一元二次方程及其解法

合集下载

解一元二次方程五种方法

解一元二次方程五种方法

解一元二次方程五种方法解一元二次方程五种方法解一元二次方程是初中数学中的基础知识,也是高中数学中的重要内容,掌握多种解法对于提高数学能力和解题能力有着重要作用。

下面介绍五种解一元二次方程的方法。

方法一:配方法(也称为配方根公式)配方法是一种常见的解一元二次方程的方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项分离出完全平方项;2. 将方程化为完全平方形式,即形如(x + a) = b;3. 对方程两边取平方根,得到x的两个解:x = -a ± b。

方法二:公式法公式法是解一元二次方程的常用方法之一,它的公式为:x = (-b ±√(b-4ac)) / 2a其中a、b、c分别为一次项系数、二次项系数和常数项。

方法三:图像法图像法是一种直观的解题方法,它的步骤如下:1. 将方程化为标准形式:ax+bx+c=0;2. 将方程左侧变形为y=ax+bx+c的二次函数的图像;3. 通过观察二次函数的图像,得到x的解。

方法四:因式分解法如果一元二次方程的左侧可以因式分解,那么可以使用因式分解法解题。

例如:x+5x+6=0,可以因式分解为(x+2)(x+3)=0。

因此,x的解为x=-2或x=-3。

方法五:完全平方公式完全平方公式是解一元二次方程的一种简便方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项计算出Δ=b-4ac;2. 如果Δ是完全平方数,那么方程的解为x=(-b±√Δ)/2a。

以上是解一元二次方程的五种方法,希望对大家有所帮助。

掌握多种解题方法可以提高数学思维和解题能力,也可以在考试中提高解题速度和准确性。

一元二次方程的解法

一元二次方程的解法

一元二次方程的解法一般解法1.配方法(可解全部一元二次方程)如:解方程:x^2+2x-3=0解:把常数项移项得:x^2+2x=3等式两边同时加1(构成完全平方式)得:x^2+2x+1=4因式分解得:(x+1)^2=4解得:x1=-3,x2=1用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当2.公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac<0时x无实数根(初中)2.当Δ=b^2-4ac=0时x有两个相同的实数根即x1=x23.当Δ=b^2-4ac>0时x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。

如:解方程:x^2+2x+1=0解:利用完全平方公式因式分解得:(x+1﹚^2=0解得:x1=x2=-14.直接开平方法(可解部分一元二次方程)5.代数法(可解全部一元二次方程)ax^2+bx+c=0同时除以a,可变为x^2+bx/a+c/a=0设:x=y-b/2方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为(y^2+b^2/4-by)除以(by-b^2/2)+c=0再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]1、直接开平方法;2、配方法;3、公式法;4、因式分解法。

1、直接开平方法直接开平方法就是用直接开平方求解一元二次方程的方法。

用直接开平方法解形如(x-m)^2;=n (n≥0)的方程,其解为x=±√n+m .例(3x+1)^2;=7 解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7 2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax^2+bx=-c 将二次项系数化为1:x^2+b/ax=- c/a 方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2; 方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)例x^2-4x-12=0 (x-2)^2-4-12=0 (x-2)^2=16 x-2=±4 x=6或-2 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b^2;-4ac的值,当b^2;-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b^2;-4ac)]/(2a) , (b^2;-4ac≥0)就可得到方程的根。

(完整版)一元二次方程归纳总结

(完整版)一元二次方程归纳总结

一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。

2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。

注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。

备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。

③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。

解一元二次方程的三种基本方法

解一元二次方程的三种基本方法

解一元二次方程的三种基本方法解一元二次方程的三种基本方法一元二次方程是数学中的基础概念之一,它的解法有很多种。

在这里,我们将介绍三种基本的解法。

一、配方法(1)将方程写成“完全平方”的形式。

例如,对于方程x²+6x–16=0,将右边的常数项移到左边,变为x²+6x=16,然后再将6x一分为二,得到x²+3x+3x=16,继续变形,即可让其成为完全平方。

(2)设定新的变量,使其成为一个完全平方。

例如,对于x²+6x–16=0,令y=x+3,代入原方程,得到y²–9+6y–16=0,简化后得到y²+6y–25=0,再将其变形成完全平方,可得(y+3)²=34,解得y= ± √34–3,代入y=x+3得到x=-3±√34。

