高等工程热力学14题全
工程热力学题库 -回复

工程热力学题含解答共10题1. 一个物体的质量为10 kg,它的温度从20°C升高到80°C,求它的热量变化。
解答:热量变化可以使用热容量公式Q = mcΔT计算。
其中m为物体的质量,c为物体的比热容,ΔT为温度变化。
代入数值计算得到Q = 10 kg × c ×(80°C - 20°C)。
2. 一千克水的温度从10°C升高到100°C,求它所吸收的热量。
解答:水的比热容为4.18 J/g°C。
水的质量为1000 g,温度变化为90°C。
所吸收的热量可以使用热容量公式Q = mcΔT计算。
代入数值计算得到Q = 1000 g ×4.18 J/g°C ×90°C。
3. 一个物体的热容量为500 J/°C,它的温度从20°C降低到10°C,求它所释放的热量。
解答:热量的释放量等于热容量乘以温度变化的负值。
所释放的热量Q = 500 J/°C ×(10°C - 20°C)。
4. 一个容器内有2 kg的水,温度为30°C。
向容器中加入1000 J的热量后,水的温度变为多少?解答:热量的变化可以使用热容量公式Q = mcΔT计算。
已知Q = 1000 J,m = 2 kg,c = 4.18 J/g°C(水的比热容)。
将已知数值代入公式,解出温度变化ΔT,然后将30°C加上ΔT得到最终的温度。
5. 一个气体在等压条件下吸收了300 J的热量,它的体积由1 m³扩大到2 m³,求这个气体的压强。
解答:在等压条件下,热量的变化等于气体的摩尔热容乘以温度的变化。
已知热量变化Q = 300 J,体积变化ΔV = 2 m³- 1 m³。
将已知数值代入公式Q = nCpΔT(n为摩尔数,Cp为摩尔热容,ΔT为温度变化),解出ΔT,然后将ΔT代入理想气体状态方程P = nRT/V(P为压强,R为气体常数,T为温度,V为体积),解出压强P。
(完整版)工程热力学试题附答案

一、 判断命题是否正确,错误的加以改正1、 孤立系统的热力状态不能发生变化。
2、 答:×,只要孤立系统发生热力过程,其热力状态就会发生变化。
2、 工质从同一初态出发,经过一可逆过程和一不可逆过程到达相同的终态,则两种过程中可逆不可逆g g S S ∆>∆、可逆不可逆f f S S ∆>∆、可逆不可逆S S ∆=∆。
答:×,可逆不可逆f f S S ∆<∆3、 热力过程中,系统向外界放热,其温度必然降低。
4、 答:×,热力过程中,系统向外界放热,其温度不一定降低。
5、 一切不可逆循环的热效率1q w net t <η。
答:×,一切循环的热效率1q w net t =η。
6、 系统吸热,其熵一定增加,系统放热,其熵一定减小。
7、 答:×,系统吸热,其熵一定增加,系统放热,其熵不一定减小。
6、工质经过不可逆循环后,有0<⎰r T Q δ,根据r T Q dS δ=,则有⎰<0dS 。
答:×,工质经过不可逆循环后,有0<⎰r T Q δ,但 ⎰=0dS 。
二、选择题 1、 刚性绝热容器中间用隔板分为两部分,一部分为高压气体,一部分保持真空,抽去隔板前后 DA 、0=∆S ,0=∆U ;B 、0=∆S ,0=∆H ;C 、0<∆S ,0>∆U ;D 、0>∆S ,0=∆U 。
2、 t p w T c q +∆= 适用于 CA 、任意气体、闭口系统、可逆过程;B 、实际气体、开口系统、可逆过程;C 、理想气体、开口系统、稳流过程;D 、任意气体、开口系统、可逆过程。
3、 经过不等温传热后, BA 、热量的可用能和废热均减少;B 、热量的可用能减少,废热增加;C 、热量的可用能不变,废热增加;D 、热量的可用能不变,废热减少。
4、当孤立系统中进行了一不可逆过程后,则孤立系统的总能、总熵、总 用的变化为 CA 、0<∆E ,0>∆S ,0>∆X E ;B 、0>∆E ,0>∆S ,0<∆X EC 、0=∆E ,0>∆S ,0<∆X E ;D 、0=∆E ,0>∆S ,0=∆X E5、在紧闭门窗的房间内,启动一台打开的冰箱,经过一段时间的运行,则室温将BA 、降低;B 、升高;C 、不变;D 、不定。
高等工程热力学试卷和答案

1True or false(20pts)1) Mass can cross the system boundary in the Open system .(T)2) Heat and work can not cross in the Closed system. (F)3)Intensive property is a property that is independent of the extent or mass of the system.(T)4)Heat exchangers are devices that transfer energy between fluids at different temperatures.(T)5) Heat engine can have a thermal efficiency of 100%. (F)6)Heat Engines are Devices that are used to convert heat to work.(T)7)The decrease in quality is always accompanied by an increase in entropy.(T)8)Reversible processes actually can occur in nature.F)9)Energy can be neither created or destroyed;it can only change forms.(T)10)Both Heat and Work are associated with a process and a state.(F)11)Once the temperature equality is established,the heat transfer stops.