金属材料的扭转实验
金属扭转实验报告

金属扭转实验报告金属扭转实验报告引言:金属材料是工业生产中最常用的材料之一,其力学性能对于产品的质量和可靠性至关重要。
在金属材料力学性能研究中,扭转实验是一种常用的实验方法,通过对金属试样进行扭转加载,可以获取材料的扭转强度、塑性变形能力和疲劳性能等重要参数。
本实验旨在通过对不同金属试样的扭转实验,探究金属材料的力学性能特点。
实验方法:1. 实验材料选择:本次实验选用了三种不同类型的金属材料,分别为铝合金、钢材和铜材。
这三种材料在工业中应用广泛,具有不同的力学性能特点。
每种材料都制备了10个相同尺寸的试样。
2. 实验装置:扭转实验使用扭转试验机进行,试验机具有精确的力和位移测量系统,能够准确记录试样在加载过程中的力学性能变化。
试样通过夹具固定在试验机上,然后扭转加载。
3. 实验步骤:(1) 将试样固定在夹具上,确保试样的中心轴与扭转试验机的转轴一致。
(2) 设置试验机的加载速度和加载范围,确保实验过程的可控性。
(3) 开始加载,记录试样的扭转力和位移数据。
(4) 当试样发生破坏或达到预设的加载条件时,停止加载,并记录试样的破坏形态。
实验结果与分析:1. 铝合金试样的扭转强度较低,破坏形态为断裂。
铝合金具有较好的塑性变形能力,在扭转过程中能够发生较大的变形,但其强度较低,容易发生断裂。
2. 钢材试样的扭转强度较高,破坏形态为塑性变形。
钢材具有较高的强度和较好的塑性变形能力,在扭转过程中能够承受较大的载荷而不发生断裂。
3. 铜材试样的扭转强度介于铝合金和钢材之间,破坏形态为塑性变形。
铜材具有较好的强度和塑性变形能力,但相对于钢材而言,其强度较低。
结论:通过本次实验,我们对铝合金、钢材和铜材的扭转性能进行了研究。
实验结果表明,不同类型的金属材料具有不同的力学性能特点。
铝合金具有较好的塑性变形能力,但强度较低;钢材具有较高的强度和塑性变形能力;铜材介于两者之间。
这些实验结果对于金属材料的选择和应用具有重要的指导意义,有助于提高产品的质量和可靠性。
4.实验四 金属材料扭转实验

金属材料扭转实验一、 实验目的1. 测定低碳钢材料的剪切屈服极限s τ及剪切强度极限b τ。
2. 测定铸铁材料的剪切强度极限b τ。
3. 观察低碳钢和铸铁扭转变形过程中各种现象,比较两种材料试样断口破坏特性。
二、 实验仪器设备CTT500 微机控制扭转试验机、游标卡尺、低碳钢扭转试样和铸铁扭转试样 三、 实验原理将材料试样装夹在扭转试验机的夹头上,实验时,扭转试验机的一个夹头固定不转,另一个夹头绕轴转动,从而对材料试样施加扭转载荷,使试样发生扭转变形,同时绘制出试样承受的扭矩T 与发生的变形扭转角φ的关系曲线(T –φ曲线)。
1. 低碳钢扭转实验图 2-1-2 所示为低碳钢试样在扭转变形过程中的 T –φ关系曲线。
由该曲线可得到低碳钢材料在整个扭转过程中所表现出来的力学性能,其主要特征如下:在弹性变形的OA直线段。
试样截面上扭矩T与扭转角φ成正比例关系,材料服从切变虎克定律,在该阶段可测定材料的切变模量G,试样横截面上剪应力沿半径线性分布如图 2-1-3(a)所示。
拉伸时有明显屈服现象的金属材料在扭转时同样存在屈服现象,只是由于扭转时试样截面上的应力分布不均匀,当试样表面材料屈服时,内部材料并未出现屈服,因此载荷的下降不是突然发生,故无拉伸时的初始瞬时效应。
当扭矩保持恒定或在小范围内波动,而扭转角仍持续增加(曲线出现平台)时的扭矩称为屈服扭矩。
上屈服扭矩:屈服阶段中扭矩首次下降前的最大扭矩,称为上屈服扭T,如图 2-2-2 中所示。
矩,记为suT,如下屈服扭矩:屈服阶段中的最小扭矩称为下屈服扭矩,记为sL图 2-2-2中所示。
本次实验中测定下屈服扭矩作为低碳钢扭转时的屈服扭矩 Ts,根据τ。
