北京理工大学数据结构实验报告4

北京理工大学数据结构实验报告4
北京理工大学数据结构实验报告4

《数据结构与算法统计》

实验报告

——实验四

学院:

班级:

学号:

姓名:

一、实验目的

1、熟悉VC 环境,学会使用C 语言利用顺序表解决实际问题。

2、通过上机、编程调试,加强对线性表的理解和运用的能力。

3、锻炼动手编程,独立思考的能力。

二、实验内容

从键盘输入10个数,编程实现分别用插入排序、交换排序、选择排序算法进行排序,输出排序后的序列。

三、程序设计

1、概要设计

为了实现排序的功能,需要将输入的数字放入线性表中,进行进一步的排序操作。

(1)抽象数据类型:

ADT SqList{

数据对象:D={|,1,2,,,0}i i a a Elem Set i n n ∈=≥

数据关系:R1=11{,|,,1,2,,}i i i i a a a a D i n --<>∈=

基本操作:

InPut(SqList &L)

操作结果:构造一个线性表L 。

OutPut(SqList L)

初始条件:线性表L 已存在。

操作结果:按顺序在屏幕上输出L 的数据元素。

InsertSort(SqList &L)

初始条件:线性表L 已存在。

操作结果:对L 的数据元素进行插入排序。

QuickSort(SqList &L)

初始条件:线性表L 已存在。

操作结果:对L 的数据元素进行快速排序。

SelectSort(SqList &L)

初始条件:线性表L 已存在。

操作结果:对L 的数据元素进行选择排序。

}ADT SqList

⑵主程序流程

由主程序首先调用InPut(L)函数创建顺序表,调用InsertSort(L)函数进行插入排序,调用OutPut(L)函数显示排序结果。

再由主程序首先调用InPut(L)函数创建顺序表,调用QuickSort(L)函数进行交换排序,调用OutPut(L)函数显示排序结果。

再由主程序首先调用InPut(L)函数创建顺序表,调用SelectSort(L)函数进行选择排序,调用OutPut(L)函数显示排序结果。

⑶模块调用关系

由主函数模块调用创建顺序表模块,排序模块与显示输出模块。

⑷流程图

开始

创建线性表

进行插入排序

输出排序结果

创建线性表

进行交换排序

输出排序结果

创建线性表

进行选择排序

输出排序结果

结束

2、详细设计

(1)数据类型设计

#define MAXSIZE 15//用作示例的小顺序表的最大长度

typedef struct

{

int key;//关键字项

int otherinfo;//其它数据项

}RedType;//记录类型

typedef struct

{

RedType r[MAXSIZE+1];//r[0]闲置或用作哨兵单元

int length;//顺序表长度

}SqList;//顺序表类型

(2)操作算法设计

void InPut(SqList &L)

//输入数字,创建顺序表

{

int i;

printf("请输入10个数字:\n");

L.length=10;

for(i=1;i<=L.length;i++)

{

scanf("%d",&L.r[i].key);

}

}

void InsertSort(SqList &L)

//对顺序表L作直接插入排序

{

int i,j;

for(i=2;i<=L.length;i++)

{

if(L.r[i].key

{

L.r[0].key=L.r[i].key;//复制为哨兵

L.r[i].key=L.r[i-1].key;

for(j=i-2;L.r[0].key

{

L.r[j+1].key=L.r[j].key;//记录后移

}

L.r[j+1].key=L.r[0].key;//插入到正确位置

}

}

}

int Partition(SqList &L,int low,int high)

//交换顺序表L中子表r[low…high]的记录,枢轴记录到位,并返回其所在位置,/此时在它之前(后)的记录均不大(小)于它。

{

int pivotkey;

L.r[0].key=L.r[low].key;//用子表的第一个记录作枢轴记录

pivotkey=L.r[low].key;//枢轴记录关键字

while(low

{

while(low=pivotkey)

{

--high;//将比枢轴记录小的记录移到低端

}

L.r[low].key=L.r[high].key;

while(low

{

++low;//将比枢轴记录大的记录移到高端

}

L.r[high].key=L.r[low].key;

}

L.r[low].key=L.r[0].key;//枢轴记录到位

return low;//返回枢轴位置

}

void QSort(SqList &L,int low,int high)

//对顺序表L中的子序列L.r[low…high]作快速排序

{

int pivotloc;

if(low

{

pivotloc=Partition(L,low,high);//将L.r[low…high]一分为二

QSort(L,low,pivotloc-1);//对低子表递归排序,pivotloc是枢轴位置

QSort(L,pivotloc+1,high);//对高子表递归排序

}

}

void QuickSort(SqList &L)

//对顺序表L做快速排序

{

QSort(L,1,L.length);

}

void SelectSort(SqList &L)

//对顺序表L作简单选择排序

{

int i,j,k;

for(i=1;i

{

k=i;

for(j=i+1;j

{

if(L.r[j].key

{

k=j;

}

}

if(i!=k)//与第i个记录交换

{

L.r[0].key=L.r[i].key;

L.r[i].key=L.r[k].key;

L.r[k].key=L.r[0].key;

}

}

}

void OutPut(SqList L)

//输出顺序表

{

int i;

for(i=1;i<=L.length;i++)

{

printf("%d ",L.r[i].key);

}

printf("\n");

}

⑶主函数设计

void main()//主程序

{

SqList L;

printf("插入排序法:\n");

InPut(L);//创建线性表L

InsertSort(L);//对L进行插入排序

OutPut(L);//输出线性表L

printf("交换排序法:\n");

InPut(L);//创建线性表L

QuickSort(L);//对L进行交换排序

OutPut(L);//输出线性表L

printf("选择排序法:\n");

