运动模糊图像的判定与恢复
运动图像模糊

一、运动模糊的定义数字图像处理研究有很大部分是在图像恢复方面进行的,包括对算法的研究和针对特定问题的图像处理程序的编写。
数字图像处理中很多值得注意的成就就是在这个方面取得的。
在图像成像的过程中,图像系统中存在着许多退化源。
一些退化因素只影响一幅图像中某些个别点的灰度;而另外一些退化因素则可以使一幅图像中的一个空间区域变得模糊起来。
前者称为点退化,后者称为空间退化。
此外还有数字化、显示器、时间、彩色,以及化学作用引起的退化。
总之,使图像发生退化的原因很多,但这些退化现象都可用卷积来描述,图像的复原过程就可以看成是一个反卷积的问题。
反卷积属于数学物理问题中的一类“反问题”,反问题的一个共同的重要属性是其病态,即其方程的解不是连续地依赖于观测数据,换句话说,观测数据的微小变动就可能导致解的很大变动。
因此,由于采集图像受噪声的影响,最后对于图像的复原结果可能偏离真实图像非常远。
由于以上的这些特性,图像复原的过程无论是理论分析或是数值计算都有特定的困难。
但由于图像复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。
在拍摄期间, 如果相机与景物之间存在足够大的相对运动, 就会造成照片的模糊, 称之为运动模糊。
运动模糊是成像过程中普遍存在的问题, 在飞机或宇宙飞行器上拍下来的照片,用照相机拍摄高速运动物体的照片, 在突发事件的场合(通常用于侦破), 以及战场上飞行中的导弹均可能存在这种现象。
运动模糊图像的复原是图像复原中的重要课题之一, 可广泛用于天文、军事、道路交通、医学图像、工业控制及侦破领域, 具有重要的现实意义。
运动模糊初期研究的主要原因是为了对卫星所拍摄的图像进行复原, 因为卫星相对地球是运动的, 所以拍出的图像是模糊的(当然, 卫星所拍摄图像的模糊原因不仅仅是相对运动而造成的, 还有其他原因如大气湍流所造成的模糊等等)。
1965 年徘徊者8 号发回37137 张照片, 这些照片由于飞行器的高速运动都带有运动模糊。
二维运动模糊图像的处理

二维运动模糊图像的处理一、前言运动模糊是图像处理领域常见的一种失真,它是在拍摄或者成像时,镜头和被拍摄物体之间产生相对运动,导致的图像模糊。
这种失真通常会出现在快速移动的物体上,如运动的车辆、飞机、人或者摄影机自身的移动等。
处理运动模糊图像可以提高图像质量和结果的可信度。
本文主要介绍处理二维运动模糊图像所需要的步骤和方法,并通过具体实例来展示如何实现。
二、二维运动模糊模型二维运动模糊是一种在图像中产生的维度不同的失真,我们需要用一种数学模型来描述它。
根据文献 1 的描述,运动模糊可以表示成下面的方程:g(x, y) = f(x – v_x t, y – v_y t) + n(x, y)式中,g(x,y) 是观察到的模糊图像;f(x,y) 是清晰图像;n(x,y) 是加性噪声;v_x 和 v_y 是物体运动的平均速度;t 是曝光时间。
可以看出,运动模糊是由物体的运动和相机曝光时间共同决定的。
三、处理方法针对二维运动模糊图像,我们可以采用各种方法来恢复清晰的图像。
下面介绍一些比较常用的处理方法:1. 经典逆滤波方法经典逆滤波方法通过将运动模糊图像和一个恢复器(transfer function)进行傅里叶变换,再运用逆滤波器来实现模糊图像的去除。
其基本思想是,将傅里叶变换后的运动模糊图像 G(w_x, w_y) 除以傅里叶变换后的恢复器 H(w_x, w_y) 就可以得到原始图像F(w_x, w_y):其中,H(w_x, w_y) 通常由点扩散函数(PSF)计算得到。
逆滤波概念简单,在算法实现装回时,逆滤波方法不是很稳定,尤其是当噪声较强时,会使得结果出现明显的伪影或者噪声。
由于经典逆滤波方法在实际应用中存在一些局限性,如较强的噪声干扰、图像边缘成分缺失或者存在振铃效应等问题,因此带约束的逆滤波方法得到了广泛的应用。
该方法基于最小化损失函数的理论,引入了正则化约束项,以达到更稳定的结果。
例如在Tikhonov 正则化中,可以将原问题转化成带有正则化项的最小二乘问题:min{||H(F)-G||^2 + α||F||^2}其中 ||F||^2 表示平滑性约束,α越大,结果越平滑;||H(F)-G||^2 表示显著性约束,约束了算法的收敛度。
如何处理图像中的运动模糊问题

如何处理图像中的运动模糊问题图像是由很多个小的像素点组成的。
当一个物体在图像中移动时,快门打开的时间会导致物体的模糊效果。
这种现象被称为图像的运动模糊。
运动模糊对于图像的清晰度和质量产生了负面影响,因此我们需要找到方法来处理和减少图像中的运动模糊问题。
如何处理图像中的运动模糊问题呢?下面将介绍几种主要的方法:1. 增加快门速度:通过增加快门速度,可以减少运动模糊。
快门速度越快,图像中运动物体的模糊效果就越小。
但是增加快门速度可能会导致图像过暗,因此需要在光线条件允许的情况下尽量选择更快的快门速度。
2. 使用稳定器设备:稳定器设备可以减少手持拍摄时的抖动,从而减少图像中的运动模糊。
稳定器设备可以是手持稳定器、三脚架或者是图像稳定软件等。
