一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法(基础)
一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法—知识讲解(基础)

【学习目标】

1.了解配方法的概念,会用配方法解一元二次方程;

2.掌握运用配方法解一元二次方程的基本步骤;

3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能

力.

【要点梳理】

知识点一、一元二次方程的解法---配方法

1.配方法解一元二次方程:

(1)配方法解一元二次方程:

将一元二次方程配成

的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.

(2)配方法解一元二次方程的理论依据是公式:

.

(3)用配方法解一元二次方程的一般步骤:

①把原方程化为的形式;

②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;

④再把方程左边配成一个完全平方式,右边化为一个常数;

⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.

要点诠释:

(1)配方法解一元二次方程的口诀:一除二移三配四开方;

(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.

(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.

知识点二、配方法的应用

1.用于比较大小:

在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.

2.用于求待定字母的值:

配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.

3.用于求最值:

“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.

4.用于证明:

“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.

要点诠释:

“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.

【典型例题】

类型一、用配方法解一元二次方程

1.用配方法解方程:2x2+3x﹣1=0.

【思路点拨】

首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.

【答案与解析】

解:2x2+3x﹣1=0

x2+

x2+

x+

x1=

【点评】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行:

(1)把形如ax2+bx+c=0(a≠0)的方程中二次项的系数化为1;

(2)把常数项移到方程的右边;

(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n≥0)的方程;

(4)用直接开平方的方法解此题.

举一反三:

【变式】用配方法解方程.

(1)x2-4x-2=0; (2)x2+6x+8=0.

【答案】(1)方程变形为x2-4x=2.

两边都加4,得x2-4x+4=2+4.

利用完全平方公式,就得到形如(x+m)2=n的方程,即有(x-2)2=6.

解这个方程,得x-2=或x-2=-.

于是,原方程的根为x=2+或x=2-.

(2)将常数项移到方程右边x2+6x=-8.

两边都加“一次项系数一半的平方”=32,得 x2+6x+32=-8+32,

∴ (x+3)2=1.

用直接开平方法,得x+3=±1,

∴ x=-2或x=-4.

类型二、配方法在代数中的应用

2.若代数式221078M a b a =+-+,2251N a b a =+++,则M N -的值( )

A.一定是负数 B.一定是正数 C.一定不是负数 D.一定不是正数

【答案】B ;

【解析】(作差法)2222

1078(51)M N a b a a b a -=+-+-+++ 2222107851a b a a b a =+-+----

29127a a =-+291243a a =-++2(32)30a =-+>.故选B.

【点评】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零

而比较出大小.

3.用配方法证明:二次三项式﹣8x 2

+12x ﹣5的值一定小于0. 【答案与解析】 解:﹣8x 2+12x ﹣5=﹣8(x 2﹣x )﹣5

=﹣8[x 2﹣x+()2]﹣5+8×()2

=﹣8(x ﹣)2﹣,

∵(x ﹣)2≥0,

∴﹣8(x ﹣)2≤0,

∴﹣8(x ﹣)2﹣<0,

即﹣8x 2+12﹣5的值一定小于0.

【点评】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.

举一反三:

【高清ID 号:388499

关联的位置名称(播放点名称):配方法与代数式的最值—例4变式1】

【变式】求代数式 x 2+8x+17的最小值

【答案】x 2+8x+17= x 2+8x+42-42+17=(x+4)2+1

∵(x+4)2≥0,

∴当(x+4)2=0时,代数式 x 2+8x+17的最小值是1.

4.已知223730216

b a a b -+-+=,求4a b -的值. 【思路点拨】

解此题关键是把3716拆成91416+ ,可配成两个完全平方式. 【答案与解析】

将原式进行配方,得

2291304216b a a b ????-++-+= ? ????

?, 即2231024a b ????-+-= ? ??

???, ∴ 302a -

=且104

b -=, ∴ 32a =,14b =.

∴ 3312222

a -=-=-=-. 【点评】本题可将原式用配方法转化成平方和等于0的形式,进而求出a .

b 的值.