实验中测得的屈服扭矩 Ts数值,即可计算出低碳钢的剪切屈服极限s低碳钢扭转试样横截面上剪应力线性分布如图 2-1-3 所示,随着 Tτ,而且塑性区逐的增大,横截面边缘处的剪应力首先达到剪切屈服极限s渐向圆心扩展,形成环形塑性区,如图 2-1-3(b)所示,直到整个截面几乎都是塑性区,如图 2-1-3(c)所示,在 T–φ曲线上出现屈服平台。
实验_ 金属材料的扭转实验

令a 则a
或者:
l0 a IP
TL0 G IP
xi yi , 2 xi
代入到G
i
i 0
8
2 i
2、测G(图解法) 通过试验机配备的扭矩传感器以及小角度扭角仪,可 自动记录扭矩-扭转角(T- )曲线,如图1-20所示。 在所记录的曲线的弹性直线段上,选取扭矩增量和相 应的扭转角增量。按下式计算材料的切变弹性模量G
2
二、设备和仪器 1. RNJ-500微机控制电子扭转试验机。
1.单片机测控箱 2.固定夹具 3.活动夹具 4.减速箱 5.导轨工作平台 6.手动调整轮 7.伺服电机 8.机架
图附1-5-1 RNJ-500 型微机控制扭转试验机示意图
3
固定夹具(2)一端与扭矩传感器相连,另一端用于试样 安装;活动夹具(3)则一端固定试样,另一端与减速箱 (4)相连。 试验时,由测控系统(计算机或单片机)发出运行指 令,此时伺服电机(7)工作,通过减速箱减速后控制活 动夹具转动,达到给试样施加扭矩的目的。 另外出于试验机调零和操作灵活的考虑,该试验机提 供了手动调节的控制方式。其原理是在单片机测控箱 上设置了手动调零的按钮,在按钮按下时,通过硬件 使伺服电机掉电,此时可以通过转动手动调节轮(6)控 制活动夹具转动,从而施加扭矩。
18
5.3 测规定非比例扭转应力 T (图解法,铝合金) A TP 1. 用于图解法测规定非比例扭转 应力的曲线,同样应使曲线的弹 性直线段的高度超过扭矩轴量程 的以上,扭角轴的放大倍数应使 图1-25中的OC段大于5mm。 C 0 2n P L 0 / d 0 2. 点击测试软样运行窗口,正式 测试,直至试件变形开始急剧增 加时,停止实验,取下试样。保 图1- 25图解法求规定 非比例扭转应力 存实验数据。打印试验曲线。
4 实验四金属材料扭转实验

4 实验四金属材料扭转实验
一、实验目的
研究实验材料进行扭转变形后其力学性能。
二、实验原理
扭转变形是指在无限长假想杆材料横截面仅施加弯曲力的完全变形,其中应力均匀分
布于断面,杆材料的截面形状由圆形变成椭圆形。
三、实验环境
良好的室内环境,无电磁干扰,无固体颗粒,提供适当的实验操作场所,如实验室、
实验台等。
四、实验内容
1. 收集相关实验物料:金属标样、变形设备、实验软件等。
2. 安装变形设备,调试设备,使金属标样处于位置稳定性状态;
3. 按照实验计划,在变形设备上,施加一定大小的拉力,观察金属标样形变情况;
4. 在实验软件中,记录金属标样变形、错断、最终变形等信息;
5.根据实验数据对实验结果进行测试,分析实验结果,计算实验结果的重要力学参数;
6. 总结本次实验;
五、实验结果
在实验过程中,金属标样的形状出现变形,横截面形状由圆形变成椭圆形。
另外,通
过计算,可以得出实验材料的断裂应力为450MPa,变形能为385J,变形塑性指数为0.87。
金属材料的扭转试验

1
取平均值:
Gi
=
(ϕi
∆TL0
) − ϕi−1
IP
G = ∑Gi n
(2-2)
或采用最小二乘法计算切变模量 G。由弹性扭转公式 ∆ϕ = ∆TL0 ,令 GIP
a = ∆ϕ = L0
(b)
∆T GI P
式中:L0 为试样的标距, IP 为截面对圆心的极惯性矩。
五、实验结果处理
1. 试样原始尺寸记录及处理参考表 2-2 进行。计算三处测量直径的平均值,取三处直径
平均值中的最小值计算试样的抗扭截面系数WP ,以三处直径平均值的均值计算试样的极惯性
矩 IP 。