(T)12)The direction of heat transfer is always from the lower temperature body to the higher temperature.body.(F)13)Work is not a property of a system or its surroundings.(T)14)Closed Feedwater Heaters require a separate pump for each heater.(F)15)The reheat process in general can significantly change the cycle efficiency.(T)2Chosing a correct answer(30pts)1) A thermodynamic system generally has a boundary, this boundary (b)a)can be personally defined from your own interestsb)can only be defined following certain rolesc)is depend on the physical boundariesd)is independent on the physical as well as personal wills2) A system is called a closed system when (c)a)there is only heat exchange between the system and its surroundingsb)there is only work interactions between the system and its surroundingsc)there are both heat exchange and work interactoins between the system and its surroundingsd)there are neither heat exchange nor work interactions between the system and its surroundings3)The specific internal energy,u,other than U,of a system is determined by the(c)of the systema) volume b) pressure c) temperature d) mass4) An example of internal property of a system is (c?)a)mass b)total volume c)pressure d)enthalpy5) A steady state process is related to (a ?)a) a closed system with invarible propertiesb) a control volume with its property changesc) an open system keeping its properties constantd) a closed system having its properties changed6) A good approximation for a stream flowing through a porous plug is (a )a) h in = h out b) P in = P out c)T in = T out d) a and b e) b and c7) Δ T= 0 is true (d )a) for an adiabatic process. b) if no work is done.c) for an isentropic process. d) for a reversible process.8) Characteristics of Heat Engines include (e )a) They receive heat from a high-temperature source.1b)They convert part of this heat to work.c)They reject the remaining waste heat to low-temperature sink.d) They operate on a cycle.e)all of above9) Quality (a)a) is defined by M /M + M ) liq liq vapb) is defined by v = x v + (1-x) v f gc)equals zero for a saturated vapor.d)is only defined in the two phase region.e)is the fraction of mass that is liquid.10) A good approximation for a stream flowing through a heat exchanger is (e?)a) h = h in out b) P = P in out c) T = T in outd) a and b e) b and c11)In an adiabatic process:(b)a)temperature cannot change.b)there is no heat flow.c)internal energy cannot change.d) a and be)a,b and c12) Which of the following is