一元二次方程的解法(二)配方法—巩固练习(基础)

【巩固练习】

一、选择题

1. (2015?滨州)用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( )

A .(x+3)2=1

B .(x ﹣3)2=1

C .(x+3)2=19

D .(x ﹣3)2=19

2.下列各式是完全平方式的是( )

A .277x x ++

B .244m m --

C .211216n n +

+ D .222y x -+ 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( )

A .3

B .-3

C .3±

D .以上都不对

4.用配方法将二次三项式a 2-4a+5变形,结果是( )

A .(a-2)2+1

B .(a+2)2-1

C .(a+2)2+1

D .(a-2)2-1

5.把方程x 2+3=4x 配方,得( )

A .(x-2)2=7

B .(x+2)2=21

C .(x-2)2=1

D .(x+2)2=2

6.用配方法解方程x 2+4x=10的根为( )

A .2.-2..

二、填空题

7.(1)x 2+4x+ =(x+ )2;(2)x 2-6x+ =(x- )2;(3)x 2+8x+ =(x+ )2.

8.若223(2)1x mx x ++=--,那么m =________.

9.若226x x m ++是一个完全平方式,则m 的值是________.

10.求代数式2x 2-7x+2的最小值为 .

11.(2014?资阳二模)当x= 时,代数式﹣x 2﹣2x 有最大值,其最大值为 . 12.已知a 2+b 2-10a-6b+34=0,则

的值为 .

三、解答题

13. 用配方法解方程

(1) (2)221233

x x +=

14. (2014秋?西城区校级期中)已知a 2+b 2﹣4a+6b+13=0,求a+b 的值.

15.已知a ,b ,c 是△ABC 的三边,且222

6810500a b c a b c ++---+=.

(1)求a ,b ,c 的值;

(2)判断三角形的形状.

【答案与解析】

一、选择题

1.【答案】D ;

【解析】方程移项得:x 2﹣6x=10,配方得:x 2﹣6x+9=19,即(x ﹣3)2=19,

故选D .

2.【答案】C ; 【解析】211216n n ++2

14n ??=+ ???

. 3.【答案】C ;

【解析】 若x 2+6x+m 2是一个完全平方式,则m 2=9,解得m=3±;

4.【答案】A ;

【解析】a 2-4a+5= a 2-4a+22-22+5=(a-2)2+1 ;

5.【答案】C ;

【解析】方程x 2+3=4x 化为x 2-4x=-3,x 2-4x+22=-3+22,(x-2)2=1.

6.【答案】B ;

【解析】方程x 2+4x=10两边都加上22得x 2+4x+22=10+22,x=-214

二、填空题

7.【答案】(1)4;2; (2)9;3; (3)16;4.

【解析】配方:加上一次项系数一半的平方.

8.【答案】-4;

【解析】22343x mx x x ++=-+,∴ 4m =-.

9.【答案】±3;

【解析】2239m ==.∴ 3m =±.

10.【答案】-338;

【解析】∵2x 2-7x+2=2(x 2-72x )+2=2(x-74)2-338≥-338,∴最小值为-338

, 11.【答案】-1,1

【解析】∵﹣x 2﹣2x=﹣(x 2+2x )=﹣(x 2+2x+1﹣1)=﹣(x+1)2+1,

∴x=﹣1时,代数式﹣x 2﹣2x 有最大值,其最大值为1;

故答案为:﹣1,1.

【解析】 -3x 2+5x+1=-3(x-

56)2+3712≤3712,? ∴最大值为

3712. 12.【答案】4.

【解析】∵a 2+b 2-10a-6b+34=0

∴a 2-10a+25+b 2-6b+9=0

∴(a-5)2+(b-3)2=0,解得a=5,b=3,

=4.