二、公式法在公式法中,我们将方程ax²+bx+c=0写成:x=[–b±√(b²–4ac)]/2a,即可求得方程的两个根。

例如,对于方程x²+6x–16=0,可将a=1,b=6,c=–16带入公式中,计算得到x=-3±√34。

三、图像法对于一元二次方程y=ax²+b x+c,我们可以将其用一条二次函数的图像表示出来,相交坐标轴的两个点就是其解。

例如,对于方程x²+6x–16=0,我们可以作出相应的二次函数的图像,其中一条相交坐标轴的边界为x=-4和x=–2,因此可以解得方程的两个根为x=-4和x=-2。

总结以上三种方法都可以用来解一元二次方程。

配方法被广泛地应用于题目的解答中,因为它在操作方式上比较简单,尤其是在遇到较为复杂的方程式时有很好的实际应用。

公式法是一种少有的利用抽象公式的方法,尤其是在解有较大常数的一元二次方程时,可以简化计算。

图像法则不太常用,但在一些情况下,例如探究关于两个变量的函数的等高线时,它是非常实用的。

一元二次方程的解法

一元二次方程的解法

一元二次方程的解法一元二次方程的解法一、知识要点:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视。

一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。

二、方法、例题精讲:1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。

用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m± .例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2方程左边成为一个完全平方式:(x+ )2=当b2-4ac≥0时,x+ =±∴x=(这就是求根公式)例2.用配方法解方程3x2-4x-2=0解:将常数项移到方程右边3x2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2= .3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

(完整版)一元二次方程的解法大全

(完整版)一元二次方程的解法大全

一元二次方程的解法大全【直接开平方法解一元二次方程】=0(a≠0),把方程ax2+c例:用直接开平方法解方程:1.9x2-25=0;;2.(3x+2)2-4=04.(2x+3)2=3(4x+3).解:1.9x2-25=0259x2=2.(3x+2)2-4=0(3x+2)2=43x+2=±22±23x=-4.(2x+3)2=3(4x+3)4x2+12x+9=12x+94x2=0∴x1=x=0.【配方法解一元二次方程】将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除+以二次项系数,使二次项系数为1,如x21.x2-4x-3=0; 2.6x2+x=35;3.4x2+4x+1=7; 4.2x2-3x-3=0.解:1.x2-4x-3=0x2-4x=3x2-4x+4=3+47(x-2)2=3.4x2+4x+1=7一元二次方程ax2+bx+c=0(a广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c 的值代入两根公式中直接解出,所以把这种方法=0(a≠0)的求根公式。

例:用公式法解一元二次方程:2.2x2+7x-4=0;.4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x)2.2x2+7x-4=0∵a=2,b=7,c=-4.81b2-4ac=72-4×2×(-4)=49+32=4.x2-a(3x-2a+b)-b2=0(a-2b≥0)x2-3ax+2a2-ab-b2=0∵a=1,b=-3a,c=2a2-ab-b2b2-4ac=(-3a)2-4×1×(2a2+ab-b2)=9a2-8a2-4ab+4b2=a2-4ab+4b2=(a-2b)22b≥0)时,得当(a-【不完全的一元二次方程的解法】在不完全的一元二次方程中,一次项与常数至少缺一项。

即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法:例:解下列一元二次方法:.3.(m2+1)x2=0;其中m2+1>0,x2=0.∴ x1=x2=0.4.16x2-25=06x2=25。

一元二次方程定义及其解法(配方法)

一元二次方程定义及其解法(配方法)

一元二次方程定义及其解法(配方法) 一元二次方程的定义及其解法(配方法)一、目标导航1.掌握一元二次方程的定义及a、b、c的含义;2.掌握配方法解一元二次方程的方法。

二、教学重难点重点:1.掌握一元二次方程的定义及a、b、c的含义;2.掌握配方法解一元二次方程的方法。

难点:配方法解一元二次方程。

三、走进教材知识点一:一元二次方程的定义1.一元二次方程的定义:方程两边都是整式,只含有一个未知数,并且未知数的最高次数为2的方程叫做一元二次方程。

2.一元二次方程的一般形式:ax^2+bx+c=0(其中a≠0),其中ax^2叫做二次项,a叫做二次项系数,bx叫做一次项,b叫做一次项系数,c叫做常数项。

举例:x^2+2x-3=0.3.一元二次方程的解:能使一元二次方程的左右两边相等的未知数的值叫做一元二次方程的解,一元二次方程的解也可以叫做一元二次方程的根。

自主练:下列方程中,是一元二次方程的有。

(填序号)①x=5;②x+y-3=0;③3x^2+2x-5x-3=0;④x(x+5)=x-2x^2;⑤2x^2-5x+8=0;⑥4x^2-2y^2=0.知识点二:配方法解一元二次方程1.解一元二次方程的思路:降次,即把二次降为一次,把一元二次方程转化为一元一次方程,化未知为已知,化繁为简,这是转化思想的体现。