InPut(L);//创建线性表L

SelectSort(L);//对L进行选择排序

OutPut(L);//输出线性表L

}

四、程序调试分析

⑴在快速排序中,对一些后引入的变量,如pivotkey没有声明,导致编译失败。

⑵在直接插入排序中,由于对程序理解不深,将if的{}扩错了位置,导致程序不能按预期输出。

五、程序运行结果

测试一:

插入排序法:

请输入10个数字:

1 3 5 7 9

2 4 6 8 0

0 1 2 3 4 5 6 7 8 9

交换排序法:

请输入10个数字:

1 3 5 7 9

2 4 6 8 0

0 1 2 3 4 5 6 7 8 9

选择排序法:

请输入10个数字:

1 3 5 7 9

2 4 6 8 0

1 2 3 4 5 6 7 8 9 0

测试二:

插入排序法:

请输入10个数字:

49 38 65 97 76 13 27 67 52 34

13 27 34 38 49 52 65 67 76 97

交换排序法:

请输入10个数字:

49 38 65 97 76 13 27 67 52 34

13 27 34 38 49 52 65 67 76 97

选择排序法:

请输入10个数字:

49 38 65 97 76 13 27 67 52 34

13 27 38 49 52 65 67 76 97 34

六、程序清单

#include

#include

#define MAXSIZE 15//用作示例的小顺序表的最大长度

typedef struct

{

int key;//关键字项

int otherinfo;//其它数据项

}RedType;//记录类型

typedef struct

{

RedType r[MAXSIZE+1];//r[0]闲置或用作哨兵单元int length;//顺序表长度

}SqList;//顺序表类型

void InPut(SqList &L);

void InsertSort(SqList &L);

void OutPut(SqList L);

void QuickSort(SqList &L);

void QSort(SqList &L,int low,int high);

void SelectSort(SqList &L);

void main()//主程序

{

SqList L;

printf("插入排序法:\n");

InPut(L);//创建线性表L

InsertSort(L);//对L进行插入排序

OutPut(L);//输出线性表L

printf("交换排序法:\n");

InPut(L);//创建线性表L

QuickSort(L);//对L进行交换排序

OutPut(L);//输出线性表L

printf("选择排序法:\n");

InPut(L);//创建线性表L

SelectSort(L);//对L进行选择排序

OutPut(L);//输出线性表L

}

void InPut(SqList &L)//输入数字,创建顺序表

{

int i;

printf("请输入10个数字:\n");

L.length=10;

for(i=1;i<=L.length;i++)

{

scanf("%d",&L.r[i].key);

}

}

void InsertSort(SqList &L)//对顺序表L作直接插入排序{

int i,j;

for(i=2;i<=L.length;i++)

{

if(L.r[i].key

{

L.r[0].key=L.r[i].key;//复制为哨兵

L.r[i].key=L.r[i-1].key;

for(j=i-2;L.r[0].key

{

L.r[j+1].key=L.r[j].key;//记录后移

}

L.r[j+1].key=L.r[0].key;//插入到正确位置

}

}

}

int Partition(SqList &L,int low,int high)//交换顺序表L中子表r[low…high]的记录,枢轴记录到位,并返回其所在位置,

//此时在它之前(后)的记录均不大(小)于它。

{

int pivotkey;

L.r[0].key=L.r[low].key;//用子表的第一个记录作枢轴记录

pivotkey=L.r[low].key;//枢轴记录关键字

while(low

{

while(low=pivotkey)

{

--high;//将比枢轴记录小的记录移到低端

}

L.r[low].key=L.r[high].key;

while(low

{

++low;//将比枢轴记录大的记录移到高端

}

L.r[high].key=L.r[low].key;

}

L.r[low].key=L.r[0].key;//枢轴记录到位

return low;//返回枢轴位置

}

void QSort(SqList &L,int low,int high)//对顺序表L中的子序列L.r[low…high]作快速排序{

int pivotloc;

if(low

{

pivotloc=Partition(L,low,high);//将L.r[low…high]一分为二

QSort(L,low,pivotloc-1);//对低子表递归排序,pivotloc是枢轴位置

QSort(L,pivotloc+1,high);//对高子表递归排序

}

}

void QuickSort(SqList &L)//对顺序表L做快速排序

{

QSort(L,1,L.length);

}

void SelectSort(SqList &L)//对顺序表L作简单选择排序

{

int i,j,k;

for(i=1;i

{

k=i;

for(j=i+1;j

{

if(L.r[j].key

{

k=j;

}

}

if(i!=k)//与第i个记录交换

{

L.r[0].key=L.r[i].key;

L.r[i].key=L.r[k].key;

L.r[k].key=L.r[0].key;

}

}

}

void OutPut(SqList L)//输出顺序表

{

int i;

for(i=1;i<=L.length;i++)

{

printf("%d ",L.r[i].key);

}

printf("\n");