三、解答题

13.【答案与解析】

(1)

x 2-4x-1=0

x 2-4x+22=1+22

(x-2)2=5

x-2=5 x 1=5x 2=5

(2) 221233

x x += 226x x +=

2

132x x += 222111()3()244

x x ++=+ 2149()416

x += 1744

x +=± 132x = 22x =-

14.【答案与解析】

解:∵a 2+b 2﹣4a+6b+13=0,

∴a 2﹣4a+4+b 2+6b+9=0,

∴(a ﹣2)2+(b+3)2=0,

∴a ﹣2=0,b+3=0,

∴a=2,b=﹣3,

∴a+b=2﹣3=﹣1.

15.【答案与解析】

(1)由2226810500a b c a b c ++---+=,得222

(3)(4)(5)0a b c -+-+-= 又2(3)0a -≥,2(4)0b -≥,2

(5)0c -≥,

∴ 30a -=,40b -=,50c -=,

∴ 3a =,4b =,5c =.

(2)∵ 222345+= 即222a b c +=,

∴ △ABC 是以c 为斜边的直角三角形.

解一元二次方程(直接开方法-配方法)练习题100+道

解一元二次方程练习题(配方法) 1.用适当的数填空: ①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2 2.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 4.把方程x 2+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 5.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D .6.用配方法解下列方程: (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2 -x-4=0 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662 =--y y 2、x x 4232 =- 3、9642=-x x 4、01322=-+x x 5、07232=-+x x 6、01842 =+--x x 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232 =- 3、9642=-x x 2 2 2

一元二次方程专题复习讲义(知识点-考点-题型总结)-----hao---use--ok

一元二次方程专题复习 一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+ -x m x m 是关于x 的一元二次方程,则m 的取值范 围是 。 ★★★4、若方程2x2=0是一元二次方程,则下列不可能的是( ) 2 21 C21 1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程 311=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

(完整版)解一元二次方程配方法练习题

- 1 - 解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空: ①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2 + x+ =(x+ )2 ;④ x 2 -9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 5.若 x 2+6x+m 2是一个完全平方式,则 m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D . 9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2-x-4=0 (5)6x 2-7x+1=0 (6)4x 2-3x=52 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。 12.将二次三项式4x 2-4x+1配方后得( ) A .(2x -2)2+3 B .(2x -2)2-3 C .(2x+2)2 D .(x+2)2-3 13.已知x 2-8x+15=0,左边化成含有x 的完全平方形式, 其中正确的是( ) A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 14.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m 的值是 ;(2)解这个方程. 15.如果x 2-4x+y 2 ,求(xy )z 的值

配方法解一元二次方程的教案

配方法解一元二次方程的教案 教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。 一、教学目标 (一)知识目标 1、理解求解一元二次方程的实质。 2、掌握解一元二次方程的配方法。 (二)能力目标 1、体会数学的转化思想。 2、能根据配方法解一元二次方程的一般步骤解一元二次方程。 (三)情感态度及价值观 通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。 二、教学重点 配方法解一元二次方程的一般步骤 三、教学难点 具体用配方法的一般步骤解一元二次方程。 四、知识考点 运用配方法解一元二次方程。 五、教学过程 (一)复习引入 1、复习:

解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。 2、引入: 二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。 (二)新课探究 通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注意力,引发学生思考。 问题1: 一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗? 问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来, 具体解题步骤: 解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2 列出方程:60x2=1500 x2=25 x=±5 因为x为棱长不能为负值,所以x=5 即:正方体的棱长为5dm。 1、用直接开平方法解一元二次方程