an extensive property ? (b)a)temperature b)weight c)compositiond)pressure e)none of the above13) What is the efficiency of an ideal Carnot heat engine cycle operating between 38 C and 482 C ? (c)a) 90 % b) 89 % c) 59 % d) 16 % e) 11 %14) Which of the following does not have units of energy? (d)a) N-m b) kw-hr c) Pa-m3 d) All have units of energy15)Extensive properties(d)a)apply at a point.b) do not depend on the size of the system.c)depend on position within a system.d)are proportional to the mass of a system.e)are printed in the tables in the back of your book.3Provide definition for the following terms(10pts)1)Internal energy:Internal energy is really the kinetic and potential energy of the atoms in the molecules.2)Heat:Energy crossing the system boundary,not associated with mass,due to a temperature difference.3)Work:Work is the energy transfer associated with a force acting through a distance.4) Closed system: No mass crosses the boundary. Heat and work can cross.5) Open system: Mass can cross the system boundary.4Answering and calculations(40pts)1) Feedwater Heater:Inlet 1 T1 = 200 ºC, p1 = 700 kPa, m1 40 kg/s2Inlet 2 T2 = 40 ºC, p2 = 700 kPa,Exit sat. liquid, p3 = 700 kPa,Find m 2 ?, m 3 ? andV 2 ? A2 = 25 cm2 Steady State m i m e m 1 m 2 m 3AVvInlet 2: compressed liquidTable A-4, v2 = 0.001008 m3/kgExit: saturated liquid Table A-5, v3 = 0.001108 m3/kgm 3 (AV)3v 3 0.060.00110854.15 kg/s m 2 m 3 m 1= 54.15 – 40 = 14.15 kg/sV m 2v 2 (14.15)(0.001008) 5.7 m/s2) A rigid tank contains 10 kg of water at 90 ºC. If 8 kg of the water is in the liquid form and the rest is in the vapor form. Determine the pressure in the tank and the volume of the tank . Table A-4, Psat = 70.14 kPa, P = Psat = 70.14 kPaTable A-4, vf = 0.001036 m3/kg, vg = 2.361 m3/kg v = vf + x(vg -vf) = 0.001036 + 0.2(2.361 – 0.001036) = 0.473 m3/kg V = mv = 10(0.473) = 4.73 m33)Heat is transferred to a heat engine from a furnace at a rate of 80 MW. If the rate of waste heat rejection to a nearby river is 50 MW, determine the net power output and the thermal efficiency. W Q H Q L 80 50 30 MWQ H 80 MW, Q L 50 MW0.375Q H 80 m A V 2 A 0.00252(AV)3 0.06 m 3 /sW304) A heat engine receives 600 kJ of heat from a high-temperature source at 1000 K during a cycle. It converts150kJ of this heat to work and rejects the remaining450kJ to a low-temperature sink at300 K. Determine if this heat engine violates the 2nd law of thermodynamics on the basis of(a)the Clausius inequality.(b)the Carnot principle.