2.配方法:利用配方法将一个一元二次方程的左边配成完全平方形式,而右边是一个非负数,即把一个方程转化成(x+n)^2=p(p≥0)的形式,这样解方程的方法叫做配方法。

3.配方法具体操作:1)对于一个二次三项式,当二次项系数为1时,配上一次项系数一半的平方就可以将其配成一个完全平方式,举例:解方程x^2+2x-3=0.2)当二次项系数不为1时,首先把二次项系数化为1,方程两边除以二次项系数,然后再利用(1)的步骤完成配方。

举例:解方程2x^2+2x-3=0.4.(x+n)^2=p(p≥0)的解法:对于方程(x+n)^2=p(p≥0),它的左边是一个完全平方式,右边是非负数,利用平方根的定义,可以将这个方程进行降次,降为两个一元一次方程,即x+n=√p和x+n=-√p,解两个一元一次方程即可。

一元二次方程的解法求根公式

一元二次方程的解法求根公式

一元二次方程的解法求根公式一元二次方程求根公式是奥朗德-费马定理:一、定义:1、令一元二次方程ax²+bx+c=0,其中a≠0;2、则此方程的根为:二、定理:x=(-b±√(b²-4ac))/(2a)三、证明:A.左端的a、b、c可以用任意实数进行替换:ax²+bx+c=0B.用公式求根:设此方程的根分别为:x₁理为X1和x₂,令x₁和x₂分别代入一元二次方程,则ax²+bx+c=ax₁²+bx₁+c=ax₂²+bx₂+c=0C.合并项:根据基本思想,设分子和分母都不等于零,则分子式与分母式分别等于零,可得:ax₁x₂ + bx₁ + bx₂ + c = 0ax₁ + ax₂ + b = 0D. 分别令等号两边各项等于零:由上式可知,方程的解法为:x₁x₂=-c/a (1)x₁+x₂=-b/a (2)E. 由(1)和(2)式相减:x₁-x₂= (b²-4ac)/(2a)F. 将此式两边同乘以数a:a(x₁-x₂)= (b²-4ac)G.令上式两边各项等于零,可得:a(x₁+x₂)= -b (3)H.将 (1)和(3)式代入:x₁(x₂+b/a)= -c/aI. 令等号两边各项相除:x₁= (-b±√(b²-4ac))/(2a)J. 令等号右边各项相除:x₂= (-b±√(b²-4ac))/(2a)K. 则该一元二次方程的解法为:x=(-b±√(b²-4ac))/(2a)四、总结:由上述证明,一元二次方程的求根公式便是奥朗德 - 费马定理:x=(-b±√(b²-4ac))/(2a)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 一元二次方程及其解法一·基本概念理解 1 一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

2、一元二次方程的解法 (1)、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

(2)、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (3)、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c (4)、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(5)、韦达定理若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则a b x x -=+21,acx x =21。

以上的就称为韦达定理(或称为根与系数的关系)利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=ab-,二根之积=a c 也可以表示为a b x x -=+21,acx x =21。

利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 3、一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆I 当△>0时,一元二次方程有2个不相等的实数根; II 当△=0时,一元二次方程有2个相同的实数根; III 当△<0时,一元二次方程没有实数根4、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a bx x -=+21,a cx x =21。

也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

5、一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。

直接开平方法是最基本的方法。

公式法和配方法是最重要的方法。

公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算根的判别式的值,以便判断方程是否有解。

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。

但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。

(三种重要的数学方法:换元法,配方法,待定系数法)。

二.例题讲解:例1:解一元二次方程(1)42=x (2)062=--x x (3)01322=++x x 【例题解析】:(1)可以利用直接开方法或利用因式分解法或公式法;(2)可以利用配方法或公式法或因式分解法;(3)可以利用配方法或公式法或因式分解法。

解:(1)a 直接开方法:242±=⇒=x xb 因式分解法:220)2)(2(04422-==⇒=-+⇒=-⇒=x x x x x x 或 (2)a 配方法: 解:3225212521)25(425)21()21(6)21(2126062222222=-=⇒±=⇒±=-⇒==-⇒+=+••-⇒=-⇒=--x x x x x x x x x x x 或 b 公式法 :使用该方法首先要将方程转化为02=++c bx ax ,再准确找出该一元二次方程中的c b a ,,的值是做对该题的重要前提和保证。