2. 采用最小二乘法计算切变模量 G,试验数据记录与处理参考表 2-1 进行,按公式 (2-2) 计算切变模量 G。或根据试验数据记录,按公式(2-3) 计算切变模量 G(算术平均值)。
试样在断裂前所承受的最大扭矩 Tb 按弹性
扭转公式计算得抗扭强度τb 。从自动记录的T − ϕ 曲线源自读取试样断裂前的最大扭矩 Tb ,
(图 2-3),按下式计算抗扭强度:
(a)低碳钢试样断口形貌
τb
=
Tb WP
(2-8)
在试验过程中,试样直径不变,由于低碳钢
(b) 铸铁试样断口形貌
图 2-4 试样断口
抗剪切能力小于其抗拉能力,而横截面上切应力具有最大值,故断口为平断口(图 2-4a)。
说明:在扭转弹性阶段,试样圆截面上的应力沿半径线性分布。对试样缓慢加载,试样
横截面边缘处材料首先进入屈服,而整个截面的绝大部分区域内仍处于弹性状态(图 2-5a )。
此后,由于材料屈服而形成的塑性区不断向中心扩展,横截面上出现了一个环状的塑性区(图
金属材料的扭转实验报告

金属材料的扭转实验报告1.实验目的(1)测定低碳钢扭转时的强度性能指标:剪切屈服极限和剪切强度极限(2)测定灰铸铁扭转时的强度性能指标:剪切强度极限。
(3)绘制低碳钢和灰铸铁的扭转图,比较低碳钢和灰铸铁的扭转破坏形式。
(4)了解电子式扭转实验机的构造,原理和操作方法。
2.实验设备和仪器(1)扭转实验机(2)游标卡尺3.实验试样按照国家标准GB10128-2007《金属室温扭转实验方法》,金属扭转试样的形状随着产品的品种、规格以及实验目的的不同而分别为圆形截面试样和管形截面试样两种。
其中最常用的是圆形截面试样。
4.实验步骤(1)测量试样的直径。
(2)将试样安装到扭转实验机上,运行应用软件,预制实验条件、参数。
(3)开始“实验”按钮,匀速缓慢加载,跟踪观察试样的屈服现象和实时曲线,待屈服过程之后,提高实验机的加载速度,直至试样被扭断为止。
(4)取下拉断的试样,进行实验数据和曲线及实验报告处理。
(5)测定灰铸铁扭转时的强度性能指标步骤与低碳钢扭转基本一致,但只需要测量扭断值。
5.实验原理与方法(1)扭转力学性能试验式样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。
随着外力偶矩的增加,力矩与扭转角呈线性关系,直至力矩的示数值出现一个维持的平台,这是所指示的外力偶矩的数值即为屈服扭矩Te。
按弹性扭转公式计算的剪切屈服应力为τe=Te/Wp,式中:Wp=πd3/16为式样在标距内的抗扭截面系数。
在测出屈服扭矩Te 后,可加快实验机加载速度,直到式样被扭断为止。
实验机记录下最大扭矩Tm ,剪切强度极限为τm=Tm/Wp 。
如上所述,名义剪切应力τe ,τm 等,是按弹性公式计算的,他是假设式样横截面上的剪切应力为线性分布,外表最大,形心为零,这在现行弹性阶段是对的。
(2) 测定灰铸铁扭转时的强度性能指标对于灰铸铁式样,只需测出其承受的最大外力偶矩Mem ,抗扭强度为Τm=Mem/Wp ,低碳钢式样的断口与轴线垂直,表明破坏是由切应力引起的;而灰铸铁式样的断口则沿螺旋线方向与轴线约成45°角,表明破坏是由拉应力引起的。
金属材料扭转实验原理

金属材料扭转实验原理
金属材料扭转实验原理是通过施加扭转力来研究金属材料的机械性能。
扭转实验通常利用扭转试验机进行,其基本原理如下:
1. 准备样品:从金属材料中制备出适当的样品,通常是圆柱形状。
样品的尺寸和几何形状需根据实验要求确定。
2. 安装样品:将样品安装在扭转试验机中,确保样品精确地固定在试验夹具上。
3. 施加扭转力:通过扭转机构施加扭转力,使样品发生扭转变形。
扭转力的大小和施加方式需根据实验设计来确定。
4. 测量变形:通过合适的测量装置,记录样品的扭转角度和扭转力的测量值。
通常会使用扭转角度传感器和扭转力传感器来实时监测。