(a)Clausius inequalityQ QH QL600450T T T10003003H L= - 0.9 kJ/K < 0(b) Carnot principleth 1 Q Q H L 1 0.25T 300ηth < ηrev5)A heat pump maintains a house at a specified temperature. The rate of heat loss of the house and the power consumption of the heat pump are given. The exterior temperature outside of the house is T L , 20C. The interior temperature e inside of the house is T H ,220C. The rate of heat loss of the house is Q H , 110.000kj/h. It is to be determined if this heat pump can do thejob.Assumptions: The heat pump operates steadily.Analysis: The power input to a heat pump will be a minimum when the heat pump operates in a reversible manner. The coefficient of performance of a reversible heat pump depends on the temperature limits in the cycle only, and is determined fromCOP HPjev =11(T /T )LH = 11(2273K )/(22273K ) 14.75The required power input to this reversible heat pump is determined from the definition of the coefficient of performance to beW net.jev.min= Q H = 110.000kj /h ( 1h ) =2.07kwThis heat pump is powerful enough since 8 kw >2.07 kw.6) 0.5 kg of air undergoes a Carnot cycle with η = 0.5.Given the initial pressure p1 = 700 kPa, initial volume V1 = 0.12 m3 and heat transfer during the isothermal expansion process Q12 = 40 kJ, Find the highest and the lowest temperatures in the cycle.p 1V 1 (700)(0.12)mR (0.5)(0.287)T H T 1 585.4 K H COP P 14.75 3600srev 1 T L 1 10000.7 Hth T T Q T,T L = 292.7 K4 H1 L 1 L Q H T H 1 1 0.5 0.5 L。
(完整版)工程热力学习题集附答案

工程热力学习题集一、填空题1.能源按使用程度和技术可分为 能源和 能源。
2.孤立系是与外界无任何 和 交换的热力系。
3.单位质量的广延量参数具有 参数的性质,称为比参数。
4.测得容器的真空度48V p KPa =,大气压力MPa p b 102.0=,则容器内的绝对压力为 。
5.只有 过程且过程中无任何 效应的过程是可逆过程。
6.饱和水线和饱和蒸汽线将压容图和温熵图分成三个区域,位于三区和二线上的水和水蒸气呈现五种状态:未饱和水 饱和水 湿蒸气、 和 。
7.在湿空气温度一定条件下,露点温度越高说明湿空气中水蒸气分压力越 、水蒸气含量越 ,湿空气越潮湿。
(填高、低和多、少)8.克劳修斯积分/Q T δ⎰ 为可逆循环。
9.熵流是由 引起的。
10.多原子理想气体的定值比热容V c = 。
11.能源按其有无加工、转换可分为 能源和 能源。
12.绝热系是与外界无 交换的热力系。
13.状态公理指出,对于简单可压缩系,只要给定 个相互独立的状态参数就可以确定它的平衡状态。
14.测得容器的表压力75g p KPa =,大气压力MPa p b 098.0=,则容器内的绝对压力为 。
15.如果系统完成某一热力过程后,再沿原来路径逆向进行时,能使 都返回原来状态而不留下任何变化,则这一过程称为可逆过程。
16.卡诺循环是由两个 和两个 过程所构成。
17.相对湿度越 ,湿空气越干燥,吸收水分的能力越 。
(填大、小)18.克劳修斯积分/Q T δ⎰ 为不可逆循环。
19.熵产是由 引起的。
20.双原子理想气体的定值比热容p c = 。
21、基本热力学状态参数有:( )、( )、( )。
22、理想气体的热力学能是温度的( )函数。
23、热力平衡的充要条件是:( )。
24、不可逆绝热过程中,由于不可逆因素导致的熵增量,叫做( )。
25、卡诺循环由( )热力学过程组成。
26、熵增原理指出了热力过程进行的( )、( )、( )。
31.当热力系与外界既没有能量交换也没有物质交换时,该热力系为_______。
高等工程热力学总复习题

高等工程热力学总复习题高等工程热力学总复习题高等工程热力学总复习题一、简答题1. 与外界只有一种功量交换的单相简单系统的状态参数都可以两个独立的状态参数确定是否正确?答:不正确,对简单可压缩系统的物理变化过程,确定系统平衡状态的独立状态参数只需两个。
但是对于化学反应的物系,不仅存在热与力两种不平衡势差,而且存在驱动化学反应的化学势差,并使参与反应的物质成分或者浓度发生变化,故确定其平衡状态往往需要两个以上的独立参数。
