+c=0(a ≠0)其中二次项系数是a ,一次项系数是b ,常数项是c .例1.求方程2x 2+3=22x-4的二次项系数,一次项系数及常数项的积.例2.若关于x 的方程(m+3)27m x -+(m-5)x+5=0是一元二次方程,试求m 的值,•并计算这个方程的各项系数之和.例3.若关于x 的方程(k 2-4)x 2+1k -x+5=0是一元二次方程,求k 的取值范围.例4.若α是方程x 2-5x+1=0的一个根,求α2+21α的值.1.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是( ) A .4 B .0或2 C .1 D .1-2.一个三角形的两边长为3和6,第三边的边长是方程(2)(4)0x x --=的根,则这个三角形的周长是( ) A.11 B.11或13 C.13 D.11和13 3.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽.(部分参考数据:2321024=,2522704=,2482304=)二、一元二次方程的一般解法 基本方法有:(1)配方法; (2)公式法; (3) 因式分解法。

联系:①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次. ②公式法是由配方法推导而得到.③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程. 区别:①配方法要先配方,再开方求根. ②公式法直接利用公式求根.③因式分解法要使方程一边为两个一次因式相乘,另一边为0,•再分别使各一次因式等于0.例1、用三种方法解下列一元二次方程1、x 2 +8x+12=02、3x 23x-6=0用适当的方法解一元二次方程1、x2-2x-2=02、2x23、x(2x-3)=(3x+2)(2x-3)4、4x2-4x+1=x2+6x+95、(x-1)2-2(x2-1)=0注意:选择解方程的方法时,应先考虑直接开平方法和因式分解法;再考虑用配方法,最后考虑用公式法三、判定一元二次方程的根的情况?一元二次方程ax2+bx+c=0(a≠0)的根的判别式是△=b2-4ac,1.△=b2-4ac>0↔一元二次方程有两个不相等的实根;2.△=b2-4ac=0↔一元二次方程有两个相等的实数;3.△=b2-4ac<0↔一元二次方程没有实根.例1、不解方程判断下列方程根的情况1、x2-(2、x2-2kx+(2k-1)=0例2、关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0.则a 的值为例3、已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,•则△ABC为例5、已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根求4)2(222-+-baab的值例6、(2006.广东)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.四、一元二次方程根与系数的关系一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x 1x2x1 + x 2= -bax 1 x2=ca例1.方程的x2-2x-1=0的两个实数根分别为x1,x2, 则(x1 -1)(x 2-1)=例2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-ba,x1·x2=ca;(2)•求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.五、一元二次方程与实际问题的应用步骤:①审②设③列④解⑤答应用题常见的几种类型:1. 增长率问题 [增长率公式:b x a =2)1( ]例1:某工厂一月份产值为50万元,采用先进技术后,第一季度共获产值182万元,二、三月份平均每月增长的百分率是多少?例2:某种产品的成本在两年内从16元降至9元,求平均每年降低的百分率。

第1章 一元二次方程 苏科版九年级数学上册单元复习(解析版)

第1章 一元二次方程  苏科版九年级数学上册单元复习(解析版)

【单元复习】第1章一元二次方程知识精讲第1章一元二次方程一、一元二次方程的概念1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

注意:一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。

2、一元二次方程的一般形式,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如的一元二次方程。

根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。

2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。

3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

三、一元二次方程根的判别式根的判别式:一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即四、一元二次方程根与系数的关系如果方程的两个实数根是,那么,。

也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

根与系数的关系的应用:①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;②求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于和的代数式的值,如④求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式. 一元二次方程的应用:方程是解决实际问题的有效模型和工具.利用方程解决。

§2-3 公式法1 一元二次方程的解法

§2-3 公式法1 一元二次方程的解法

解:这里 a=1, b= -7, c= -18.
∵b2 - 4ac=(-7)2 - 4×1×(-18)=121﹥0,
7 121 7 11 x , 21 2
即:x1=9, x2= -2.
动脑筋
b b2 4αc x 2α
例 2 解方程:
x 3 2 3x
2
解:化简为一般式:x2
2. 用公式法解下列方程. 参考答案:
1). 2x2-4x-1=0; 2). 5+2=3x2 ; 3). (x-2)(3x-5) =1;
下课了!
结束寄语


配方法和公式法是解一元二次 方程重要方法,要作为一种基本 技能来掌握. 一元二次方程也是刻画现实世 界的有效数学模型.
回顾与复习 2
配方法
用配方法解一元二次方程的步骤: 1.化1:把二次项系数化为1(方程两边都除以二次项 系数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的 平方; 4.变形:方程左分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
4 4
参考答案: 1.x1 2; x2 4. 2.x1 2 6; x2 2 6.
我最棒
,会用公式法解应用题!
一个直角三角形三边的长为三个连续偶数,求这个三角 形的三边长. 解 : 设这三个连续偶数中间的一个为x, 根据题意得
x 2 x 2 x 2 .
∵b2 - 4ac=(-7)2 - 4×3×8=49 - 96= - 47< 0,
∴原方程没有实数根.
我最棒
,用公式法解下列方程