3. 图像复原算法:图像复原算法可以通过分析图像中的模糊信息来恢复清晰的图像。
其中一种常用的算法是逆滤波算法。
逆滤波算法使用图像的模糊核和退化函数来估计原始图像。
然后通过这些估计值进行逆滤波处理,最终得到清晰的图像。
还有一些其他的图像复原算法,如盲复原算法和最小二乘复原算法,可以根据具体情况选择。
4. 多图像融合:多图像融合是通过将多张图像综合在一起来减少运动模糊。
比如,在拍摄过程中,连续拍摄多张照片,并将它们进行融合,可以减少运动物体的模糊效果。
多图像融合可以使用算法来自动对齐和融合图像。
5. 图像后期处理:图像后期处理软件可以通过一些滤镜和工具来修复运动模糊。
例如,通过运动模糊滤镜可以减少模糊效果,或者通过锐化工具可以增加图像的清晰度。
还可以通过图像编辑软件中的其他工具来进一步修复和改善图像的质量。
总结起来,处理图像中的运动模糊问题有多种方法可供选择。
可以通过增加快门速度、使用稳定器设备、应用图像复原算法、多图像融合以及图像后期处理来改善图像的质量。
具体使用哪种方法取决于实际情况和需求。
无论选择哪种方法,都需要在拍摄前或者图像后期处理时进行一定的实验和调整,以达到最佳的效果。
运动模糊检测算法 -回复

运动模糊检测算法-回复运动模糊是指由于物体或相机移动引起的拍摄图像模糊现象。
在许多场景下,运动模糊都是一个严重的问题,因为它会导致图像失真,降低图像的质量和清晰度。
为了解决这个问题,许多运动模糊检测算法被提出并广泛应用于计算机视觉和图像处理领域。
本文将介绍一种常用的运动模糊检测算法,并详细探讨其原理和实现步骤。
第一步:定义运动模糊问题在开始讨论运动模糊检测算法之前,我们首先需要定义运动模糊的问题。
运动模糊通常发生在相机或拍摄物体移动的情况下。
当相机移动或物体快速移动时,图像中的像素会跟随移动轨迹,导致图像模糊。
因此,为了解决这个问题,我们需要确定图像中是否存在运动模糊,并找到合适的方法来评估和纠正这种模糊。
第二步:基于图像频谱的运动模糊检测算法为了检测运动模糊,我们可以利用图像频谱的特性。
运动模糊会导致图像频谱的高频成分减弱或消失,而低频成分增强。
因此,我们可以通过分析图像的频谱来检测运动模糊。
首先,我们需要将输入图像转换为频域表示。
这可以通过使用快速傅里叶变换(FFT)算法来实现。
然后,我们可以获取频谱图像,并可视化频谱图像。
在频谱图像中,我们可以观察到频谱的低频成分是否增强,高频成分是否减弱。
接下来,我们需要设置一个适当的阈值来检测运动模糊。
这可以通过比较频谱图像的低频成分和高频成分之间的差异来实现。
如果差异超过阈值,则可以判断图像存在运动模糊。
最后,我们可以通过应用逆快速傅里叶变换(IFFT)来恢复原始图像。
通过将频域表示转换回空域表示,我们可以减轻或甚至消除运动模糊。
第三步:运动模糊检测算法的实现基于图像频谱的运动模糊检测算法的实现主要分为以下几个步骤:1. 加载输入图像并将其转换为灰度图像。
2. 使用FFT算法将灰度图像转换为频域表示。
3. 获取频谱图像并进行可视化。
4. 计算频谱图像的低频和高频成分之间的差异。
5. 判断差异是否超过预设阈值,如果超过,则判断图像存在运动模糊。
6. 如果图像存在运动模糊,可以选择应用逆FFT来恢复原始图像。
运动模糊图像PSF参数估计与图像复原研究

㊀doi:10.3772/j.issn.1002 ̄0470.2019.04.004运动模糊图像PSF参数估计与图像复原研究①廖秋香②㊀卢在盛㊀彭金虎(梧州学院广西高校图像处理与智能信息系统实验室㊀梧州543002)摘㊀要㊀运动模糊图像复原对于改善图像质量有重要的理论意义和现实意义ꎮ在研究运动模糊图像复原中ꎬ对点扩散函数(PSF)的估计是关键点也是难点ꎮ本文利用Radon变换原理来求解点扩散函数PSF中的运动模糊方向ꎬ并提出了消除十字亮线引起的干扰的新方法ꎮ利用运动模糊图像频谱上的中心暗条纹间距来计算运动模糊尺度ꎮ基于估计的PSF参数采用维纳滤波算法来恢复运动模糊图像ꎮ实验结果表明ꎬ运动模糊参数估计精确ꎬ运动模糊方向控制在1ʎ以下ꎬ运动模糊尺度控制在1个像素以内ꎮ同时采用维纳滤波算法来恢复运动模糊图像ꎬ效果优异ꎬ可获得细节清晰的图像ꎮ关键词㊀点扩散函数(PSF)ꎬ模糊方向ꎬ模糊尺度ꎬRadon变换ꎬ维纳滤波0㊀引言采集图像时ꎬ如果采集设备和目标在曝光瞬间产生相对运动将导致图像降质ꎬ从而造成的图像模糊称为运动模糊[1]ꎮ在不同的图像应用领域ꎬ比如天文㊁军事㊁医学㊁工业控制㊁道路监控以及刑侦等方面ꎬ清晰的图像是采集图像信息进行各种分析的重要前提ꎮ因此ꎬ运动模糊图像的复原研究成为很多学者研究的一个热点课题ꎮ在研究运动模糊图像复原中ꎬ对点扩散函数(pointspreadfunctionꎬPSF)的估计是关键点也是难点[2]ꎮ国内很多学者在点扩散函数(PSF)的精确估计方面做了很多的研究ꎮ文献[3]利用Radon变换和Sobel算子对模糊图像进行一阶微分计算ꎬ所求模糊方向绝对误差控制在2ʎꎬ但该算法对于低信噪比图像的估计不理想ꎮ文献[4]提出了在改进的倒频域中使用位平面分解提取算法结合Radon变换ꎬ提取出了含模糊方向信息的清晰中央细线条