2. 阐述膨胀功、技术功、轴功与推动功之间的联系与区别?答:膨胀功:气体容积变化所引起的能量的变化;技术功:工程中可以直接利用的那部分能量,包括动能、势能和轴功。
轴功:通过进出口截面以外的边界所传递的功;推进功:在进出口截面上,为推动工质出入系统所传递的功量;稳定流动中,工质受热膨胀而得到的膨胀功一部分用于补偿系统输出的净推动功,一部分用于增加流动工质的流动动能及重力势能,其余部分作为开口系统的轴功输出。
即:膨胀功=技术功+推动功,技术功=轴功+动能+势能。
3. 刚性容器绝热放气,试证明过程中容器内发生的是可逆绝式,所以整个放气过程是可逆的。
在这一放气过程中,可以假象成又一个活塞把剩余气体与放出的气体分割开来进行的,但并不表示容积的总熵不变,因为有质量的流出,不是孤立系统,所以容积内的总熵是减少的。
如果把所有气体以及外界看做是一个系统,考虑放出的气体在容积外的不可逆膨胀过程,所以系统的总熵是增加的。
如果把剩余气体和放出的气体看做是一个整体,则系统是孤立系统,又因为是可逆绝热过程,系统的总熵是不变的。
所以这一过程与熵增原理不违背。
4. 稳定气流对刚性容器绝热充气是可逆过程吗?若不是不可逆损失如何计算?答:不是可逆过程。
存在不可逆损失,熵产ΔSg>0。
取此刚性绝热容器为系统,绝热过程,所以熵流ΔSf=0,故ΔS=ΔSf+ΔSg=ΔSg,所以ΔSg=∫12Cv·dT/T +R·lnV2/V1,又V1=V2,所以ΔSg=Cv·lnT2/T1。
工程热力学复习题及答案

工程热力学复习题及答案1. 什么是工程热力学?请简述其研究内容。
2. 描述热力学第一定律的数学表达式,并解释其物理意义。
3. 热力学第二定律有哪些表述方式?请至少列举两种。
4. 什么是熵?熵增加原理在热力学过程中有何意义?5. 简述理想气体状态方程,并说明其适用条件。
6. 描述卡诺循环的四个步骤,并解释其效率与哪些因素有关。
7. 什么是绝热过程?请给出绝热过程的数学表达式。
8. 说明在热力学中,如何定义和计算一个系统的内能。
9. 描述在等温过程中,理想气体的体积变化与压力变化的关系。
10. 什么是热机效率?请给出其计算公式。
11. 解释为什么在实际热机中,效率总是低于卡诺效率。
12. 什么是热力学温标?它与摄氏温标有何不同?13. 描述在绝热压缩过程中,理想气体的温度变化规律。
14. 什么是临界点?请说明其在实际应用中的意义。
15. 简述在热力学中,如何确定一个系统的相态。
16. 描述湿空气的焓如何计算,并解释其在空调系统中的作用。
17. 什么是热交换器?请说明其在工业中的应用。
18. 简述在热力学中,如何使用麦克斯韦关系来求解未知热力学性质。
19. 描述在多组分系统中,化学势的概念及其重要性。
20. 什么是热力学稳定性?请解释其在化学反应中的应用。
答案:1. 工程热力学是研究能量转换和传递规律的学科,主要研究热能与机械能之间的转换。
2. 热力学第一定律的数学表达式为 \(\Delta U = Q - W\),其中\(\Delta U\) 是内能变化,\(Q\) 是系统吸收的热量,\(W\) 是系统对外做的功。
3. 热力学第二定律的两种表述方式:克劳修斯表述和开尔文表述。
克劳修斯表述指出不可能将热量从低温物体传递到高温物体而不产生其他效果;开尔文表述指出不可能从单一热源吸热使之完全转化为功而不产生其他效果。
4. 熵是系统无序度的度量,熵增加原理表明,在孤立系统中,自发过程总是朝着熵增加的方向进行。
工程热力学习题及答案

题目类型一、填空题二、简答题三、分析推理题四、证明题五、说明题六、计算题一、填空题(共30分,每空1分)1、可逆过程是准静态过程的充分条件。
2、系统与外界既无能量交换又无质量交换的系统叫做孤立系统。
3、如大气压力为0.1MPa,则容器内真空度的最大值为0.1 MPa。
4、处于平衡状态的系统,其内部不存在势差。
5、膨胀功、技术功以及系统进出口的流动功四者的关系式为w t+p2v2=w+p1v16、制冷系数的取值范围是(0,+∞)。
7、范德瓦尔方程提出的基本观点为:实际气体分子本身占有体积,实际气体分子间存在吸引力。
8、压缩因子的定义是实际气体的比热与按理想气体求得的比热的比值。
9、定容过程加给系统的热量用于提高系统的内能;定压过程加给系统的热量用于提高系统的焓。
10、理想气体的真实比热不仅与气体的种类有关,还与气体的温度有关。
11、气体总压力与分压力之间遵循道尔顿定律;总容积与分容积之间遵循阿密盖特定律。
12、闭口系统的特点是控制质量;开口系统的特点是控制体积。
13、理想气体绝热节流前后,熵增大,温度不变。
14、活塞式压缩机的余隙对排气量有影响;对单位压缩轴功无影响。
15、在卡诺循环中,对热效率影响较大的是低温热源的温度。
16、凝华现象只有在物质的三相点压力以下才可能发生。
17、热力学第二定律的数学表达式为ds iso≥0 。
18、喷水蒸气加湿的过程为等温加湿过程,喷水加湿的过程为等焓加湿过程。
19、如1 kg湿空气中含有0.5kg水蒸气,则这种湿空气的含湿量为1000g/kg(a)。
20、获得超音速气流的两个条件是βb≤βc和采用渐缩渐扩喷管。
21、相对于蒸气压缩制冷而言,空气压缩制冷的缺点是制冷系数小;和单位工致的制冷量小。
22.在等熵流动中,由亚音速气流加速为超音速气流的过程中,以下参数是如何变化(增大、减小):温度减小、比容增大、音速减小。
二、简答题:(共20分,每小题5分)1、简述背压式热电循环的原理,说明其意义。
工程热力学习题及答案

工程热力学习题及答案
工程热力学学习题及答案
热力学是工程学习中的重要一环,它涉及到能量转化、热力循环等方面的知识。
在学习热力学的过程中,我们常常会遇到各种各样的学习题,下面就来看一些
典型的热力学学习题及答案。
1. 问题:一个理想气体在等压过程中,从初始状态到终了状态,其内能增加了
多少?