}

北京理工大学汇编语言实验六磁盘文件存取实验报告

第六章磁盘文件存取实验(设计性实验) 一、实验要求和目的 1.理解文件、目录的概念; 2.了解FCB(文件控制块)方式文件管理方法; 3.掌握文件代号式文件存取方式; 4.学习使用文件指针读取文件 二、软硬件环境 1.硬件环境:计算机系统windows; 2.软件环境:装有MASM、DEBUG、LINK、等应用程序。 三、实验涉及的主要知识单元 DOS功能调用中断(INT 21H)提供了两类磁盘文件管理功能,一类是FCB(文件控制块)方式,另一类是文件代号式存取方式。 对于文件的管理,实际上是对文件的读写管理,DOS 设计了四种存取文件 方式:顺序存取方式、随机存取方式、随机分块存取方式和代号法存取方式。文件的处理步骤 A)写之前必须先建立文件、读之前必须先打开文件。 B)写文件之后一定要关闭文件。通过关闭文件,使操作系统确认此 文件放在磁盘哪一部分,写后不关闭会导致写入文件不完整。 1、文件代号式存取方式: 当用户需要打开或建立一个文件时,必须提供文件标识符。文件标识符用ASCII Z 字符串表示。ASCII Z 字符串是指文件标识符的ASCII 字符串后面再加1 个“0”字符。文件标识符的字符串包括驱动器名、路径名和文件名。其格式为 [d:][path]filename[.exe] 其中d 为驱动器名,path 为路径名,.exe 为文件名后缀。 中断 21H 提供了许多有关目录和文件操作的功能,其中文件代号式存取方式常用的功能如下: 2、操作目录的常用功能 39H——创建目录 3BH——设置当前目录 3AH——删除目录 47H——读取当前目录 有关中断功能的详细描述和调用参数在此从略,需要查阅者可参阅相关资料 之目录控制功能。 3、用文件句柄操作文件的常用功能 3CH——创建文件 4EH——查找到第一个文件 3DH——打开文件 4FH——查找下一个文件 3EH——关闭文件 56H——文件换名 3FH——读文件或设备 57H——读取/设置文件的日期和时间 40H——写文件或设备 5AH——创建临时文件 41H——删除文件 5BH——创建新文件

数据结构实验报告格式

《数据结构课程实验》大纲 一、《数据结构课程实验》的地位与作用 “数据结构”是计算机专业一门重要的专业技术基础课程,是计算机专业的一门核心的关键性课程。本课程较系统地介绍了软件设计中常用的数据结构以及相应的存储结构和实现算法,介绍了常用的多种查找和排序技术,并做了性能分析和比较,内容非常丰富。本课程的学习将为后续课程的学习以及软件设计水平的提高打下良好的基础。 由于以下原因,使得掌握这门课程具有较大的难度: (1)内容丰富,学习量大,给学习带来困难; (2)贯穿全书的动态链表存储结构和递归技术是学习中的重点也是难点; (3)所用到的技术多,而在此之前的各门课程中所介绍的专业性知识又不多,因而加大了学习难度; (4)隐含在各部分的技术和方法丰富,也是学习的重点和难点。 根据《数据结构课程》课程本身的技术特性,设置《数据结构课程实验》实践环节十分重要。通过实验实践内容的训练,突出构造性思维训练的特征, 目的是提高学生组织数据及编写大型程序的能力。实验学时为18。 二、《数据结构课程实验》的目的和要求 不少学生在解答习题尤其是算法设计题时,觉得无从下手,做起来特别费劲。实验中的内容和教科书的内容是密切相关的,解决题目要求所需的各种技术大多可从教科书中找到,只不过其出现的形式呈多样化,因此需要仔细体会,在反复实践的过程中才能掌握。 为了帮助学生更好地学习本课程,理解和掌握算法设计所需的技术,为整个专业学习打好基础,要求运用所学知识,上机解决一些典型问题,通过分析、设计、编码、调试等各环节的训练,使学生深刻理解、牢固掌握所用到的一些技术。数据结构中稍微复杂一些的算法设计中可能同时要用到多种技术和方法,如算法设计的构思方法,动态链表,算法的编码,递归技术,与特定问题相关的技术等,要求重点掌握线性链表、二叉树和树、图结构、数组结构相关算法的设计。在掌握基本算法的基础上,掌握分析、解决实际问题的能力。 三、《数据结构课程实验》内容 课程实验共18学时,要求完成以下六个题目: 实习一约瑟夫环问题(2学时)

北京理工大学《数据结构与算法设计》实验报告实验四

《数据结构与算法设计》 实验报告 ——实验四 学院: 班级: 学号: 姓名:

一、实验目的 1. 通过实验实践、巩固线性表的相关操作; 2. 熟悉VC 环境,加强编程、调试的练习; 3. 用C 语言实现线性表的抽象数据类型,实现线性表构造、插入、取数据等基本操作; 4. 理论知识与实际问题相结合,利用上述基本操作实现三种排序并输出。 二、实验内容 从键盘输入10个数,编程实现分别用插入排序、交换排序、选择排序算法进行排序,输出排序后的序列。 三、程序设计 1、概要设计 为了实现排序的功能,需要将输入的数字放入线性表中,进行进一步的排序操作。 (1)抽象数据类型: ADT SqList{ 数据对象:D={|,1,2,,,0}i i a a ElemSet i n n ∈=≥ 数据关系:R1=11{,|,,1,2,,}i i i i a a a a D i n --<>∈= 基本操作: InPut(SqList &L) 操作结果:构造一个线性表L 。 OutPut(SqList L) 初始条件:线性表L 已存在。 操作结果:按顺序在屏幕上输出L 的数据元素。 InsertSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行插入排序。 QuickSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行快速排序。 SelectSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行选择排序。 }ADT SqList ⑵主程序流程 由主程序首先调用InPut(L)函数创建顺序表,调用InsertSort(L)函数进行插入排序, 调用OutPut(L)函数显示排序结果。调用QuickSort(L)函数进行交换排序,调用OutPut(L) 函数显示排序结果。调用SelectSort(L)函数进行选择排序,调用OutPut(L)函数显示排序 结果。 ⑶模块调用关系 由主函数模块调用创建顺序表模块,排序模块与显示输出模块。

数据结构实验报告(四)

《数据结构》实验报告 班级: 学号: 姓名:

实验四二叉树的基本操作实验环境:Visual C++ 实验目的: 1、掌握二叉树的二叉链式存储结构; 2、掌握二叉树的建立,遍历等操作。 实验内容: 通过完全前序序列创建一棵二叉树,完成如下功能: 1)输出二叉树的前序遍历序列; 2)输出二叉树的中序遍历序列; 3)输出二叉树的后序遍历序列; 4)统计二叉树的结点总数; 5)统计二叉树中叶子结点的个数; 实验提示: //二叉树的二叉链式存储表示 typedef char TElemType; typedef struct BiTNode{ TElemType data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree;