纹ꎮ但是该算法在估计小尺度模糊中出现了一些波动ꎬ其效果不是很稳定ꎮ文献[5]利用全局均值标准差法对频谱图进行阈值分割来估计模糊尺度ꎬ但在阈值的选取上比较复杂ꎮ本文从频谱分析角度出发ꎬ利用Radon变换原理来求解点扩散函数中的运动模糊方向ꎬ并消除了频谱图中的十字亮线出现导致的干扰ꎮ同时利用图像频谱上的中心暗条纹间距来求解运动模糊尺度ꎮ基于估计的PSF参数构建点扩散函数ꎬ利用维纳滤波算法来对运动模糊图像复原ꎮ实验结果表明ꎬ该算法简单可行ꎬ运动模糊参数估计精确ꎬ运动模糊方向误差控制在1ʎ以下ꎬ运动模糊尺度误差控制在1个像素以内ꎮ同时采用维纳滤波算法来恢复运动模糊图像ꎬ效果良好ꎬ可获得细节清晰的图像ꎮ1㊀运动模糊图像的退化模型图像复原处理的关键在于退化模型的确定ꎮ图1中ꎬ用退化函数h(xꎬy)把退化过程模型化ꎬ它和加性噪声n(xꎬy)一起ꎬ作用于输入图像f(xꎬy)上ꎬ产生一幅退化的图像g(xꎬy):833 ㊀高技术通讯2019年第29卷第4期:338~343㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀①②国家自然科学基金(61562074)ꎬ2018年广西高校中青年教师基础能力提升(2018KY0542)ꎬ梧州学院重点科研(2017B006)和梧州学院中青年骨干教师培养工程资助项目ꎮ女ꎬ1981年生ꎬ硕士ꎬ副教授ꎻ研究方向:图像处理ꎬ电路系统ꎻ联系人ꎬE ̄mail:liaoqiu123456@163.com(收稿日期:2018 ̄04 ̄19)图1㊀图像退化的模型图中h(xꎬy)涵盖了整个退化的物理过程ꎬ这正是寻找的退化数学模型函数ꎬ即需要估计的点扩散函数PSFꎮ如果空间域H是线性的㊁空间不变的ꎬ则在空间域中退化图像可由式(1)给出:g(xꎬy)=h(xꎬy)∗f(xꎬy)+n(xꎬy)(1)其中符号∗表示卷积ꎬ空间域的卷积和频域的乘法组成了一个傅立叶变换对ꎬ式(1)在频域上可以表示成式(2)ꎮG(uꎬv)=H(uꎬv)F(uꎬv)+N(uꎬv)(2)其他运动产生的模糊在一定条件下都可以转换为分段匀速直线运动模糊ꎬ其点扩散函数可表示为式(3)ꎮh(xꎬy)=1L㊀0ɤxɤLcosθꎬ0ɤyɤxtanθ0㊀其他{(3)上式中ꎬθ指运动方向与水平方向之间的夹角ꎬ称为运动模糊方向ꎮL指在运动方向上像素移动的距离ꎬ称为运动模糊尺度ꎮ以下讨论的运动模糊仅由水平匀速直接运动导致ꎬ假如图像沿水平正方向移动ꎬ则h(xꎬy)变为h(xꎬy)=1L㊀㊀0ɤxɤLꎬy=0(4)对式(4)中的点扩散函数做傅立叶变换:H(uꎬv)=ʏ+ɕ-ɕʏ+ɕ-ɕh(xꎬy)e-j2π(ux+vy)dxdy=ʏL01Le-j2πuxdx=sin(πuL)πuLe-jπuL(5)所以H(uꎬv)是一个sinc函数ꎬ当uL=0ꎬH(uꎬv)取最大值ꎬ当uL为非0整数时ꎬH(uꎬv)=0ꎬ同时使得G(uꎬv)=0(在不考虑噪声的情况下)ꎬ也就是说在运动模糊图像的频谱图中将会出现明暗相间并平行的条纹ꎮ经过若干图像进行实验ꎬ结果表明运动模糊图像频谱图中的亮条纹和模糊方向之间是垂直的关系ꎬ见图3ꎮ在文献[6 ̄8]中也提到了该结论ꎮ图2给出了实验中的一幅原图和运动模糊图像(设定的模糊方向为30ʎꎬ模糊尺度为20像素)ꎮ图2㊀清晰图像和运动模糊图像图3为将运动模糊图像直接进行傅立叶变换后的频谱图与对其进行压缩居中后的频谱图对比ꎮ图3㊀运动模糊图像的频谱图对比依据傅立叶变换的时域特性ꎬ亮条纹与运动模糊方向是垂直关系ꎬ所以要检测PSF中的运动模糊方向这个参数ꎬ只需要检测出其频谱图中亮条纹方向即可ꎮ2㊀运动模糊参数的估计为测出频谱图中亮线的方向ꎬ早期的文献中大多采用Hough变化来检测亮线的方向ꎬ如文献[9ꎬ10]ꎮ由于Hough变换的应用以二值图像为基础ꎬ实际处理中难以对一幅图像进行恰当的二值分割ꎬ因此在大部分情况下ꎬ与Hough变换相比ꎬRadon变换更加精细和准确ꎮ本文正是基于Radon变换原理来检测频谱图中亮线的方向ꎮ933廖秋香等:运动模糊图像PSF参数估计与图像复原研究2.1㊀运动模糊方向的估计Radon变换的本质是将直角坐标系的函数做了一个空间转换ꎬ即将原来的XY平面内的点映射到极坐标(ρꎬθ)空间ꎬ那么原来在XY平面上的一条直线的所有的点在极坐标(ρꎬθ)平面上都位于同一点ꎮ记录极坐标(ρꎬθ)平面上的点的积累厚度ꎬ便可知XY平面上的线的存在性ꎮRadon变换就是图像中的像素点在某个方向上的一个积分ꎬ所以ꎬ图像中高灰度值的直线投影到(ρꎬθ)空间将会形成亮点ꎬ而低灰度值的直线投影到(ρꎬθ)空间将会形成暗点ꎮ因此对XY平面内直线的方向检测就转变为在极坐标(ρꎬθ)空间中对亮点㊁暗点的检测ꎮRadon变换定义示意图如图(4)所示ꎮ图4㊀Radon变化定义示意图在实验过程中ꎬ对运动模糊图像进行灰度化ꎬ并进行二维快速傅立叶变换ꎬ生成其频谱图ꎮ将频谱压缩居中后可以发现ꎬ以原点为中心出现的对称平行线条是沿着同一个方向ꎬ这个方向就是与运动模糊图像的模糊方向相垂直的方向ꎮ然后对频谱图进行1~180ʎ的Radon变换ꎬ结果得到的是一个180列的矩阵Rꎬ矩阵R中各列的取值正是模糊图像频谱图在某个方向