5. 计算弹性模量:根据扭转实验中的测量数据,可以通过适当的公式计算出金属材料的弹性模量。
弹性模量是评估材料刚度和变形能力的重要指标。
通过对金属材料进行扭转实验,可以获得材料在扭转过程中的应力-应变关系,进而研究材料的塑性变形行为、强度和刚度
等机械性能。
同时,还可以分析材料的断裂机制和疲劳寿命等方面的特性。
扭转实验在材料科学和工程领域中具有重要的应用价值。
金属扭转试验实验报告

一、实验目的1. 通过金属扭转试验,了解金属在扭转过程中的力学性能变化。
2. 测定金属材料的剪切屈服极限、剪切强度极限和切变模量。
3. 比较不同金属材料的扭转性能,分析其差异。
二、实验原理金属扭转试验是研究金属材料扭转性能的重要方法。
在扭转过程中,试样受到一对大小相等、方向相反的力矩作用,使试样产生扭转变形。
根据胡克定律和剪切应力与切变应力的关系,可以推导出金属材料的扭转力学性能指标。
三、实验设备与材料1. 实验设备:扭转试验机、游标卡尺、扭矩传感器、计算机等。
2. 实验材料:低碳钢、灰铸铁、铝等金属材料。
四、实验步骤1. 准备工作:检查实验设备是否完好,准备实验材料。
2. 试样制备:按照国家标准GB10128-2007《金属室温扭转试验方法》,制备圆形截面试样。
3. 试样测量:使用游标卡尺测量试样直径,计算试样抗扭截面系数。
4. 实验操作:a. 将试样安装在扭转试验机上,调整扭矩传感器,连接计算机。
b. 输入实验参数,如试样直径、材料类型等。
c. 启动实验,缓慢加载扭矩,观察试样变形情况。
d. 记录扭矩、扭转角等数据。
5. 实验结束:试样扭断后,取下试样,测量断口尺寸,计算剪切强度极限。
五、实验数据与处理1. 实验数据:记录扭矩、扭转角、试样直径、抗扭截面系数等数据。
2. 数据处理:a. 绘制扭矩-扭转角曲线,分析金属材料的扭转性能。
b. 计算剪切屈服极限、剪切强度极限和切变模量。
c. 比较不同金属材料的扭转性能,分析其差异。
六、实验结果与分析1. 实验结果:a. 低碳钢的剪切屈服极限为XXX MPa,剪切强度极限为XXX MPa,切变模量为XXX GPa。
b. 灰铸铁的剪切屈服极限为XXX MPa,剪切强度极限为XXX MPa,切变模量为XXX GPa。
c. 铝的剪切屈服极限为XXX MPa,剪切强度极限为XXX MPa,切变模量为XXX GPa。
2. 分析:a. 低碳钢的扭转性能较好,剪切屈服极限和剪切强度极限较高,切变模量较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
屈服过程, 故可按弹性应力公式计算出材料的剪切强度
极限:即
(3)
Mb b Wp
( 3)
图4 铸铁试件扭矩图
实验项目名称一:金属材料的扭转实验
实验原理 破坏原因
低碳钢的抗拉能力高于抗剪能力, 故试件沿横截面剪断。最大剪应力引起。
实验步骤——SmartTest操作部分
钮摁试 件 装 , 夹 返 完 回 毕 试 后 验 , 界 再 面 一 。 次 点 击 “ 左 旋 右 旋 ”
实验项目名称一:金属材料的扭转实验
实验步骤——SmartTest操作部分
开 “ 择第 始 转 “五 试 角 扭步 验 ” 矩: 控 转扭 制 角矩 , ”、 选 试扭 择 验角 扭 曲清 转 线零 速 ,; 度 在在 , 控“ 点 制曲 击 板线 选板 择” , 选
显示试验曲线等。
实验项目名称一:金属材料的扭转实验
实验原理
纯扭转时,圆试样表面为纯剪应力
状态(如图 1 )其最大剪应力和正应力绝 对值相等,夹角成450,因此扭转实验可以
明显区分材料的断裂方式—拉断或剪断。
如果材料的抗剪强度小于抗拉强度,破坏 形式为剪断,断口应与其轴线垂直;如果 材料的抗拉强度小于抗剪强度,破坏原因 为拉应力。破坏面应是沿450方向。
断裂方式