一、程序源代码 #include #include #define MAXSIZE 30 typedef char ElemType; typedef struct TNode *BiTree; struct TNode { char data; BiTree lchild; BiTree rchild; }; int IsEmpty_BiTree(BiTree *T) { if(*T == NULL) return 1; else return 0;

} void Create_BiTree(BiTree *T){ char ch; ch = getchar(); //当输入的是"#"时,认为该子树为空 if(ch == '#') *T = NULL; //创建树结点 else{ *T = (BiTree)malloc(sizeof(struct TNode)); (*T)->data = ch; //生成树结点 //生成左子树 Create_BiTree(&(*T)->lchild); //生成右子树 Create_BiTree(&(*T)->rchild); } } void TraverseBiTree(BiTree T) { //先序遍历 if(T == NULL) return;

北京理工大学汇编实验五

一、实验目的 1、掌握子程序有关基本知识,学会子程序设计方法; 2、掌握主程序与子程序之间的调用关系及调用方法; 3、掌握汇编语言字符串处理方法; 4、掌握字符串的输入输出程序设计方法; 5、掌握数制转换程序实现方法。 二、实验软硬件环境 1、硬件环境:惠普64 位一体化计算机及局域网; 2、软件环境:windows 8,红蜘蛛管理系统,MASM for Windows。 三、实验相关知识 把功能相对独立的程序段单独编写和调试,作为一个相对独立的模块供程序使用,就性成子程序。子程序可以实现源程序的模块化,可简化源程序结构,可以提高编程效率。 1) 子程序的定义语句格式 汇编语言子程序以proc 语句行开始,以endp 语句行结束。如: 过程名PROC near[或far] 过程体 .......................... 过程名ENDP 在主程序中用CALL 过程名调用。主程序和子程序之间传递参数通常通过栈来进行,当然也可以用某些缺省的寄存器或内存来传递。但以通过栈来传递参数程序的通用性最强。 2) 子程序调用说明 子程序从PROC 语句开始,以ENDP 语句结束,程序中至少应当包含一条RET 语句用以返回主程序。在定义子程序时,应当注意其距离属性:当子程序和调用程序在同一代码段中时,用NEAR 属性;当子程序及其调用程序不在同一个代码段中时,应当定义为FAR 属性。当由DOS 系统进入子程序时,子程序应当定义为FAR 属性。为执行子程序后返回操作系统,在子程序的前几条指令中设置返回信息。 3) 子程序使用中的问题 A、主程序调用子程序是通过CALL 指令来实现的。子程序执行后,通过RET 指令, 返回主程序调用指令CALL 的下一条指令,继续执行主程序。一个子程序可以由 主程序在不同时刻多次调用。如果在子程序中又调用了其他的子程序,则称为子程 序的嵌套。特别是当子程序又能调用子程序本身时,这种调用称为递归。 B、调用子程序时寄存器及所用存储单元内容的保护。如果子程序中要用到某些寄存器 或存储单元时,为了不破坏原有的信息,要将寄存器或存储单元的原有内容压栈保 护,或存入子程序不用的寄存器或存储单元中。 C、用于中断服务的子程序则一定要把保护指令安排在子程序中,这是因为中断是随机 出现的,因此无法在主程序中安排保护指令。 D、调用程序在调用子程序时需要传送一些参数给子程序,这些参数是子程序运算中所 需要的原始数据。子程序运行后要将处理结果返回调用程序。原始数据和处理结果 的传递可以是数据,也可以是地址,统称为参数传递。 E、参数传递必须事先约定,子程序根据约定从寄存器或存储单元取原始数据(称入口 参数);进行处理后将处理结果(称出口参数)送到约定的寄存器或存储单元,返回到调用程序。参数传递一般有下面三种方法:用寄存器传递:适用于参数传递较少、

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

北京理工大学汇编语言实验报告实验五 子程序设计实验

实验五子程序设计实验(设计性实验) 一、实验要求和目的 1.熟悉汇编语言程序设计结构; 2.熟悉汇编语言子程序设计方法; 3.熟悉利用汇编语言子程序参数传递方法; 4.熟悉汇编语言字符串处理基本指令的使用方法; 5.掌握利用汇编语言实现字符串的输入输出程序设计方法; 6.掌握数制转换程序实现方法。 二、软硬件环境 1、硬件环境:计算机系统windows; 2、软件环境:装有MASM、DEBUG、LINK、等应用程序。 三、实验涉及的主要知识 A)子程序知识要点: 1、掌握子程序的定义语句; 过程名 PROC [near/far] 过程体 RET 过程名 ENDP 2.子程序结构形式 一个完整的子程序一般应包含下列内容: 1. )子程序的说明部分 在设计了程序时,要建立子程序的文档说明,使用户能清楚此子程序的功能和调用方法. 说明时,应含如下内容: .子程序名:命名时要名中见意. .子程序的功能:说明子程序完成的任务; .子程序入口参数:说明子程序运行所需参数及存放位置; .子程序出口参数:说明子程序运行结果的参数及存放位置; .子程序所占用的寄存器和工作单元; .子程序调用示例; 2、)掌握子程序的调用与返回 在汇编语言中,子程序的调用用CALL,返回用RET 指令来完成。 .段内调用与返回:调用子程序指令与子程序同在一个段内。因此只修改IP; .段间调用与返回:调用子程序与子程序分别在不同的段,因此在返回时,需同时修改CS:IP。 3.)子程序的现场保护与恢复 保护现场:在子程序设计时,CPU 内部寄存器内容的保护和恢复。 一般利用堆栈实现现场保护和恢复的格式: 过程名PROC [NEAR/FAR]