答案:在等压过程中,内能的增加量等于热量的增加量,即ΔU = q。
因此,
内能增加量等于所吸收的热量。
2. 问题:一个气缸中的气体经历了一个等温过程,温度为300K,初始体积为
1m³,末了体积为2m³,求气体对外界所做的功。
答案:在等温过程中,气体对外界所做的功等于PΔV,即气体的压强乘以体
积的变化量。
因此,气体对外界所做的功为PΔV = nRTln(V₂/V₁)。
3. 问题:一个理想气体经历了一个绝热过程,初始温度为400K,初始体积为
1m³,末了体积为0.5m³,求末了温度。
答案:在绝热过程中,气体的内能保持不变,即ΔU = 0。
根据理想气体的状
态方程PV = nRT,我们可以得到P₁V₁^γ = P₂V₂^γ,其中γ为绝热指数。
利用这个关系式,可以求得末了温度。
通过以上几个典型的热力学学习题及答案,我们可以看到热力学知识的应用和
计算是非常重要的。
只有通过不断的练习和思考,我们才能更好地掌握热力学
的知识,为今后的工程实践打下坚实的基础。
希望大家在学习热力学的过程中
能够勤加练习,不断提高自己的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、简述温度的定义、物理意义及温度测量的工程应用意义。
温度是表征物体冷热程度的物理量,是物质微粒热运动的宏观体现。
根据热力学第零定律说明,物质具备某种宏观性质,当各物体的这一性质不同时,它们若相互接触,其间将有净能流传递;当这一性质相同时,它们之间达到热平衡。
人们把这一宏观物理性质称为温度。
物理意义:从微观上看,温度标志物质分子热运动的剧烈程度。
温度和热平衡概念直接联系,两个物系只要温度相同,它们间就处于热平衡,而与其它状态参数如压力、体积等的数值是否相同无关,只有温度才是热平衡的判据。
温度测量的工程应用意义:温度是用以判别它与其它物系是否处于热平衡状态的参数。
被测物体与温度计处于热平衡,可以从温度计的读书确定被测物体的温度。
2简述热与功的联系与区别区别:功是系统与外界交换的一种有序能,有序能即有序运动的能量,如宏观物体(固体和流体)整体运动的动能,潜在宏观运动的位能,电子有序流动的电能,磁力能等。
在热力学中,我们这样定义功:“功是物系间相互作用而传递的能量。
当系统完成功时,其对外界的作用可用在外间举起重物的单一效果来代替。
”一般来说,各种形式的功通常都可以看成是由两个参数,即强度参数和广延参数组成,功带有方向性。
功的方向由系统与外界的强度量之差来决定,当系统对外界的作用力大于外界的抵抗力时,系统克服外界力而对外界做功。
功的大小则由系统与外界两方的较小强度量的标值与广延量的变化量的乘积决定,而功的正号或负号就随广延量的变化量增大或减小而自然决定。
热量是一种过程量,在温差作用下,系统以分子无规则运动的热力学能的形式与外界交换的能量,是一种无序热能,因此和功一样热量也可以看成是由两个参数,即强度参数和广延参数组成的量。
传递热量的强度参数是温度,因此有温差的存在热量传递才可以进行。
热量的大小也可以由系统的与外界两方的较小强度量的标量与广延量变化量的乘积决定。
热量也有方向性。
热量的方向由系统与外界的温度之差来决定,当外界的温度高于系统的温度时,外界对系统传热。
热力学习惯把这种外界对系统的传热,即系统吸收外界的热量取为正值;反之,把系统对外界放热取为负值。
热力学把与热量相关的广延参数取名为“熵”。
联系:1系统对外做功为正,外界对系统做功为负。
系统吸收外界的热量取为正值,系统对外界放热取为负值。
2 热和功不是体系性质,也不是状态函数,而是系统与环境间能量传递过程中的物理量,热和功与过程有关,只有在过程进行中才有意义。
3 热和功都只对封闭系统发生的过程才有明确的意义。
而对既有能量交换又有物质交换的敞开体系而言,热和功的含义就不明确了。
4功和热都可以看做两个参数决定,分别是强度参数和广延参数。