铸铁的抗拉能力低于抗剪能力, 故试件从表面上某一最弱处,沿与 轴线成45º方向拉断成一螺旋面。 最大拉应力引起。
实验项目名称一:金属材料的扭转实验
实验步骤
结束试验:
拆除断裂试件,进行下一次或脱 机退出程序,使试验机恢复原样。
开始试验:
1、单击控制板“开始”按钮,选择扭矩-转角曲 线。 2、低碳钢扭转时,进入屈服阶段后可以加快试 验速度。 3、试件断裂后单击“试验结束”,系统会自动 分析试验曲线,并将分析结果发送到数据板。
录入试件信息 选择试验方式:
打开数据板录入试件信息, 在 “SmartTest”软件的曲线显 示板和控制板选择试验方式
06
05
04
03 02 01
装夹试件:
试验机准备:
1、将试件一端装入试验机从动夹头的方孔内, 并推动从动头向主动头靠拢,同时单击“左旋” 或“右旋”按钮转动主动夹头的方孔,使试件的 另一端装入主动夹头的方孔内,固定好试件。也 可手动正转和反转使试件的轴端对准方孔。 2、扭矩、扭角清零。
3、
观察并比较低碳钢及铸铁试件扭转变 形时的破坏特征。
实验项目名称一:金属材料的扭转实验 实验设备:
名称和型号 量程 试验速度 扭矩示值相对误差
NDW500型微机控制扭转试验机 500N∙m,
1 ~ 720 min
±1%
实验项目名称一:金属材料的扭转实验
实验装置、试件(简图及原始尺寸)
l0=100mm d0=10mm
指针的读数值即可。
实验项目名称一:金属材料的扭转实验
SmartTest软件界面操作
1、主窗口:
状态栏
1、菜单
1.1 设置: l 选择扭矩传感器:选择当前正在使用的扭矩传感器; l 选择扭转计:选择当前正在使用的扭转计; l 系统参数:返回和设置系统相关参数; l 分析参数:返回和设置分析参数; 1.2 调整: l 扭矩传感器校准:校准和修正扭矩传感器; l 扭矩传感器检定:检定扭矩传感器; l 扭转计校准:校准和修正扭转计; l 扭转计检定:检定扭转计; l 横梁转角校准:校准横梁转角; l 横梁转速校准: 校准横梁转速; l 控制参数调整:调整与控制相关的一些参数; 1.3 工具: l 压缩数据库:对存储数据的数据库进行压缩以减少冗余; l 数据库导入导出:把数据库中的数据进行导入导出; l 控制观察:直接观察控制调节过程的工具;
的关系为
M s s dA
A
将式中dA用环状面积元素2d来表示,则有
M s 2 s
故剪ห้องสมุดไป่ตู้屈服极限:
d /2
o
4 d sW p 3
2
试件的抗扭截面模量:
3M s s 4Wp d 3
Wp 16
( 1)
实验项目名称一:金属材料的扭转实验
实验原理
实测原始数据(单位)
试件 低碳钢 铸铁 下屈服扭矩 (N∙m) 破坏扭矩 (N∙m) 扭转角(ₒ)
实验项目名称一:金属材料的扭转实验 GB10128-2007 金属材料室温扭转试验方法
试验机由机械、电气和
计算机三大部分组成。
实验项目名称一:金属材料的扭转实验
主机结构示意图 工作原理:
机械部分:被动夹头装在扭 矩传感器上,可随直线导轨 移动。扭转试样装在两夹头 间,伺服电机带动减速机转 动使主动夹头旋转。有手动、 自动两种加载试验方式。 电气部分:由拖动系统和测 量控制部分组成。 计算机:实现各种控制、显 示、数据采集处理、曲线的 绘制、试验结果储存、实时
-
实验项目名称一:金属材料的扭转实验
实验步骤——SmartTest操作部分
打第 开六 “步 分: 析试 板验 ”完 ,毕 查后 看, 计点 算击 结状 果态 。栏 的
,
实验项目名称一:金属材料的扭转实验
实验步骤——SmartTest操作部分
钮第 ,七 进步 行: 数如 据需 板打 报印 表结 打果 印, 。点 击 “ 打 印 机 ” 摁
转角仪半径: R=100mm
实验项目名称二:低碳钢材料G值的测定
实测原始数据(单位)
P(Kg)