一元二次方程复习 全国优质课一等奖-课件

一元二次方程复习 全国优质课一等奖-课件

1.数字与方程
例1.一个两位数,它的十位数字比个位数字小3,而它的个 位数字的平方恰好等于这个两位数.求这个两位数.
解 :设 这 两 位 数 的 个 位 数 字 为 x,根 据 题 意 ,得
x2 10x 3 x.
整 理 得 x2 11x 30 0.
解 得 x1 5, x2 6 . x 3 5 3 2,或 x 3 6 3 3. 答 :这 个 两 位 数 为 25,或 36.
解 :设 小 路 的 宽 度 xm,根 据 题 意 ,得 20+2x
( 2 0 2 x )1 5 2 x 2 5 1 5 2 4 6 .
20
15+2x 15
整理得 :
2x2 35x 123 0,
解得 :
x1
3;
x2
41 (不 2
合 题 意,舍 去 ).
第22章复习 ┃ 考点攻略
[解析] 因为当 a≠0,b2-4ac>0 时,方程有两个不相等的实数根, 即 k+1≠0,b2-4ac=22-4(k+1)×(-1)=8+4k>0,
∴k≠-1,k>-2. ∴k 的取值范围是 k>-2 且 k≠-1.
方法技巧 根的判别式主要应用:(1)不解方程,判别一元二次方程根的情况; (2)已知一元二次方程根的情况,确定方程中某些字母的取值 (范 围).在解题时一定要注意不能忽略二次项系数不为 0.
一元二次方程根与系数的关系
设x1,x2是一元二次方程ax2+bx+c=0(a≠0)
的两个根,则有
b
c
x1+x2=
a , x1x2=
a.
回顾与复习 5
解应用题
• 列方程解应用题的一般步骤是: • 1.审:审清题意:已知什么,求什么?已,未知之间有什么关系? • 2.设:设未知数,语句要完整,有单位(同一)的要注明单位; • 3.列:列代数式,列方程; • 4.解:解所列的方程; • 5.验:是否是所列方程的根;是否符合题意; • 6.答:答案也必需是完事的语句,注明单位且要贴近生活. • 列方程解应用题的关键是: • 找出相等关系.

《一元二次方程》复习经典讲义--绝对经典实用

《一元二次方程》复习经典讲义--绝对经典实用

《一元二次方程》复习经典讲义基础知识1、一元二次方程方程中只含有一个未知数,而且未知数的最高次数是2的方程,一般地,这样的方程都整理成为形如脳」「冰4;"『:寫占门的一般形式,我们把这样的方程叫一元二次方程。

其中'分别叫做一元二次方程的二次项、一次项和常数项,a b分别是二次项和一次项的系数。

如|满足一般形式「丁:、1,工宀L分别是二次项、一次项和常数项,2,—4分别是二次项和一次项系数。

注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。

2.—元二次方程求根方法(1)直接开平方法形如•的方程都可以用开平方的方法写成' ,求出它的解,这种解法称为直接开平方法。

(2)配方法通过配方将原方程转化为V;工己丿的方程,再用直接开平方法求解。

配方:组成完全平方式的变形过程叫做配方。

配方应注意:当二次项系数为1时,原式两边要加上一次项系数一半的平方,若二次项系数不为1,只需方程两边同时除以二次项系数,使之成为1。

(3)公式法求根公式:方程小* X 「的求根公式_b 丄v b2-4ac2ti步骤:1)把方程整理为一般形式::匚『“甩.m」:,确定a b、c。

2)计算式子卜In的值。

3)当八心心-时,把a、b和卜L LI的值代入求根公式计算,就可以求出方程的解。

(4)因式分解法把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样的一元二次方程转化为两个一元一次方程来求解,这种解方程的方法叫因式分解法。