3刚性容器绝热或定温充放气的计算(包括充放气过程可用能损失的计算)以刚性容器中气体为研究对象,其能量方程的一般表达式为:刚性容器静止不动:错误!未找到引用源。
没有功的交换:错误!未找到引用源。
忽略宏观动能、位能变化:错误!未找到引用源。
(1)绝热或定温充放气的计算:i. 刚性容器绝热充气选取热力系统、确定热力系统性质、选择热力学第一定律解析式,并进行简化后得到:因为:所以:用参数关系式表示上式能量项:由于dv=0,故有:代回原式削去m项,则得到:积分后得到:若削去温度T,则得到:以T=pV/mRg代入,积分后得到:对于绝热刚性真空容器充气,则有:ii.刚性容器绝热放气根据过程特征,简化后的能量方程为:利用参数关系式表示上式中各能量项,则有:据状态方程:代回能量方程削去dm/m,则得:若由状态方程削去dT/T,则可得到:iii.刚性容器等温充气指充气过程很慢,系统与外界随时保持热平衡,对能量方程进行化简后得到:因为:所以:对刚性容器定温过程,状态方程的微分式为:同时还满足:将以上关系式代回原式则可以得到:iv.刚性容器等温放气对于等温过程,状态方程的微分式将表示为:刚形容器等温放气的能量方程成为:将参数关系式代入上述能量方程:由于dT=0,所以:又由于dv=0,则:(2)可用能损失计算:工质看做理想气体;理想气体的热力学能和焓为温度的单值函数;充、放气过程的能量方程有用能损失错误!未找到引用源。
其中:i.绝热充气过程熵变完全由熵产造成,即错误!未找到引用源。
ii.等温充气过程熵产错误!未找到引用源。
4.简述熵的定义、物理意义及其应用熵的定义:在经典热力学中,可用增量定义为可逆式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量,下标“可逆”表示加热过程所引起的变化过程是可逆的。
若过程是不可逆的,则dS>(dQ/T)不可逆。
物理意义:物质微观热运动时,混乱程度的标志。
热力学中表征物质状态的参量之一,通常用符号S表示。
应用:化学及热力学中所指的熵,是一种测量在动力学方面不能做功的能量总数,也就是当总体的熵增加,其做功能力也下降,熵的量度正是能量退化的指标。
熵亦被用于计算一个系统中的失序现象,也就是计算该系统混乱的程度。
熵是一个描述系统状态的函数,但是经常用熵的参考值和变化量进行分析比较,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。
5.换热器中不可逆传热过程或汽轮机中不可逆作功过程中可用能损失的计算换热器,1)冷热流体与外界无热交换的前提下:换热器的热平衡方程式,根据上述公式算出的火用损为,前者为高温流体从高温到低温放出之火用,后者为低温流体从低温到高温获得之火用。
按下式计算高低温流体在各自温度下的火含火用,可得,12,T T 为高温流体进出口温度,34,T T 为低温流体进出口温度。
一般,,a b C C 为常数,只要知道高低温流体进出口温度即可计算不可逆过程可用能损失。
2)考虑热损失的情况下,可用能损失计算较为复杂,忽略。
汽轮机不可逆绝热膨胀,可用能损失,0012()e W T S T S S =∆=- 0T 为环境温度,一般取298K.设可逆过程,从1到2过程,可以做功t W ,不可逆过程,从1到2‘做功't W ,则少做功,''22t t W W h h -=-,即为2P 曲线下从'2S 到1S 面积,其中有一部分转化为2’下的有用能,所以,有用能损失为,''''''22121222022021W ()(())()e t t W W e e h h h h h h T S S T S S =-+-=---+---=-6.纯质的热力学曲面和相图一般有哪些共同特点?确定纯净物质的热力学平衡态需要两个独立参数,任意第三个参数都可以表示为独立参数的函数, 如,即得到纯物质状态方程的一般形式为f(p,v,T)=0。