2.2《一元二次方程的解法》专题训练题及答案

湘教版九年级数学上册 第2章 反比例函数 一元二次方程 2.2 一元二次方程的解法 根据平方根的意义解一元二次方程 专题训练题 1.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( ) A .2 B .0 C .0或2 D .0或-2 2.若关于x 的一元二次方程ax 2+bx +c =0有一个根为1,则下列结论正确的是( ) A .a +b +c =1 B .a +b +c =0 C .a -b +c =0 D .a -b +c =1 3.已知m 是一元二次方程x 2-x -1=0的一个根,那么代数式m 2-m 的值等于( ) A .1 B .0 C .-1 D .2 4.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( ) A .1 B .-1 C .0 D .-2 5.已知关于x 的一元二次方程(x +1)2-m =0有实数根,则m 的取值范围是( ) A .m ≥-34 B .m ≥0 C .m ≥1 D .m ≥2 6.方程x 2-3=0的根是( ) A .x =3 B .x 1=3,x 2=-3 C .x = 3 D .x 1=3,x 2=- 3 7.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( ) A .x -6=-4 B .x -6=4 C .x +6=4 D .x +6=-4 8.方程-4x 2+1=0的解是( ) A .x =12 B .x =-12 C .x =±12 D .x =±2 9.方程(x -4)2=11的根为( ) A .x 1=-4+11,x 2=-4-11 B .x 1=4+11,x 2=4-11 C .x 1=11+4,x 2=11-4 D .x 1=4+11,x 2=-4-11 10.对于形如(x +m )2=n 的方程,它的解的正确表述为( ) A .都能用直接开平方法求解得x =-m ±n B .当n ≥0时,x =m ±n C .当n ≥0时,x =-m ±n D .当n ≥0时,x =±n -m 11.下列方程中,适合用直接开平方法求解的是( ) A .x 2+5x +1=0 B .x 2-6x -4=0 C .(x +3)2=16 D .(x +2)(x -2)=4x 12.方程4x 2-81=0的解为________. 13.解下列方程: (1)16x 2=25; (2)(2x +1)2-1=0.

解一元二次方程配方法练习题

! 解一元二次方程配方法练习题 1.用适当的数填空: ①、x2+6x+ =(x+ )2; ②、x2-5x+ =(x-)2; ③、x2+ x+ =(x+ )2; ④、x2-9x+ =(x-)2 2.将二次三项式2x2-3x-5进行配方,其结果为_________. 3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______. ! 4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,?所以方程的根为_________. 5.若x2+6x+m2是一个完全平方式,则m的值是() A.3 B.-3 C.±3 D.以上都不对 6.用配方法将二次三项式a2-4a+5变形,结果是() A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1 7.把方程x+3=4x配方,得() A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2 8.用配方法解方程x2+4x=10的根为() 【 A.2.-2.. 9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值() A.总不小于2 B.总不小于7 C.可为任何实数 D.可能为负数 10.用配方法解下列方程: (1)3x2-5x=2.(2)x2+8x=9 #

(3)x 2+12x-15=0 (4)4 1 x 2 -x-4=0 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ; ? (2)求-3x2+5x+1的最大值。 12. 用配方法证明: (1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0. | 13. 某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长百分率. \

初中数学 配方法解一元二次方程

配方法解一元二次方程 教学目标 1、理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 2、通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤. 重点:讲清“直接降次有困难”,如x2+6x-16=0的一元二次方程的解题步骤.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧. 【课前预习】 导学过程 阅读教材部分,完成以下问题 解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 填空: (1)x2+6x+______=(x+______)2;(2)x2-x+_____=(x-_____)2 (3)4x2+4x+_____=(2x+______)2.(4)x2-x+_____=(x-_____)2 问题:要使一块长方形场地的长比宽多6cm,并且面积为16cm2,场地的长和宽应各是多少?

思考? 1、以上解法中,为什么在方程x 2+6x=16两边加9?加其他数行吗? 2、什么叫配方法? 3、配方法的目的是什么? 这也是配方法的基本 4、配方法的关键是什么? 用配方法解下列关于x 的方程 (1)2x 2-4x-8=0 (2)x 2-4x+2=0 (3)x 2-21x-1=0 (4)2x 2+2=5 总结:用配方法解一元二次方程的步骤: 【课堂活动】 活动1、预习反馈 活动2、例习题分析 例1用配方法解下列关于x 的方程: (1)x 2-8x+1=0 (2)2x 2+1=3x (3)3x 2-6x+4=0

一元二次方程及一元二次方程的解法测试题(绝对经典)