数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1.实验目的 (1)掌握使用Visual C++ 6.0上机调试程序的基本方法; (2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)认真阅读和掌握本章相关内容的程序。 (3)上机运行程序。 (4)保存和打印出程序的运行结果,并结合程序进行分析。 (5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include iostream.h>//头文件 #include//库头文件-----动态分配内存空间 typedef int elemtype;//定义数据域的类型 typedef struct linknode//定义结点类型 { elemtype data;//定义数据域 struct linknode *next;//定义结点指针 }nodetype; 2)创建单链表

nodetype *create()//建立单链表,由用户输入各结点data域之值,//以0表示输入结束 { elemtype d;//定义数据元素d nodetype *h=NULL,*s,*t;//定义结点指针 int i=1; cout<<"建立一个单链表"<> d; if(d==0) break;//以0表示输入结束 if(i==1)//建立第一个结点 { h=(nodetype*)malloc(sizeof(nodetype));//表示指针h h->data=d;h->next=NULL;t=h;//h是头指针 } else//建立其余结点 { s=(nodetype*) malloc(sizeof(nodetype)); s->data=d;s->next=NULL;t->next=s; t=s;//t始终指向生成的单链表的最后一个节点

北京理工大学汇编试题

一、数制转换,以下数为带符号数,表达成字节或字的形式:(10分) (-327)10 = ()2 (70b6)16=()10 (11010001)2 =()10 (0101010101011001)2=()10 ( 2572)10 =()16 二、指出划线部分的寻址方式,并计算其物理地址:(10分) 已知: (CS)=2100H, (DS)=2400H, (ES)=2800H, (SS)=2600H, (BX)=0600H, (DI)=0200H, (SI)= 0300H, (BP)=0400H, BUF=1000H 1、MOV CL ES:[1500H] ;寻址方式:物理地址: 2、CMP SI, [DI] ;寻址方式:物理地址: 3、ADD AX, BUF [BP] [SI] ;寻址方式:物理地址: 4、CALL WORD PTR CS:[SI] ;寻址方式:物理地址: 5、LEA DX, [BX+SI] ;寻址方式:物理地址: 三、已知一程序数据段如下,请在右边表格中填写该数据段数据存储的形式。(12 分,未初始化的单元填写“xx”) DATA SEGMENT Array C=50H BUFFER DB 'B',0BH, B_BYTE LABEL BYTE DATA1 DW 0FFAAH ORG $+1 DATA2 DW B_BYTE DATA3 DW C DATA4 DB 3 DUP(20H),0FFH DATA ENDS 四、写出下列程序段的运行结果,并逐条注释每条指令。

1. 该程序段执行后,BX= .,为什么?(用图表示)(9分)ADDR DW PROC0,PROC1,PROC2,PROC3,PROC4,PROC5,PROC6 DW PROC7,PROC8,PROC9 LEA SI,ADDR ADD SI,2 MOV BX,[SI] INC SI INC SI PUSH BX MOV AX,[SI] INC SI INC SI PUSH AX PUSH BP MOV BP,SP MOV DX,[BP+2] CALL [SI] … PROC1 PROC MOV BX,1 RET PROC1 ENDP PROC2 PROC MOV BX,2 RET PROC2 ENDP PROC3 PROC MOV BX,3 RET PROC3 ENDP 余此类推… (9分)2. 下面这段程序的功能是。

数据结构实验报告模板

2009级数据结构实验报告 实验名称:约瑟夫问题 学生姓名:李凯 班级:21班 班内序号:06 学号:09210609 日期:2010年11月5日 1.实验要求 1)功能描述:有n个人围城一个圆圈,给任意一个正整数m,从第一个人开始依次报数,数到m时则第m个人出列,重复进行,直到所有人均出列为止。请输出n个人的出列顺序。 2)输入描述:从源文件中读取。 输出描述:依次从显示屏上输出出列顺序。 2. 程序分析 1)存储结构的选择 单循环链表 2)链表的ADT定义 ADT List{ 数据对象:D={a i|a i∈ElemSet,i=1,2,3,…n,n≧0} 数据关系:R={< a i-1, a i>| a i-1 ,a i∈D,i=1,2,3,4….,n} 基本操作: ListInit(&L);//构造一个空的单链表表L ListEmpty(L); //判断单链表L是否是空表,若是,则返回1,否则返回0. ListLength(L); //求单链表L的长度 GetElem(L,i);//返回链表L中第i个数据元素的值; ListSort(LinkList&List) //单链表排序 ListClear(&L); //将单链表L中的所有元素删除,使单链表变为空表 ListDestroy(&L);//将单链表销毁 }ADT List 其他函数: 主函数; 结点类; 约瑟夫函数 2.1 存储结构

[内容要求] 1、存储结构:顺序表、单链表或其他存储结构,需要画示意图,可参考书上P59 页图2-9 2.2 关键算法分析 结点类: template class CirList;//声明单链表类 template class ListNode{//结点类定义; friend class CirList;//声明链表类LinkList为友元类; Type data;//结点的数据域; ListNode*next;//结点的指针域; public: ListNode():next(NULL){}//默认构造函数; ListNode(const Type &e):data(e),next(NULL){}//构造函数 Type & GetNodeData(){return data;}//返回结点的数据值; ListNode*GetNodePtr(){return next;}//返回结点的指针域的值; void SetNodeData(Type&e){data=e;}//设置结点的数据值; void SetNodePtr(ListNode*ptr){next=ptr;} //设置结点的指针值; }; 单循环链表类: templateclass CirList { ListNode*head;//循环链表头指针 public: CirList(){head=new ListNode();head->next=head;}//构造函数,建立带头节点的空循环链表 ~CirList(){CirListClear();delete head;}//析构函数,删除循环链表 void Clear();//将线性链表置为空表 void AddElem(Type &e);//添加元素 ListNode *GetElem(int i)const;//返回单链表第i个结点的地址 void CirListClear();//将循环链表置为空表 int Length()const;//求线性链表的长度 ListNode*ListNextElem(ListNode*p=NULL);//返回循环链表p指针指向节点的直接后继,若不输入参数,则返回头指针 ListNode*CirListRemove(ListNode*p);//在循环链表中删除p指针指向节点的直接后继,且将其地址通过函数值返回 CirList&operator=(CirList&List);//重载赋