上沿一族直线积分所得的投影值ꎮ当Radon变换是在运动模糊方向上时ꎬ因为频谱中的亮㊁暗条纹与积分直线平行ꎬ所得的投影向量中就会有一个最大值ꎬ且此最大值就是整个矩阵中的最大值ꎮ通过找到R矩阵中的最大值所在的列ꎬ便可得到运动方向ꎮ实验结果如表1所示ꎮ实验过程中进一步增大模糊尺度到52㊁55㊁58㊁60㊁70㊁100㊁150㊁200㊁500ꎬ模糊尺度增大ꎬ可以扩表1㊀不同模糊尺度下的实验结果模糊尺度/设定运动方向值(ʎ)测量运动方向值(ʎ)误差50/2590出错50/2626060/3030060/3535070/4041170/45450200/50500200/55550500/60600500/64640500/6590出错大测量范围到25~66ʎꎬ影响不是很大ꎮ分析表1的实验结果ꎬ当运动方向为26~64ʎ范围时ꎬ基本能准确测出运动模糊图像的运动方向ꎬ误差最大为1ʎꎬ非常准确ꎮ但如果运动方向不在26~64ʎ范围内ꎬ结果将会出错ꎬ出现90ʎ或者180ʎꎮ分析原因是频谱图中出现了十字亮线ꎬ对结果形成了干扰ꎮ由于十字亮线的存在直接影响到实验的结果ꎬ必须要对其进行处理ꎮ文献[8]中采用分块取阈值的方法来避开十字亮线的干扰ꎬ但阈值的选取没有固定的算法ꎮ文献[11]中采取的是对二值频谱图进行自适应形态学滤波ꎬ算法复杂ꎮ文献[12]采取滑动邻操作的办法ꎬ对频谱图中每个像素3ˑ3邻域范围内的像素灰度取平均值ꎬ以此作为该像素二值化处理的依据从而去除十字亮线的干扰ꎮ但这种方法只适用于二值化后的频谱图ꎬ且容易删除频谱ꎬ影响检测精度ꎮ文献[13]中通过图像大小确定十字亮线的位置ꎬ再根据亮线宽度判断该亮线是否是由于图像中的条纹引起的十字亮线ꎬ若是ꎬ就重新对该像素值赋其邻域的灰度值ꎬ从而除去十字亮线ꎮ本文的算法正是基于文献[13]的一个改进ꎮ十字亮线导致计算结果出现90ʎ或者是180ʎꎬ可以在程序中设置一个判断ꎬ当结果出现90ʎ或者是180ʎ时ꎬ就对其赋零值ꎬ赋完后继续对新的R矩阵找最大值ꎬ这样就可以很容易地避开了十字亮线对结果的干扰ꎮ实验结果如表2所示ꎮ043 高技术通讯㊀2019年4月第29卷第4期表2㊀改进算法后不同模糊尺度下的实验结果模糊尺度/设定运动方向值(ʎ)测量运动方向值(ʎ)误差50/2525050/2626060/3030060/3535070/4041170/45450200/50500200/55550500/60600500/6464050/6565060/7575070/80800200/1001000500/1301300500/1501500该算法与文献[13]中所提到的算法相比ꎬ不用判断亮线是否由图像中的条纹引起ꎬ速度更快ꎮ赋零值可以直接避开该十字亮线的干扰ꎮ从表2实验结果可以看出ꎬ算法改进后有效地避免了十字亮线的干扰ꎬ同时对于原来的实验精度没有影响ꎬ误差控制在1ʎ以下ꎮ该算法原理简单㊁有效㊁容易实现ꎮ图5为实验结果对比ꎮ图5㊀实验结果对比2.2㊀运动模糊尺度的估计基于对运动模糊图像频谱的分析和Radon变换原理ꎬ在估计运动模糊尺度参数时引入了投影的理论ꎮ设图像有N行ꎬ对式(5)进行离散化ꎬ得到表达式:H(u)=sin(πuL/N)πuL/N(6)令H(u)=0ꎬ则sin(πuL/N)=0ꎬ假设有2个频谱图上连续的零点u1ꎬu2ꎬ则满足πu2LN-πu1LN=πꎬ化简可得到u2-u1=NLꎬ而(u2-u1)就是运动模糊图像频谱图中暗条纹之间的距离ꎬ设为Dꎬ则得到式(7)ꎮ㊀㊀L=ND(7)求解运动模糊尺度Lꎬ只需求出频谱图中的暗条纹间距即可ꎮ由于频谱图中的暗条纹不是垂直方向ꎬ所以首先将频谱图顺时针旋转θ度(θ为之前Radon变换所求出的运动模糊方向)至水平方向ꎬ图6为Lena的运动模糊图像(LEN=50ꎬ模糊尺度取50ʎ)的频谱图及旋转至水平方向的频谱图ꎮ图6㊀频谱图旋转前后对比对旋转后的频谱图进行垂直投影ꎬ得到垂直投影图ꎬ图7为频谱图垂直投影后的图像ꎮ图7㊀频谱垂直投影图143 廖秋香等:运动模糊图像PSF参数估计与图像复原研究在投影图中查找暗条纹对应的极值点dk(k=1ꎬ2ꎬ )ꎮ根据式(7)来计算运动模糊尺度Lꎬ实验结果见表3ꎮ表3㊀图6(b)中暗条纹的间距(像素)暗条纹序列u1u2u2u3u3u4u4u5暗条纹间距D20202041暗条纹序列u5u6u6u7u7u8u8u9暗条纹间距D21202120㊀㊀其中u4u5为中心两侧间距ꎬ是两倍的暗条纹间距ꎬ将表格中的8组数据取平均值得D=20.3ꎬ图像行数N=1024ꎬ带入得运动模糊尺度L=N/D=50.44ꎬ实际设置的运动模糊尺度为50ꎬ表明测量非常准确ꎬ误差不到1个像素ꎮ3㊀运动模糊图像复原PSF参数估计出来后ꎬ采用经典的线性图像复原方法维纳滤波来对图像进行复原ꎮ维纳滤波器是一种基于最小均方误差准则的最优估计器ꎬ如下式所示:㊀㊀e2=Ef-f^()2{}(8)式中ꎬe2为统计误差ꎬf^是使统计误差为最小的估计值ꎬE表示数学期望ꎬf是未退化的图像ꎮ该表达式在频域可表示为式(9):F^(uꎬv)=1H(uꎬv)[|H(uꎬv)2||H(uꎬv)2+Sη(uꎬv)/Sf(uꎬv)|]G(uꎬv)(9)其中ꎬH(uꎬv)表示退化函数ꎬ|H(uꎬv