对于单元系的一个平衡状态可以用三维直角坐标系内的一点来表示, 满足状态方程式的所有平衡状态点在p-v-T 三维直角坐标系构成一个曲面, 称为热力学曲面。
将p-v-T 相图曲面投影到平面上,可以得到二维相图,即p-v 和p-T 相图。
p-T 相图是由凝固线、升华线、汽化线三条线组成的。
代表固相和气相共存的点位于升华线上,在p-T相图起始于原点而终止于三相点;代表液相和气相共存的点位于气化线上, 在p-T相图中起始于三相点而终止于临界点;代表固相和液相共存的点位于凝固线上,它在图中起始于三相点而无终止点。
热力学曲面在p-v面的投影图, 即得p-v相图,用来描述物质的气体、液体及汽液共存的特性。
共同点:(1)热力学曲面和相图,图上的任意一点都是平衡点。
(2)热力学曲面上的三相线在p-T相图中投影为一个确定的点,三相点是三相共存的点,在p-T 相图中分别与固、液、气三个单相区相邻,是三条两相共存线的交点。
(3)临界点(critical point)是饱和液态线和饱和气态线相交的点。
表明:液相和气相共存的气化曲线是有限长度的曲线。
临界点的温度和压力称为物质的临界温度Tc和临界压力pc, 对于给定的已知物质, Tc和pc是完全确定的。
7.热工计算中常用的通用状态方程式及其特点1.理想气体状态方程pv=RgT该方法忽略了气体分子体积和相互间作用力,是在压强不高、温度不低时实际气体的一级近似方程,不适用于压强较高的情况。
2、维里方程采用压缩因子对理想气体方程进行修正,压缩因子Z=pv/RgT=1+B(T)/v+C(T)/v2……=1+B(T)’P+C(T)’p2……,该方程是可以根据分子集团理论在考虑分子间作用力后根据统计力学导出的状态方程,维里系数与不同大小分子团间的作用力相关,是对理想气体方程进行修正的一种简单方式。
3、三次型方程包括范德瓦尔斯及其改进式,展开式中包含体积的三次方,可以统一写成p=RgT/(v-b)—a/(v2+ubv+wb2),是既能表示气相又能表示液相p-v-T行为的最简单形式,同时具有良好的通用性。
3.1范德瓦尔斯方程,p=RgT/(v-b) —a/v2,该方程修正较为简单,考虑分子体积和分子间作用力的影响,是实际气体的二级近似方程。
可以解释从气体过渡到液体的相变,对临界压缩因子的预测值偏大,在高密度区不能得到满意的结果,在不是高压时可用范德瓦尔斯方程来处理实际气体。
3.2 RK方程精度比范德瓦尔斯高许多,适用于非极性和微极性气体。
3.3 Soava 精度比RK方程高,尤其适用于计算烃类纯净物和混合物,包括p-v-T关系和气液平衡计算。
3.4 PR方程可以计算饱和液体的性质。
4.1贝蒂-布里奇曼方程为,该方法是由理论分析得到,从实验数据拟合出常数值的半理论半经验方程,在比体积超过临界比体积两倍的情况下具有良好的精度。
4.2 BWR方程在贝蒂-布里奇曼方程的基础上增加了三个经验常数,可应用于很宽的温度压力范围,严格符合临界区性质,当对比温度Tr>0.6,对比密度不大于1.8~2时,计算烃类气体和液体比体积平均误差0.3%左右。
4.3 BWRS 方程的应用范围进一步扩大,在Tr不小于0.3,密度不大于3倍临界密度范围内可以计算气体p-v-T性质,用于计算烃类气体、CO2、H2S和N2等气体的比体积,误差在0.5%~2%之间。
4.4 MBWR 方程更复杂,有32个可调常数,在很大温度压力范围内精度更高,对实验数据点要求更多,拟合难度大,广泛应用于碳氢化合物和低温流体p-v-T 行为以及其他热物理性质的计算,也应用于氟氯烃制冷工质。
5. 马-侯方程应用了11个常数,该方程可以准确计算高密度强极性气体,如H2O 、NH3。
6. 压缩因子通用化关联双参数法Z=Z(Tr ,pr)不适用于强极性分子,对氦、氢、氖等量子气体,临界温度和临界压力需要修正;经pitzer 引入偏心因子修正后,精度提高。