3、一兀二次方程根的判别式的定义运用配方法解一元二次方程过程中得到显然只有当护仏“时,才能直接开平方得:也就是说,一元二次方程卅r吐m沁珥只有当系数'耳、满足条件託=眇一盘供訣氐时才有实数根.这里「n 叫做一元二次方程根的判别式.4、判别式与根的关系在实数范围内,一元二次方程'的根由其系数「、耳、确定,它的根的情况(是否有实数根)由二•,确定.设一元二次方程为' 7 ' 11■ 「,其根的判别式为:则hbph' ■4tjcr①1■- ' =■方程门厂山应二::緘町有两个不相等的实数根■br V ——丫——…_ _②方程' f'有两个相等的实数根•一.③.匸方程农用沁没有实数根.若I,4,匸为有理数,且二为完全平方式,则方程的解为有理根;若△为完全平方式,同时血是%的整数倍,则方程的根为整数根.说明:⑴用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,:;有两个相等的实数根时,人-J;没有实数根时,「1⑵在解一元二次方程时,一般情况下,首先要运用根的判别式—氐判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根)•当亠忙仝:时,方程有两个相等的实数根(二重根),不能说方程只有一个根.①当时二抛物线开口向上二顶点为其最低点;②当…「时=抛物线开口向下二顶点为其最高点.5、一元二次方程的根的判别式的应用一元二次方程的根的判别式在以下方面有着广泛的应用:⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围;⑶通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.6韦达定理b如果能畋;:;的两根是;:,贝U " -丿.(隐含的条件:•「「)特别地,当一元二次方程的二次项系数为1时,设',’‘是方程"'的两个根,贝U '-7、韦达定理的逆定理以两个数,”为根的一元二次方程(二次项系数为1 )是F -(x t ^x2)x^x l x2 -0一般地,如果有两个数’,•满足<,「,那么',•'必定是加亠脉V.U =比爭為的两个根.8、韦达定理与根的符号关系在£已护仏心1J的条件下,我们有如下结论:-<0 丄邸⑴当・时,方程的两根必一正一负•若- ,则此方程的正根不小于负-*<0根的绝对值;若「,则此方程的正根小于负根的绝对值.->0 --> o⑵当J 时,方程的两根同正或同负.若」,则此方程的两根均为正--<0根;若「,则此方程的两根均为负根.更一般的结论是:若,'■是煜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 一元二次方程解法复习(1)
姓名 师评
【知识清单+例析】
1、 一元二次方程概念:
(1)3个要点:① ② ③
(2)一般形式:
例1、判断下列方程是否为一元二次方程?
()()2222222111(1)0(2)210(3)(4)3023(5)0(6)0
(7)12(8)2310x x x x x x
xy x mx nx x x x x x =+==-=-=-=+-=-+≥ 例2、(1)一元二次方程23250x x --=的二次项、一次项系数分别为
(2)已知关于x 的方程()()46630a a x a x -++--=,问:
①当m 为何值时,它是一元二次方程:②当m 为何值时,它是一元一次方程?
2、 根的用法(回代)
例3、已知1x =是一元二次方程2
210x mx -+=的一个根,则m 的值为
3、 解一元二次方程
(1) 直接开平方法 ()()()()()2
222
(1)4250(2)421360
(3)5525
(4)2513x x x x y y -=--=+-=-=-
(2) 配方法 22(1)610(2)237x x x x x -+=+=
(3) 公式法(万能方法)
注意:①准确识别a 、b 、c ;②公式法前提为0a ≠,0∆≥
22(1)310(2)2330x x x x -+=--+=
(4) 因式分解法
()()()()()22222(1)50(2)4410
(3)419320(4)5362(5)315
(6)560
x x x x x x x x x x x x x +=-+=---=-=-+-=++=
4、 方法知识点
(1) 直接开平方法()2x a b += 若0b ≥可直接开平方;否则,方程无实数根
(2) 配方法
①化为直接开平方形式(转化思想)
②配方法不只适用于解一元二次方程,可用来求二次三项式的最值问题,即
2ax bx c ++=
例4、(1)求223x x ++的最小值; (2)求2
21x x -+-的最大值
(3) 公式法
①大前提:0a ≠,0∆≥
②∆的符号与方程根的对应关系:
0∆>⇔
0∆=⇔
0∆<⇔
故,0∆≥⇔
注:从左往右是不解方程判定一元二次方程根的情况;从右往左一般是根据方程根的情况求相关字母的取值范围
例5、关于x 的一元二次方程220x x m -+=有两个实数根,则m 是取值范围为
③根与系数的关系:若一元二次方程两根为1x ,2x ,则12b x x a +=-,12c x x a
= 注:一般根据和与积的关系变形求相关代数式的值 例6、已知1x ,2x 为一元二次方程2
2310x x --=的两根,求下列代数式的值 ()()()2
22121212211212122111(1)(2)(3)11(4)
(5)22(6)x x x x x x x x x x x x x x x x ++-⎛⎫⎛⎫+--++ ⎪⎪⎝
⎭⎝⎭
例7、(1)已知α,β是方程220110x x +-=的两根,则2
2ααβ++的值为 (2)关于x 的方程()2204
k kx k x +++=有两个不相等的实数根, ①求k 的取值范围;
②是否存在实数k ,使方程的两根实数根的到数和为0?若存在,求出k 的值;若不存在,请说明理由
(4) 因式分解法
①原理:0ab =则,0a =或0b =
②理解:若一元二次方程的两根分别为a ,b ,则原方程可为()()0x a x b --=。

相关文档
最新文档