数据结构实验报告

实验一约瑟夫问题 实验学时:3学时 实验类型:设计 实验要求:必修 一、实验目的 熟练掌握线性链表的基础知识; 能够使用C++或其他程序设计语言编程实现线性链表; 能够使用线性链表构造正确而且时间复杂度低的算法解决实际问题; 锻炼程序设计能力。 二、实验内容 M个教徒和N个非教徒在深海上遇险,必须将N个人投入海中,其余的人才能幸免于难,于是想了一个办法:所有人围成一圆圈,从第一个人开始依次报数,每数到第K个人就将他扔入大海,如此循环进行直到仅余M个人为止。设计一个算法,找出这样一个排序:使每次被扔进大海的都是非教徒。并用程序设计语言实现。 三、实验原理、方法和手段 使用循环单链表,将每个人作为一个结点,每个结点的指针域指向下一个人,采用循环链表的遍历对每隔N-1个结点的结点进行标记,直至标记出N个结点为止。该实验亦可用顺序表实现。 四、实验组织运行要求 本实验采用集中授课形式,每个同学独立完成上述实验要求。 五、实验条件 每人一台计算机独立完成实验,有如下条件: (1)硬件:联想高性能PC机; (2)软件:VC++ 6.0、VC++.Net。 六、实验步骤 (1)编写循环链表构造函数Node *Create( ),使链表中每个结点的数据域值为0,并让最后一个结点的指针域指向第一个结点; (2)编写约瑟夫问题函数 Node *Move(Node *H,int n); void Insert(Node *H,int pos,int data); (5)主函数中调用Create,Move和Insert,采用具体数据计算,输出结果。 七、实验程序 // stdafx.h : 标准系统包含文件的包含文件, // 或是经常使用但不常更改的 // 特定于项目的包含文件 // #pragma once #include"targetver.h" #include #include #include using namespace std;

北京理工大学汇编实验二报告

北京理工大学汇编实验二报告

本科实验报告实验名称:算术运算类操作实验

一、实验要求和目的 1、了解汇编语言中的二进制、十六进制、十进制、BCD 码的表示形式; 2、掌握各类运算类指令对各状态标志位的影响及测试方法; 3、熟悉汇编语言二进制多字节加减法基本指令的使用方法; 4、熟悉无符号数和有符号数乘法和除法指令的使用; 5、掌握符号位扩展指令的使用。 6、掌握 BCD 码调整指令的使用方法 二、软硬件环境 1、硬件环境:计算机系统 windows; 2、软件环境:装有 MASM、DEBUG、LINK、等应用程序。 三、实验涉及的主要知识 1、加减法处理指令 主要有加法指令 ADD,带进位加法 ADC,减法指令 SUB,带进位减法指令 SBB。 2.乘除法指令和符号位扩展指令 主要有无符号数乘法指令MUL,带符号数乘

法指令IMUL,无符号数除法指令DIV,带符号数除法指令 IDIV,以及符号位从字节扩展到字的指令 CBW 和从字扩展到双字的指令 CWD。 3.BCD 码的调整指令 主要有非压缩的BCD 码加法调整指令DAA,压缩的 BCD 码减法调整指令 DAS,非压缩的 BCD 码加法调整指令 AAA,非压缩的 BCD 码减法调整指令 AAS,乘法的非压缩 BCD码调整指令 AAM,除法的非压缩 BCD 码调整指令 AAD。 8088/8086 指令系统提供了实现加、减、乘、除运算的上述基本指令,可对表 1 所示的数据类型进行数据运算。 表 1-2-1 数据类型数据运算表

四、实验内容与步骤 1、对于两组无符号数,087H 和 034H,0C2H 和5FH,试编程求这两组数的和差积商,并考虑计算结果对标志寄存器中状态标志位的影响:(1)实验流程 将一组 操作数 分别用 ADD,SUB,MUL,DIV 运算 (2)实验代码: DATAS SEGMENT BUF1 DB 087H BUF2 DB 034H BUF3 DB 4 DUP(?);此处输入数据段代码 DATAS ENDS

北京理工大学数据结构实验报告4

《数据结构与算法统计》 实验报告 ——实验四 学院: 班级: 学号: 姓名:

一、实验目的 1、熟悉VC 环境,学会使用C 语言利用顺序表解决实际问题。 2、通过上机、编程调试,加强对线性表的理解和运用的能力。 3、锻炼动手编程,独立思考的能力。 二、实验内容 从键盘输入10个数,编程实现分别用插入排序、交换排序、选择排序算法进行排序,输出排序后的序列。 三、程序设计 1、概要设计 为了实现排序的功能,需要将输入的数字放入线性表中,进行进一步的排序操作。 (1)抽象数据类型: ADT SqList{ 数据对象:D={|,1,2,,,0}i i a a Elem Set i n n ∈=≥ 数据关系:R1=11{,|,,1,2,,}i i i i a a a a D i n --<>∈= 基本操作: InPut(SqList &L) 操作结果:构造一个线性表L 。 OutPut(SqList L) 初始条件:线性表L 已存在。 操作结果:按顺序在屏幕上输出L 的数据元素。 InsertSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行插入排序。 QuickSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行快速排序。 SelectSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行选择排序。 }ADT SqList ⑵主程序流程 由主程序首先调用InPut(L)函数创建顺序表,调用InsertSort(L)函数进行插入排序,调用OutPut(L)函数显示排序结果。 再由主程序首先调用InPut(L)函数创建顺序表,调用QuickSort(L)函数进行交换排序,调用OutPut(L)函数显示排序结果。 再由主程序首先调用InPut(L)函数创建顺序表,调用SelectSort(L)函数进行选择排序,调用OutPut(L)函数显示排序结果。 ⑶模块调用关系