)2|=H∗(uꎬv)H(uꎬv)ꎬH∗(uꎬv)表示H(uꎬv)的复共轭ꎮSη(uꎬv)=|N(uꎬv)|2是噪声的功率谱ꎬSf(uꎬv)=|F(uꎬv)|2是未退化图像的功率谱ꎮ比率Sη(uꎬv)/Sf(uꎬv)称为噪信功率比ꎮ这里讨论的两个量是噪声平均功率和图像平均功率ꎬ分别定义为ηA=1MNðuðvSη(uꎬv)(10)fA=1MNðuðvSf(uꎬv)(11)上式中ꎬM和N分别代表图像和噪声数组的垂直和水平大小ꎮ设它们的比值为R=ηAfA(12)图8为实验结果对比ꎬ选取不同的R值ꎬ复原效果不同ꎬ图8(c)为R=0.0000019的复原结果ꎬ图8(d)为R=0.00097的复原效果ꎮ从实验结果来看ꎬ适当增大R的值ꎬ复原效果较好ꎮ尽管得到的结果里面仍然包含一些噪声ꎬ但从视觉上看已经比较接近原始图像了ꎮ图8㊀复原效果对比4㊀结论为了求取运动模糊图像的点扩散函数PSF中的两个重要参数ꎬ本文利用Radon变换原理来求解PSF中的运动模糊方向ꎬ并对十字亮线出现导致的干扰进行了优化和改善ꎮ利用求解图像频谱上的中心暗条纹间距来估算运动模糊尺度ꎮ基于估计的PSF参数采用维纳滤波算法来恢复运动模糊图像ꎮ实验结果表明ꎬ运动模糊参数估计精确ꎬ运动模糊方向误差控制在1ʎ以下ꎬ运动模糊尺度误差控制在1个像素以内ꎮ同时采用维纳滤波算法来恢复运动模糊图像ꎬ效果良好ꎬ可获得细节清晰的图像ꎮ243 高技术通讯㊀2019年4月第29卷第4期参考文献[1]梁宛玉ꎬ孙权森ꎬ夏德森.利用频谱特性鉴别运动模糊方向[J].中国图象图形学报ꎬ2011ꎬ16(7):1164 ̄1169[2]王玉全ꎬ隋宗宾.运动模糊图像复原算法综述[J].微型机与应用ꎬ2014ꎬ33(19):54 ̄57[3]贤光ꎬ颜昌翔ꎬ张新洁.运动模糊图像点扩散函数的频谱估计法[J].液晶与显示ꎬ2014ꎬ29(5):751 ̄754[4]吕霞付ꎬ王博化ꎬ陈俊鹏.基于位平面分解方法的运动模糊图像PSF参数辨识[J].半导体光电ꎬ2016ꎬ37(3):449 ̄453[5]许兵ꎬ牛燕雄ꎬ邓春雨ꎬ等.基于图像频谱全局均值标准差分割的点扩散函数估计[J].光学技术ꎬ2015ꎬ41(4):341 ̄345[6]高树辉ꎬ樊攀登ꎬ蔡能斌.基于Matlab平台的运动模糊图像复原研究[J].中国人民公安大学学报(自然科学版)ꎬ2015ꎬ4:5 ̄8[7]陈至坤ꎬ韩斌ꎬ王福斌ꎬ等.运动模糊图像模糊参数辨识与逐行法恢复[J].科学技术与工程ꎬ2016ꎬ16(5):177 ̄180[8]乐翔ꎬ程建ꎬ李民.一种改进的基于Radon变换的运动模糊图像参数估计方法[J].红外与激光工程ꎬ2011ꎬ40(5):963 ̄969[9]黄琦ꎬ张国基ꎬ唐向东.基于霍夫变化的图像运动模糊角度识别法的改进[J].计算机应用ꎬ2008ꎬ28(1):211 ̄213[10]陈波.一种新的运动模糊图像恢复方法[J].计算机应用ꎬ2008ꎬ28(8):2024 ̄2026[11]胡硕ꎬ张旭光ꎬ吴娜.基于Radon变换的运动模糊方向估计的改进方法[J].高技术通讯ꎬ2015ꎬ25(8 ̄9):822 ̄828[12]孔勇奇ꎬ卢敏ꎬ潘志庚.频谱预处理模糊运动方向鉴别的改进算法[J].中国图象图形学报ꎬ2013ꎬ18(6):637 ̄646[13]唐春菊.基于频谱分析的运动模糊图像参数检测[J].太赫兹科学与电子信息学报ꎬ2015ꎬ13(1):148 ̄152ResearchonPSFparameterestimationandimagerestorationofmotionblurredimageLiaoQiuxiangꎬLuZaishengꎬPengJinhu(GuangxiCollegesandUniversitiesKeyLaboratoryofImageProcessingandIntelligentInformationSystemsꎬWuzhouUniversityꎬWuzhou543002)AbstractTherestorationofmotionblurredimageshasimportanttheoreticalandpracticalsignificanceforimprovingthequalityoftheimage.Estimationofpointspreadfunction(PSF)iscrucialanddifficultinresearchonrestorationofmotionblurredimages.ThemotionblurdirectioninpointspreadfunctionisgainedbyusingtheRadontransformprincipleꎬandanewmethodtoeliminatetheinterferencecausedbythecrosslineisproposed.Themotionblurex ̄tentiscalculatedbyusingthecentraldarkfringedistanceonthemotionblurredimagespectrum.TheWienerfilte ̄ringalgorithmisusedtorestorethemotionblurredimagebasedontheestimatedPSFparameters.Theexperimentresultsshowthatthemotionblurparametersareestimatedaccuratelyꎬtheestimatederrorinblurreddirectionislessthan1degreeꎬandtheestimatederrorofblurredextentislessthan1pixel.AtthesametimeꎬtherestorationbasedontheWienerfilteringalgorithmhasgoodrestoreeffectandgaincleardetails.Keywords:pointspreadfunction(PSF)ꎬblurreddirectionꎬblurredextentꎬRadontransformꎬWienerfilte ̄ring343廖秋香等:运动模糊图像PSF参数估计与图像复原研究。
二维运动模糊图像的处理

二维运动模糊图像的处理
二维运动模糊是指物体在二维平面上的运动导致图像模糊。
具体而言,当相机快门打开的时间足够长时,物体的运动轨迹会在感光元件上留下痕迹,导致图像产生模糊效果。
这种模糊效果可能会在拍摄快速移动的物体、摄像机晃动或者低光条件下产生。
为了消除二维运动模糊,通常采用图像处理算法来对图像进行复原。
下面将介绍一些常用的方法。
1. 基于逆滤波的复原方法:逆滤波是恢复原始图像的一种基本技术。
假设原始图像可以表示为一个线性系统的输出,那么通过找到该线性系统的逆滤波器,从模糊图像中提取出原始图像。
在实际应用中,逆滤波方法容易受到噪声的干扰,可能导致结果不理想。
2. 统计方法:统计方法是另一种常用的复原方法。
通过统计模糊图像中像素值的分布情况,可以推测出原始图像的分布,并在此基础上进行复原。
统计方法在处理噪声比较多的情况下效果较好,但对于噪声较少的情况效果可能不佳。
3. 图像增强方法:图像增强方法是一种通过增大图像的对比度或者锐化效果来减弱图像模糊的方法。
通过增强图像的边缘信息或者恢复图像的高频细节,可以使图像看起来更加清晰。
4. 基于最小二乘法的复原方法:最小二乘法是一种优化算法,能够找到使得模糊图像与原始图像的差异最小的复原结果。
通过建立一个优化问题,并找到使得问题的目标函数最小的参数值,可以得到最佳的复原结果。
二维运动模糊图像的处理方法有很多种,每种方法都有其适用的场景和局限性。
在实际应用中,需要根据具体情况选择合适的方法来进行处理。
如何应对图像识别中的运动模糊问题(五)

应对图像识别中的运动模糊问题引言:在如今数字图像处理的领域中,图像识别已经成为一项非常重要的技术。
然而,由于各种可能的问题和影响因素,尤其是运动模糊问题,图像识别的精确性和可靠性仍然面临一定的挑战。
本文将从多个角度探讨如何应对图像识别中的运动模糊问题,以提升图像识别的准确度和稳定性。
一、了解运动模糊的原因和机制运动模糊是指物体在图像捕捉过程中出现的由于运动造成的模糊效果。
了解运动模糊的原因和机制是解决该问题的第一步。
一般来说,主要原因是相机或物体的运动导致曝光时间过长,从而导致图像细节模糊。
因此,可通过控制曝光时间、使用快门优先模式或增加光线等方式来减少运动模糊。
二、选择合适的图像采集设备和参数图像采集设备的性能和参数对图像识别的精确性和稳定性具有重要影响。
因此,在处理图像识别中的运动模糊问题时,我们应选择具备较高采集速度和抗运动模糊性能的设备,同时优化设备参数,如ISO、快门速度和光圈大小等,以最大程度地减少运动模糊的发生。
三、运动模糊修复算法的应用在图像识别中,运动模糊修复算法是一种常用的解决方案。
常见的算法包括基于滤波和深度学习的方法。
滤波方法通过对图像进行滤波处理,以去除或减弱运动模糊。
深度学习方法则基于大量样本数据,通过训练神经网络模型来学习图像的运动模糊模式以及如何进行修复。
选择适合特定数据集和应用场景的运动模糊修复算法可以有效提升图像识别的准确性。
四、多帧图像叠加和图像增强技术为了进一步减少运动模糊对图像识别的影响,可以利用多帧图像叠加和图像增强技术。
多帧图像叠加可以通过将多张图像叠加在一起,平均化图像中的噪声和运动模糊,从而提高图像的清晰度。
而图像增强技术可以通过提升图像的对比度、锐度和细节等方面来增强图像的可识别性,从而抵消部分运动模糊造成的影响。
五、利用先进的硬件技术和算法优化图像处理效果随着科技的进步,硬件技术与图像处理算法的结合为解决图像识别中的运动模糊问题提供了新的可能性。
运动模糊检测算法

运动模糊检测算法主要有以下几种:
点扩散函数:在运动方向上加上一个斜率β,实心圆点为图片上受视觉惰性影响的像素点,(x0,y0)为像素点的坐标,L为模糊半径,即运动方向上感光亮度消失的最大距离,由运动速率决定。
图片处理:将运动模糊的点扩散函数代入以前介绍的模糊公式,设r=L/2,则因为图片的像素是离散的,则上述模型能够表示为:将一张图片进行运动模糊的处理,实际是获取每一个像素在运动方向上的L个采样点,取其平均值,做为相信的像素值赋值给当前计算的像素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马明等:运动模糊图像的判定与恢复