(mm) ×10-2 (mm )×10-2 (mm) ×10-2 (mm )×10-2 (mm) ×10-2 (mm )×10-2
P(Kg)
0 1 2 3
实验项目名称二:低碳钢材料G值的测定
通过齿轮传动系统带动大指针5转一圈 ,同时小指针7转一格。大指针每转动 一格读数值为0.01mm,小指针每转动一 格读数为1mm。小指针处的刻度范围为 百分表的测量范围。测量时大小指针读 数之和即为测量尺寸的变动量。刻度盘 可以转动,以便测量时大指针对准零刻 度线。
图2 百分表及其传动原理
此实验所用的百分表的量程为05mm,精度为0.01mm,此次实验只读大
变化,如图
3(b)。在截面上出现了一个环状
塑性区,并随着 Mn 的增长,塑性区逐步向中心 扩展,Mn—Φ曲线稍微上升,直到B点趋于平坦, 截面上各材料完全达到屈服,扭矩数值几乎不再
变化,甚至出现微小的减小现象,此时的扭矩的
最小值即为屈服扭矩Ms。
实验项目名称一:金属材料的扭转实验
实验原理
如图3(C),根据静力平衡条件,可以求得s与Ms
百分表的读数。重复做3次,实验完后砝码放回原处。
检查实验数据,整理好实验仪器。
06
实验项目名称二:低碳钢材料G值的测定
实验数据处理
每一次加载读出百分表下降的位移,共加3级。卸载后再重复前面的操作,共做3次, 按下式算出平均值,即
R n 再算出各级载荷下的平均值,即为试件材料的剪切弹性模量,式中的 P 为砝码重量的
实验原理
圆轴受扭时,材料处于纯剪切应力状态。在比例极限以内,材料的剪应力与剪应变成正比,即 满足剪切虎克定律
G
M n L0 GI p
由此可得出圆轴受扭时的虎克定律表达式:
式中Mn为扭矩L0是试件的标距长度Ip为圆截面的极惯性矩,G为低碳钢剪切弹性模量 通过扭角仪,对试件逐级增加同样大小的扭矩Mn,相应地由百分表测出相距为L0的两个截面 之间的相对扭转角增量i,如果每一级扭矩增量所引起的扭转角增量i基本相同,这就验证了 剪切虎克定律。根据测得的各级扭转角增量的平均值可用下式算出剪切弹性模量
实验项目名称一:金属材料的扭转实验
实验原理
低碳钢试件的扭矩图 Mn—曲线,如图2所示。 1、直线段OA:线弹性阶段
实验项目名称一:金属材料的扭转实验
实验原理
2 、 AB 阶段:在 A点处, Mn 与Φ的比例关
系开始破坏,此时截面周边上的剪应力达到了材 料的剪切屈服极限 s , 相应的扭矩记为 Mp , 由于 这时截面内部的剪应力尚小于 s,故试件仍具有 承载能力,Mn—Φ曲线呈继续上升的趋势。 扭矩超过 MP后,截面上的剪应力分布发生
加载臂:L=200mm
2、机电百分表:量程:10mm,精度:0.01mm
实验项目名称二:低碳钢材料G值的测定
实验装置、试件(简图及原始尺寸)
转角仪标距 l=150mm
l=150mm
加载臂 L=200mm
1、 台架 3 2 1 5 4
2、转角仪 3、百分表 4、试件 5、砝码及托盘
圆轴直径D=10mm
金属材料的扭转实验/低碳钢
材料G值的测定
工程力学实验中心 2017年10月
目录
CONTENTS
实验目的 实验设备 实验装置和试件 实验原理 实验步骤 实验设备介绍
01
金属材料的 扭转实验
实验项目名称一:金属材料的扭转实验
实验目的:
测定低碳钢扭转时的的剪切屈服极 限及剪切强度极限。
1、
2、
测定铸铁扭转时的剪切强度极限。
实验步骤——SmartTest操作部分
数 据 板 显 示 已 录 入 的 试 件 信 息
实验项目名称一:金属材料的扭转实验
实验步骤——SmartTest操作部分
与第 主四 动步 夹: 头点 的击 方控 孔制 ,板 装的 夹 试 件调 。整 试 件 轴 端
实验项目名称一:金属材料的扭转实验
02
低碳钢材料 G值的测定
实验项目名称二:低碳钢材料G值的测定
实验目的:
测定低碳钢材料的切变模量 G,并验证剪切胡克定律