数据结构实验报告

本科实验报告 课程名称:数据结构(C语言版) 实验项目:线性表、树、图、查找、内排序实验地点:明向校区实验楼208 专业班级:学号: 学生姓名: 指导教师:杨永强 2019 年 1 月10日

#include #include #include #define OK 1 typedef struct{//项的表示,多项式的项作为LinkList的数据元素float coef;//系数 int expn;//指数 }term,ElemType; typedef struct LNode{ //单链表节点结构 ElemType data; struct LNode *next; }LNode, *LinkList; typedef LinkList polynomial; int CreatLinkList(polynomial &P,int n){ //创建多项式P = (polynomial)malloc(sizeof(LNode)); polynomial q=P; q->next=NULL; polynomial s; for(int i = 0; i < n; i++){ s = (polynomial)malloc(sizeof(LNode)); scanf("%f%d",&(s->data.coef),&(s->data.expn)); q->next = s; s->next = NULL; q=q->next; } return OK; } 运行结果 2. void PrintfPolyn(polynomial P){ polynomial q; for(q=P->next;q;q=q->next){ if(q->data.coef!=1) printf("%g",q->data.coef);

北京理工大学汇编实验五实验报告概要

本科实验报告实验名称:子程序设计实验

实验五子程序设计实验(设计性实验) 一、实验要求和目的 1.熟悉汇编语言程序设计结构; 2.熟悉汇编语言子程序设计方法; 3.熟悉利用汇编语言子程序参数传递方法; 4.熟悉汇编语言字符串处理基本指令的使用方法; 5.掌握利用汇编语言实现字符串的输入输出程序设计方法; 6.掌握数制转换程序实现方法。 二、软硬件环境 1、硬件环境:计算机系统windows; 2、软件环境:装有MASM、DEBUG、LINK、等应用程序。 三、实验涉及的主要知识 A)子程序知识要点: 1、掌握子程序的定义语句;过 程名PROC [near/far] 过程 体 RET 过程名ENDP 2.子程序结构形式一个完整的子程序一般应包含下列内容: 1. )子程序的说明部分 在设计了程序时,要建立子程序的文档说明,使用户能清楚此子程序的功能和调用方法. 说明时,应含如下内容: .子程序名:命名时要名中见意. .子程序的功能:说明子程序完成的任务; .子程序入口参数:说明子程序运行所需参数及存放位置; .子程序出口参数:说明子程序运行结果的参数及存放位置; .子程序所占用的寄存器和工作单元; .子程序调用示例; 2、)掌握子程序的调用与返回在汇编语言中,子程序的调用用CALL,返回用RET指令 来完成。 .段内调用与返回:调用子程序指令与子程序同在一个段内。因此只修改IP; .段间调用与返回:调用子程序与子程序分别在不同的段,因此在返回时,需同时修改CS:IP。 3.)子程序的现场保护与恢复保护现场:在子程序设计时,CPU内部寄存器内容的

保护和恢复。 一般利用堆栈实现现场保护和恢复的格式:过程名PROC [NEAR/FAR] PUSH AX PUSH BX . . PUSH DX . . . POP DX . . . POP AX RET 过程名ENDP 4.子程序的参数传递方法 1.寄存器传递参数这种方式是最基本的参数传递方式。 2.存储器单元传(变量)递参数 这种方法是在主程序调用子程序前,将入口参数存放到约定的存储单元中;子程序运行时到约定存储位置读取参数;子程序执行结束后将结果也放在约定存储单元中。 3.用堆栈传递参数 利用共享堆栈区,来传递参数是重要的的方法之一。 B)字符、字符串输入输出知识要点: 在实际应用中,经常需要从键盘输入数据并将结果等内容显示到屏幕上,方便程序控制及查看结果。汇编语言的数据输入和输出分成两类,一是单个字符数据的输入输出,一是字符串数据的输入输出。都可以通过DOS功能调用来实现,下面就分别介绍下用来实现数据输入输出的功能调用的使用方法。 1、单个字符输入 单个字符输入可以利用DOS的1号功能调用来完成,使用方法为: MOV AH,1 INT 21H 这两条语句执行后,光标会在屏幕上闪烁,等待输入数据,输入的数据以ASCII 码形式存储在AL寄存器中。 2、单个字符输出 单个字符输出可利用DOS2号功能调用来完成,使用方法为: MOV DL,’?’ MOV AH,2

数据结构实验报告4(中央电大)

福建广播电视大学实验报告(学科:数据结构)姓名单位班级学号实验日期成绩评定教师签名批改日期 实验名称:实验四图的存储方式和应用 4.1建立图的邻接矩阵 【问题描述】 根据图中顶点和边的信息编制程序建立图的邻接矩阵。 【基本要求】 (1)程序要有一定的通用性。 (2)直接根据图中每个结点与其他结点的关联情况输入相关信息,程序能自动形成邻接矩阵 【测试用例】 【实现提示】 (1)对图的顶点编号。 (2)在上图中,以顶点1为例,因为顶点2,3,4与顶点1关联,可以输入信息1 2 3 4,然后设法求出与顶点1关联的结点,从而求得邻接矩阵中相应与顶点1的矩阵元素。 实验图4-1 设计程序代码如下: #include #define MaxVertexNum 5

#define MaxEdgeNum 20 #define MaxValue 1000 typedef int VertexType; typedef VertexType vexlist [MaxVertexNum]; typedef int adjmatrix [MaxVertexNum] [MaxVertexNum]; void Createl(vexlist Gv,adjmatrix GA,int n,int e) { int i,j,k,w; printf("输入%d个顶点数据\n",n); for(i=0;i