. 第二章一元二次方程单元测验 一、选择题:(每小题3分,共36分) 1. 下列方程中是一元二次方程的是 ( ) (A )22)1(2-=-x x (B )01232=+-x x (C )042=-x x (D )02352 =-x x 2. 方程1)14(2 =-x 的根为( ) (A )4121==x x (B )2121==x x (C ),01=x 212=x (D ),2 1 1-=x 02=x 3. 解方程 7(8x + 3)=6(8x + 3)2 的最佳方法应选择( ) (A )因式分解法 (B )直接开平方法 (C )配方法 (D )公式法 4. 下列方程中, 有两个不相等的实数根的方程是( ) (A )x 2 –3x + 4=0 (B )x 2–x –3=0 (C )x 2–12x + 36=0 (D )x 2–2x + 3=0 5、已知m是方程012 =--x x 的一个根,则代数m2 -m的值等于 ( ) A 、1 B 、-1 C 、0 D 、2 6、若方程0152 =--x x 的两根为的值为则 、212111,x x x x +( ) A 、5 B 、51 C 、5- D 、5 1- 7. 以知三角形的两边长分别是2和9, 第三边的长是一元二次方程x 2 –14x + 48=0的解, 则这个三角形 的周长是( )(A )11 (B )17 (C )17或19 (D )19 8. 下列说法中正确的是 ( )(A )方程2 80x -=有两个相等的实数根; (B )方程252x x =-没有实数根;(C )如果一元二次方程20ax bx c ++=有两个实数根,那么0?=; (D )如果a c 、异号,那么方程2 0ax bx c ++=有两个不相等的实数根. 9. 若一元二次方程(1–2k)x 2 + 12x –10=0有实数根, 则K 的最大整数值为( ) (A )1 (B )2 (C )–1 (D )0 10.把方程2x 2 -3x+1=0化为(x+a)2 =b 的形式,正确的是( ) A. 23162x ??- = ???; B.2312416x ??-= ???; C. 2 31416x ? ?-= ? ?? ; D.以上都不对 11、 若方程02 =++q px x 的两个实根中只有一个根为0,那么 ( ) (A )0==q p ; (B )0,0≠=q p ; (C )0,0=≠q p ; (D )0,0≠≠q p . 12、下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A . 若x 2=4,则x =2 B .方程x (2x -1)=2x -1的解为x =1 C .若x 2 +2x +k =0有一根为2,则8=-k D .若分式1 2 32-+-x x x 值为零,则x =1,2 二、填空题:(每小题3分,共30分) 1、方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。 2. 当x =________时,分式1 4 32+--x x x 的值为零。 3. 若关于x 的方程02)1(2 =+--m mx x m 有实数根,则m 的取值范围是______ 4.若方程042 2 =++m x x ,则m= . 5.已知0822 =--x x , 那么=--7632 x x _______________. 6. 若关于x 的一元二次方程02 =++c bx ax (a ≠0)的两根分别为1,—2,则b a -的值为______. 7. 若2 2 2 (3)25a b +-=,则22 a b +=____ 8.若一元二次方程02 =++c bx ax 中,024=+-c b a ,则此方程必有一根为________. 9、若两个连续整数的积是20,则他们的和是________。 10.某企业前年的销售额为500万元,今年上升到720万元,如果这两年平均每年增长率相同,则去年销售额为 11. 如果x x 12、是方程x x 2 720-+=的两个根,那么x x 12+=____________。 13. 已知一元二次方程x x 2 350--=的两根分别为x x 12、,那么x x 12 22 +的值是____。 14. 若方程x x k 2 20-+=的两根的倒数和是 8 3 ,则k =____________。 15.已知关于x 的方程(2k+1)x 2 -kx+3=0,当k______时,?方程为一元二次方程,? 当k______时,方程为一元一次方程,其根为______.

一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法—知识讲解(基础) 【学习目标】 1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能 力. 【要点梳理】 知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式: . (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 知识点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释: “配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. 【典型例题】

小专题(一)-一元二次方程的解法

专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0;(2)3x2-27=0; (3)(x-2)2=9;(4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0; (3)3x2-6x+4=0; (4)2x2+7x+3=0.