-2-
分),当滤波方向为运动模糊方向时,由于此方向模糊 图像对应的高频成分最少, 高通滤波(方向微分)使模糊 图像能量损失最大,得到的微分图像灰度值之和必然 最小。所以方向微分得到的图像灰度值之和中的最小 值对应的方向即为运动模糊的方向。 为了减少计算量, 通过图像旋转,将运动模糊方向旋转到水平轴,从而 使图像恢复问题由两维转化为一维。运动模糊方向鉴 别过程具体如下: 在像平面中的运动模糊方向(记为 α 角,定义水平 轴为 0 ,上负下正,顺时针方向增大)通常是未知的。 设 g (i, j ) 为运动模糊图像上一点, ∆r 是进行方向微分 时的微元长度, g (i ', j ') 是模糊图像中以 g (i, j ) 为中 心、半径为 ∆r 的半圆弧上的一点, Dα 是 3 × 3 方向 微分乘子, ∆g (i, j )α 为对模糊图像进行方向微分后所 得到的微分图像,则
0 0 0
g '(i, j ) ;第二步是求 g '(i, j ) 在水平轴方向上的自相 关 S (i, j ) ;第三步是将 S (i, j ) 各列加在一起,得到一
马明等:运动模糊图像的判定与恢复
-3-
行数据 S add ,求和的目的是为了抑制噪声的影响,提 高鉴别精度和可靠性;第四部,画出 S add 曲线,得到 运动模糊尺度鉴别曲线。曲线上会出现一对共轭的相 关峰,这对相关峰数值为负(尖峰向下)且对称分布 在零频尖峰两侧,两相关峰间的距离等于运动模糊尺 度的两倍[11]。
关键词:图 呃
复; 运动偌
; Û°ú¾ÚÝÂ
; ûÕô©Óø£»Ù¼
锩扩 撙
数
————————————— 扩展函数,其限制是 ML 方法不能决定点扩展函数的 0 引言 相位。 另外还可以沿运动方向对模糊图像求方向导数, 图像恢复是图像处理中的重要研究内容 , 它的目 得到一正一负两个原始图像的叠加像,两者的距离就 的是从退化图像中重建原始图像,改善退化图像的视 是模糊尺度[6]。 但这种方法误差较大, 只用于目测模糊 觉质量,在这一点上和图像增强是类似的,所不同的 尺度。本文所采用的方法克服了以上的不足,可比较 是图像恢复过程需要根据图像退化的过程或现象来建 精确的鉴别出运动的模糊方向和尺度。 立一定的图像退化模型来完成,可能的退化现象有光 学系统中的衍射、传感器的非线性失真、光学系统的 1 运动模糊方向和尺度的鉴别 [1] 像差、图像运动造成的模糊以及镜头畸变等 。根据 这个退化模型来选取相应的恢复算法对退化图像进行 图像恢复处理的关键是建立图像的退化模型。不 恢复,可以得到满意的图像。 同的环境造成图像退化的过程也不同,图 1 为简单通 当被拍摄的目标和相机之间在拍摄期间存在相对 用的图像退化模型, 原始图像 f ( x, y ) 由于通过了一个 运动时,例如拍摄运动的车辆、坦克、飞机或者拍摄 系统 H 及外来的加性噪声 n( x, y ) 而形成为一幅退化 瞬时相机抖动,其结果是造成拍摄出来的图像变得模 图像 g ( x, y ) ,其数学形式为: 糊,使图像的质量下降。我们的目的是使模糊的图像 g ( x, y ) = H[ f ( x, y )] + n( x, y ) (1) 变清晰。图像恢复的质量和可靠性通常依赖于对图像 退化信息了解的确切程度。但在实际当中,造成图像 退化的信息一般是不知道的,这就给恢复图像带来了 一定的困难。对于运动模糊图像,如果我们能够知道 模糊的方向和尺度,那么就可以得到点扩展函数,然 后就可以用滤波的方法恢复出原图像。 M.Cannon 等[2,3]利用匀速直线运动模糊图像对应 图 1 图像退化模型 的频域上有周期性的零值条纹且运动方向与零值条纹 Fig. 1 The model of degenerated image 图像恢复的目的是使原图像复原。由于加性噪声 方向相垂直的特点从模糊图像中估计出运动模糊方向 n ( x , y ) 具有统计性质,因此,如果估计出系统的 H , 和尺度,但该方法仅局限于匀速直线运动,不适合于 加速运动、振动且抗噪能力较弱。邹谋炎提出的“误 差——参数分析法”[4],解决了抗噪能力较弱的问题, 但是从其所给出的误差鉴别曲线来看,真值附近那段 曲线较平坦,不利于准确鉴别,且该方法计算量很大。 鉴别模糊尺度可以根据原图像中一目标点或在均匀图 像背景中的锐化边缘在运动模糊图像中的亮度分布情 况进行估计,但其所要求的特征在实际图像的恢复中 是几乎不能满足的。还可以根据自回归模型和假设的 高 斯 白 噪 声 , 应 用 最 大 领 域 标 准 ML(Maximum Likelihood)估计[5], 但这种方法只适用于一般的对称点 那么由给定的退化图像 g ( x, y ) 就可以近似的恢复出
由公式(2)知:
(4)
− 1−∆ ( r)2sinαcosα rsinα+∆ rcosα+(∆ r)2sinαcosα −∆ rcosα−∆ ( r)2sinαcosα 2∆ D rsinα−2∆ rcosα−∆ rcosα+(∆ r)2sinαcosα α1 =2+∆ − 1 0