数据结构实验报告四林昌雄

一、算法基本思想: (1) 顺序查找:建立顺序表,从表内第一个数值开始与给定值比较,若相等,则查找成功;否则,用下一个数值继续进行比较,直到数值等于给定值或者线性表已比较完(查找不成功)为止。 (2) 首先提示用户建立有序数组的长度,然后输入有序的数据,接着提示用户输入要查找的元素,通过调用binarySearch()来判断用户要查找的元素是否在此数组中,如果返回值是-1则说明用户查找的数据不在此数组中,否则输出在此数组中。但是,折半查找的先决条件是查找表中的数据元素必须有序。查找过程中采用跃式方查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小于该中点元素,则待查序列缩小为左半部分,否则为右半部分。通过一次比较,将查找区间缩小一半。折半查找是一种高效的查找方法。它可以明显减少比较次数,提高查找效率。 二、结构定义: 线性表的结构定义:有序表的结构定义: typedef struct typedef struct { { Elemtype *elem; KeyType Key; int length; } int listsize; }Elemtype; }SqList; 三、算法描述: int Search_Bin2(SqList &L,KeyType key) {//在有序表ST中折半查找其关键字等于//key的数据元素。若找到,则函数值为该元//素在表中的位置,否则为0 int low,high,mid; low=1; high=L.length;//置区间初值 while(low<=high){ mid=(low+high)/2; if(EQ(key,L.elem[mid].key)) //找到待查元素 {printf("待查元素的位置:%d\n",mid+1); return OK; }

数据结构实验报告及心得体会

2011~2012第一学期数据结构实验报告 班级:信管一班 学号:201051018 姓名:史孟晨

实验报告题目及要求 一、实验题目 设某班级有M(6)名学生,本学期共开设N(3)门课程,要求实现并修改如下程序(算法)。 1. 输入学生的学号、姓名和 N 门课程的成绩(输入提示和输出显示使用汉字系统), 输出实验结果。(15分) 2. 计算每个学生本学期 N 门课程的总分,输出总分和N门课程成绩排在前 3 名学 生的学号、姓名和成绩。 3. 按学生总分和 N 门课程成绩关键字升序排列名次,总分相同者同名次。 二、实验要求 1.修改算法。将奇偶排序算法升序改为降序。(15分) 2.用选择排序、冒泡排序、插入排序分别替换奇偶排序算法,并将升序算法修改为降序算法;。(45分)) 3.编译、链接以上算法,按要求写出实验报告(25)。 4. 修改后算法的所有语句必须加下划线,没做修改语句保持按原样不动。 5.用A4纸打印输出实验报告。 三、实验报告说明 实验数据可自定义,每种排序算法数据要求均不重复。 (1) 实验题目:《N门课程学生成绩名次排序算法实现》; (2) 实验目的:掌握各种排序算法的基本思想、实验方法和验证算法的准确性; (3) 实验要求:对算法进行上机编译、链接、运行; (4) 实验环境(Windows XP-sp3,Visual c++); (5) 实验算法(给出四种排序算法修改后的全部清单); (6) 实验结果(四种排序算法模拟运行后的实验结果); (7) 实验体会(文字说明本实验成功或不足之处)。

三、实验源程序(算法) Score.c #include "stdio.h" #include "string.h" #define M 6 #define N 3 struct student { char name[10]; int number; int score[N+1]; /*score[N]为总分,score[0]-score[2]为学科成绩*/ }stu[M]; void changesort(struct student a[],int n,int j) {int flag=1,i; struct student temp; while(flag) { flag=0; for(i=1;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1; } for(i=0;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1;

数据结构实验报告

浙江科技学院《数据结构》实验报告 年级班级 学号 姓名 任课老师 实验指导教师 实验地点 信息学院

实验一线性表操作(一元多项式的运算) 实验目的: 1、定义线性表的链式存储 2、实现对线性表的一些基本操作和具体函数定义 实验要求: 1、定义线性表的链式存储; 2、实现对线性表的一些基本操作和具体函数定义。 3、定义输出一元多项式的函数; 4、编写主程序调用上面的函数实现一元多项式的加减。 数据输入输出要求: 输入示例: 3 2 3 3 4 5 7 5 2 1 3 3 -3 4 4 6 5 7 (说明:第一个数据3表示该第一个一元多项式的项数为3,后面的2 3 表示第一项的系数为2 指数为3;按指数递增的次序输入) 输出示例: 一元多项式1: 2x(3)+3x(4)+5x(7) 一元多项式2: 2x(1)+3x(3)-3x(4)+4x(6)+5x(7) 加的结果:2x(1)+5x(3) +4x(6)+10x(7) 减的结果:-2x(1)-1x(3)+6x(4)-4x(6) 程序代码: #include #include #include

#include #define null NULL #define polymal(poly*)malloc(sizeof(poly)) using namespace std; struct poly{ pair data; poly* next; }; void read(poly*a) { poly* poi = a; int n, xs, cs; cin >> n; for(int i = 0; i < n; i++) { poly* nex = polymal; cin >> cs >> xs; nex->data= make_pair(xs, cs); poi->next= nex; poi = poi->next; } poi->next= null; } void add(poly*a, poly*b, poly*ans) { poly* apo = a->next, *bpo = b->next, *cpo = ans; while(apo && bpo) { poly* sum = polymal; if(apo->data.first< bpo->data.first) { sum->data= apo->data; apo = apo->next; } else if(apo->data.first> bpo->data.first) { sum->data= bpo->data; bpo = bpo->next; } else{ sum->data= make_pair(apo->data.first, apo->data.second+bpo ->data.second); apo = apo->next, bpo = bpo->next; if(!sum->data.second) { free(sum); continue; } }

相关文档
最新文档