3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1). 4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0;

(3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0; (2)5(x-3)2=x2-9;

(3)t 2-22t +18=0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12. 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=± 5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13.∵ 实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516. 直接开平方,得x +74=±54.∴x 1=-12,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1 = 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3=5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =--4ac =32-4×4×(-2)=41>=-3±412×4=-3±418.∴x 1=-3+418,x 2=-3-418 . (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

用配方法解一元二次方程教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

2.1.2用配方法解一元二次方程 教学目标 【知识目标】 使学生会用配方法解一元二次方程。 【技能目标】 经历列方程解决实际问题的过程,熟练地运用配方法解一元二次方程,使学生理解转化变形思想,掌握一些转化的技能。 【情感目标】 通过配方法的探索活动,培养学生勇于探索的良好学习习惯,感受数学的严谨性。 教学重点难点 【重点】用配方法解一元二次方程 【难点】配方的过程 教法:引导、观察、归纳、探究 教具:多媒体、课件 教学过程: 一、复习回顾 上一节我们学习了配方法,首先我们回顾上一节学习的内容: 1、配方法的具体步骤是什么? 对二次三项式ax 2+bx+c 配方的一般步骤是: (1)把ax 2+bx+c 变形为a (x 2+a b x )+c (2)配方为:a[x 2 +a b x+(a b 2)2-224a b ]+c

(3)整理成a(x+a b 2)2+a b a c 442 的形式 议一议:配方的关键是什么? 点拨:配方的关键是把x 2+a b x 加上一次项系数一半的平方(a b 2)2。 2、将下列各式配成完全平方式。 (1)a 2+12a+ 62 =(a+ 6 )2; (2)x 2 - x +41=(x- 2 1 )2 二、讲授新课 这一节我们就来学习一下用配方法解一元二次方程 (一) 提出问题 归纳定义 1、 提出问题 如图 现有长方形的纸片一张,长20cm ,宽14cm ,在其四个角上各剪去一个边长相等的小正方形,然后把四边折起,如果恰好能将其做成底面积是72cm 2的无盖长方体纸盒,求剪去的小正方形边长是多少? 分析: 设剪去的小正方形的边长是xcm ,则盒子底面长方形的长是(20-2x )cm,宽是(14-2x )cm 。根据题意,列出方程

解一元二次方程练习题(直接开平方法、配方法)

? 解一元二次方程(直接开平方法、配方法) 1. 用直接开平方法解下列方程: (1)2225x =; (2)2 1440y -=. 2. 解下列方程: (1)2 (1)9x -=; (2)2(21)3x +=; ( (3)2(61)250x --=. (4)281(2)16x -=. 3. 用直接开平方法解下列方程: (1)25(21)180y -=; (2) 21(31)644 x +=; 【 (3)26(2)1x +=; (4)2 ()(00)ax c b b a -=≠,≥ … 4. 填空 (1)28x x ++( )=(x + )2 . (2)223 x x - +( )=(x - )2. (3)2b y y a -+( )=(y - )2. 5. 用适当的数(式)填空: 23x x -+ (x =- 2);

2x px -+ =(x - 2) % 23223(x x x +-=+ 2)+ . 6. 用配方法解下列方程 1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02 x x ---+= ' 7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 8. 用配方法解方程. 23610x x --= 22540x x --= ? 9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程 (1)210x x --=; (2)23920x x -+=. ( 12. 用适当的方法解方程 (1)23(1)12x +=; (2)2 410y y ++=;

配方法解一元二次方程知识点及练习

配方法解一元二次方程 知识点一、配方法解一元二次方程 利用完全平方公式222 ()2a b a ab b ±=±+ 将一元二次方程一般式20ax bx c ++= 转换成2x p = 或2()x m n += 的形式。 知识点二、配方法解一元二次方程的一般步骤: ① 移项(常数项右移) ② 等式两边同除以二次项系数a (或等式两边同乘 1a ) ③ 等式两边同加2 ()2b ④ 合并成2x p = 或2()x m n += ⑤ 直接开平方法 例1:2210x x +-=(配方法) 解: 222222212210 21 1122 1111()()2424 19()416 1344 1,12x x x x x x x x x x x x +-=+=+ =++=++=+=±==-