1 0 0 − 2 2 D 2 rsinα−∆ 2 rc o sα+∆ ( r) sinαc o sα −+∆ 2 rsinα+∆ 2 rc o sα−∆ ( r) sinαc o sα 5= α 0 4−∆ 0 −+∆ rc o sα−∆ ( r)2sinαc o sα 1 rsinα−∆ rc o sα+∆ ( r)2sinαc o sα −∆ 2 2 rsinα+∆ − 1 0 0 D rsinα−2∆ rcosα+(∆ r)2sinαcosα 2∆ rcosα−(∆ r)2sinαcosα 0 α6 =2−∆ − rsinα+∆ rcosα−(∆ r)2sinαcosα −∆ rcosα+(∆ r)2sinαcosα 0 1+∆
g (i − 1, j ) 、 g (i − 1, j + 1) 和 g (i − 2, j + 1) 四点之间,
其值为 g (i ', j ') = [−1− ∆r sin α + ∆r cos α + (∆r)2 sin α cos α ]g (i − 2, j)
+[−∆r cos α − (∆r ) 2 sin α cos α ]g (i − 2, j + 1) +[2+∆r sinα − 2∆r cosα −(∆r)2 sinα cosα]g(i −1, j) +[2∆r cosα + (∆r)2 sinα cosα ]g(i −1, j +1)
3 × 3 方向微分乘子求法 Fig. 2 Deduce the 3 × 3 directional differentiation matrix 对于不同的 α (α ∈ [−π / 2, π / 2)) , 用于插值的近 邻四点相对 g (i, j ) 的位置各不相同,因而微分乘子 Dα 的取值形式随 α 值所在的范围变化而变化[9,10]:
− 1 2−2 ∆ o sα+∆ ( r)2sinαc o sα −+∆ 1 rsinα+∆ o sα−∆ ( r)2sinαc o sα rsinα−∆ rc rc 2 2 2 ∆ ( r) sinαc o sα − ∆ ( r) sinαco sα D rsinα−∆ rsinα+∆ α4 = 0 0 0 0
o
时, Dα 分别对应 3 3 2 0 −− 22 ∆ rsinα+∆ rc o sα+∆ ( r)2sinαc o sα 1+∆ rsinα−∆ rc o sα−∆ ( r)2sinαc o sα D ∆ rsinα−2 ∆ rc o sα−∆ ( r)2sinαc o sα −−∆ 2 rsinα+2 ∆ rc o sα+∆ ( r)2sinαc o sα α2 = 0 4+2 − 0 0 1
马明等:运动模糊图像的判定与恢复
-1-
运动模糊图像的判定与恢复
马佶
(愚连 租惋4£© 摘要:瞍摄 觫图 呃钴迎暂 蚊时 间 内 ,疸圜图 呃偌 钴运 动 师形弈砺为 蛄线 运 动 处 租。将 戢图 呃视 为 世 砸圊钴扉
阶马尔 过 双线 插值 并 当选 构
通过大量数据实验尝试与权衡取舍, 可以令 ∆r 分 别再取 3,4,5 这三个数,重复上述算法,将四种情 况得到的 I '( ∆g )α ' 相加取平均值以提高鉴别精度,减 小误差。 1.2 模糊尺度的鉴别 图 4 是运动模糊尺度鉴别计算的流程图。其中, 第一步是求 g (i, j ) 在水平轴方向上的一阶微分图像
f ( x, y ) 。可见,图像恢复的关键是确定系统的 H , 一般而言, H 表征了信息传递或成像系统的特性,也
就是说,该系统使信息丧失的程度。 1.1 运动模糊方向的鉴别 Yl Yitzhaky[7,8]提出,将原图像看作是自相关及其 功率谱是各向同性的一阶马尔可夫过程,运动模糊降 低了运动方向上图像的高频成分,而对于其它方向上 图像的高频成分影响较小,方向偏离越大影响越小。 如果对运动模糊图像进行方向性的高通滤波 ( 方向微
图2
∆g (i, j )α = g (i ', j ') − g (i, j ) = g (i, j ) × Dα 对微分图像 ∆g (i, j )α 灰度值(绝对值)求和:
I (∆g )α = ∑ ∑ ∆g (i, j )α
i =0 j =0 M −1 N −1
(2)
当−
π
(3)
o
在 α ∈ [−π / 2, π / 2) 范围内按一定步长( 如 10 ) 取 α 值,求出对应的微分图像灰度值 ( 绝对值 ) 之和 I (∆g )α ,并求出其中的最小值 min( I (∆g )α ) 。初步 估计出运动模糊方向所在的区间后,在此区间内按一 定步长(如 0.1 )取角度值,重复上述算法。最终所取 得的最小值 min( I '( ∆g )α ' ) 对应的 α ' 角即为运动模糊 方向与水平轴的夹角。 (2) 式中的 g (i ', j ') 由其近邻的四点用双线性插 值方法获得。图 2 是 ∆r = 2 , −π / 2 ≤ α ≤ −π / 3 时 的 3 × 3 方向微分乘子的求法。 g (i ', j ') 在 g (i − 2, j ) 、