由题可知:6,1,1-=-==c b a所以 3212)6(14)1()1(2=-=⇒⨯-⨯⨯--±--=x x x 或(3)方法一:(配方法)21141434143161)43()43(21)43(432212313201322222222-=-=⇒±-=⇒±=+⇒=+⇒+-=+•+⇒-=+⇒-=+⇒=++x x x x x x x x x x x x x 或方法二:(公式法)由题可知: 1,3,2===c b a所以:21122124332-=-=⇒⨯⨯⨯-±-=x x x 或方法三:(因式分解)2110)1)(12(-=-=⇒=++x x x x 或注:在求一元二次方程的根之前,首先要将方程转化成标准形式)0(02≠=++a c bx ax ,再对它的∆的取值情况进行判定;最后再对求根的方法进行选取,如配方,公式,还是因式分解法,特别是配方法的知识基础是建立在完全平方公式:222)(2b a b ab a ±=+±之上的。

例2:用直接开方法解一元二次方程(1) 0492=-x (2) 4)1(2=-x (3) 3)1(2=+x (4) 9)1(162=-x解析:(1)由题可知:3232329449049222=-=⇒±=⇒=⇒=⇒=-x x x x x x 或 (2) 由题可知:1321214)1(2-==⇒±=⇒±=-⇒=-x x x x x 或(3) 由题可知:313131313)1(2--=+-=⇒±-=⇒±=+⇒=+x x x x x 或(4)由题可知:4147431431169)1(9)1(1622==⇒±=⇒±=-⇒=-⇒=-x x x x x x 或 注:求一元二次不等式的根方法中,直接开方法是最基础的方法。

【练一练】:用直接开平方法解下列一元二次方程。

(1)0142=-x (2)2)3(2=-x(3)()512=-x (4)()162812=-x例3:用配方法解一元二次方程(1)0822=-+x x (2)01322=++x x (3)0132=--x x (4)01842=+--x x 解析:(1)由题可知:9)1(1811282082222222=+⇒+=+••+⇒=+⇒=-+x x x x x x x423131-==⇒±-=⇒±=+⇒x x x x 或(2) 由题可知:21141434143161)43()43(21)43(432212313201322222222-=-=⇒±-=⇒±=+⇒=+⇒+-=+•+⇒-=+⇒-=+⇒=++x x x x x x x x x x x x x 或(3) 由题可知:22222)23(1)23(23213013+=+••-⇒=-⇒=--x x x x x x2132321323413)23(2±-=⇒±=+⇒=+⇒x x x21332133+-=--=⇒x x 或 (4) 由题可知:212184018401842222=+⇒=+⇒=-+⇒=+--x x x x x x x x 26123)1(1211122222±=+⇒=+⇒+=+••+⇒x x x x 262262261+-=--=⇒±-=⇒x x x 或 注解:配方法的知识基础是建立在完全平方公式:222)(2b a b ab a ±=+±之上的。

【练一练】:用配方法解下列一元二次方程。

1、.0662=--y y2、x x 4232=-3、9642=-x x 4、0542=--x x5、01322=-+x x6、07232=-+x x7、01842=+--x x 8、041212=+--x x例4:用公式法解一元二次方程(1)0322=--x x (2)01322=++x x (3)132=-x x (4)1842-=x x 解析(1)由题可知: 3,2,1-=-==c b a所以:1312)3(14)2()2(2-==⇒⨯-⨯⨯--±--=x x x 或 (2)由题可知: 1,3,2===c b a所以:21122124332-=-=⇒⨯⨯⨯-±-=x x x 或(3)由题可知: 1,3,2===c b a所以:21122124332-=-=⇒⨯⨯⨯-±-=x x x 或(4)由题可知: 1,3,2===c b a所以:21122124332-=-=⇒⨯⨯⨯-±-=x x x 或注解:使用公式法求一元二次方程的根,要将方程转化为)0(02≠=++a c bx x a 的形式,再准确找出对应的c b a ,,的值。

【练一练】用公式解法解下列方程。

1、0822=--x x2、22314y y -=3、y y 32132=+ 4、01522=+-x x5、1842-=--x x 6、02322=--x x7、041212=+--x x 8、07232=-+x x例5:用因式分解法解一元二次方程 (1)0822=-+x x (2)01322=++x x (3)032=-x x (4)0342=+--x x解析:多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.对于用因式分解法求一元二次方程根的问题,首先将方程转化为)0(02≠=++a c bx x a 或)0(02≠=+a bx x a 的形式,第一种形式)0(02≠=++a c bx x a 再考虑用因式分解中十字相乘法,第二种形式)0(02≠=+a bx x a 就只需提取公因数(式)即可。

相关文档
最新文档