配方法巩固练习 1. 配方 22_____(__)x x x ++=+ 228_____(__)x x x ++=+ 223-_____(-__)2x x x += 227_____(__)3 x x x ++=+ 2248_____(__)x x x ++=+ 229-18_____(__)x x x +=+ 2. 最值 已知代数式223x x ++ ,配方可得________________,代数式有_____值,最值为____ 3. 非负性 证明:2246130x y x y ++++≥ 课堂练习 一、选择题 1.用配方法解方程2 680x x --=时,配方结果正确的是( ) A.2(3)17x -= B. 2(3)14x -= C.2(6)44x -= D. 2(3)1x -= 2.已知方程22160x x m -+= 可配方成2 (8)0x -=的形式,则m 的值为( ) A.8 B.-8 C.±8 D.16 3.用配方法解2+410x x =的根是( ) A.222- D,2-4.把2-1x x =配方得( ) A.21 3()24x -= B. 2(1)2x -= C. 215()24x += D. 25(1)4 x -= 5. 已知方程240x x m -+= 可配方成2(2)0x -=的形式,则m 的值为( ) A.2 B.4 C.±2 D.±4

一元二次方程解法配方法教学设计

八年级数学教学设计 课题:一元二次方程的解法(配方法)第1课时设计人审核人执教人教学预设时间 一、学习目标 1.正确理解并会运用配方法将形如x2+px+q=0方程 变形为(x+m)2=n(n≥0)类型. 2.会用配方法解形如ax2+bx+c=0(a≠0)一元二次方程. 3.了解新、旧知识的内在联系及彼此的作用. 二、学习“三点”: 重点:用配方法解一元二次方程. 难点:正确理解把x2+ax型的代数式配成完全平方式 易错点:忽视了二次项的系数 三、教学准备:多媒体课件 四、教学注意事项: 1、温故的针对性要强,梯度不能过大 2、重难点把握准确:二次项系数不能忽视 五、课堂流程: 第一环:温故导新 (一) 温故 1、直接开平方: 2、完全平方公式:a2±2ab+b2=(a±b)2.课前修订或操作注意事项 () 20 x a a =≥ x a =±

3、填空: 1)x2-2x+()=[x+()]2 2)x2+6x+()=[x-()]2 (二)导新 怎样解方程, 方程如何解呢? 第二环:自主合作新知初探 (三)指导自学 自学教材23-24页的内容(8-10分) 1、对于配方法的探索先由自主学习、小组合作、分析、 交流、总结。 2、学生自主学习例1完成解题过程 第三环:师生对话探究新知 (四)点拨拓展 1、将方程x2-2x-3=0化为(x-m)2=n的形式,指出m,n 分别是多少? 练习:把下列方程化为(x+m)2=n的形式 概念点拨:通过配成完全平方式来解一元二次方程的方法,叫做配方法。课前修订或操作注意事项 ()2 215 x-= 2692 x x ++=

2、例题板演,生纠错。 3、引导学生观察例题的求解过程,总结出配方法解一元二次方程的一般步骤: 1、 化二次项系数为1; 2、 移项; 3、 配方;(构建完全平方) 4、 开方。 配方的关键-----方程两边都加上一次项系数一半的平方。 4、对于x 2+ax 型的代数式,只需再加上一次项系数一半的 平方即可完成上述转化工作. (五)强化训练 教材p25练习1、2题; 归一总结: 1.本节课学习用配方法解一元二次方程,其步骤如下: (1)化二次项系数为1. (2)移项,使方程左边为二次项,一次项,右边为常数项. (3)配方.依据等式的基本性质和完全平方公式,在方程的左 右两边同时加上一次项系数一半的平方. (4)用直接开平方法求解. 配方法的关键步骤是配方.配方法是解一元二次方程的通法. 2.配方法的理论依据是完全平方公式: a 2±2a b +b 2=(a ±b )2,配方法以直接开平方法为基础 课前修订或操作 注意事项

专题:一元二次方程的八种解法(后附答案)【精品】

专题:一元二次方程的八种解法 方法1 形如x2=p或(mx+n)2=p(p≥0)时,用直接开平方法求解用直接开平方法解一元二次方程的三个步骤: (1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式; (2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式; (3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解. 1.用直接开平方法解下列方程: (1)x2-25=0; (2)4x2=1; (3)81x2-25=0; (4)(2y-3)2-64=0; (5)3(x+1)2=1 3 ; (6)(3x+2)2=25; (7)(x+1)2-4=0; (8)(2-x)2-9=0.

方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解用配方法解一元二次方程的“五步法” (1)移项:使方程的左边为二次项和一次项,右边为常数项. (2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1. (3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x+n)2=p的形式. (4)开方:若p≥0,则两边直接开平方得到一元一次方程;若p<0,则原方程无解. (5)求解:解所得到的一元一次方程,求出原方程的解. 2.用配方法解下列方程: (1)x2-2x-2=0; (2)x2-10x+29=0; (3)x2+2x=2; (4)x2-6x+1=2x-15;

3.用配方法解下列方程: (1)3x 2 +6x -5=0; (2)12 x 2-6x -7=0. (3)x 2 +16x -13=0; (4)2x 2-3x -6=0; 方法3 能化成形如(x+a )(x+b )=0时,用因式分解法求解 用因式分解法解一元二次方程的“四步法” (“右化零,左分解,两因式,各求解”) 4.用因式分解法解下列方程: (1)x 2-8x =0; (2)5x 2+20x +20=0;

一元二次方程(配方法)

21.2 解一元二次方程 教学目标 1. 掌握配方法、公式法、因式分解法解一元二次方程的基本步骤和过程. 2. 了解一元二次方程求根公式的推导过程,会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等. 3. 了解一元二次方程的根与系数的关系. 4. 能根据具体问题的实际意义,检验方程的解是否合理. 教学重点 1. 掌握配方法、公式法、因式分解法解一元二次方程的基本步骤和过程,明确各种解法的来源和特点. 2. 一元二次方程求根公式的推导过程. 教学难点 1. 在具体问题时,如何根据方程的特点恰当选择解方程的基本方法. 2. 一元二次方程求根公式的推导过程. 课时安排 7课时. 第1课时 教学内容 21.2.1 配方法(1). 教学目标 1.能运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程. 2.通过实例,合作探讨,建立数学模型,掌握直接开平方法的的基本步骤. 3.在经历用直接开平方法解一元二次方程的过程中,进一步体会化归思想. 教学重点 运用开平方法解形如(x+n)2=p(p≥0)的方程,领会降次—转化的数学思想. 教学难点 通过根据平方根的意义解形如x2=p的方程,然后知识迁移到根据平方根的意义解形如(x+n)2=p(p≥0)的方程. 教学过程 一、导入新课 问题:一桶油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗? 通过问题,导入新课的教学. 二、新课教学 1.解决问题. 学生思考、讨论,教师引导,汇报解题过程和步骤. 设其中一个盒子的棱长为x dm,则这个盒子的表面积为6x2 dm2,根据一桶油漆可刷的面积,列出方程

九年级数学上册小专题(一) 一元二次方程的解法

编号:954555300022221782598333158 学校:战神市白虎镇禳灾村小学* 教师:战虎禳* 班级:战神参班* 专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0; (2)3x2-27=0; (3)(x-2)2=9; (4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0;

(3)3x2-6x+4=0; (4)2x2+7x+3=0. 3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1).

4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0; (3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0;

(2)5(x -3)2=x 2-9; (3)t 2- 22t +18 =0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12 . 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=±5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13 .∵实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516 .直接开平方,得x +74=±54.∴x 1=-12 ,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1= 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3 =5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =-2.b 2-4ac =32-4×4×(-2)=41>0.x =-3±412×4 =-3±418.∴x 1=-3+418,x 2=-3-418. (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

相关文档
最新文档