流体机械,水泵的选型设计
水泵选型的方法和步骤

水泵选型的方法和步骤
水泵选型的方法和步骤如下:
1. 确定水泵的用途:根据实际用水需求,确定水泵是用于抽水、排水、增压还是三合一。
2. 确定水泵系统所需的扬程:扬程是水泵所提供的扬程,即水泵能够
扬水的高度。
3. 确定水泵系统所需的流量:根据实际用水需求和系统结构,确定水
泵所需的流量。
4. 根据所选泵型计算其配套性功率:选择水泵时,应考虑电机过大或
过小,功率过高会引起电网过载,过小动力功率过剩,导致动力设备
工作不平稳,效率低。
5. 水泵选型计算:在明确了水泵的用途、所需的扬程和流量后,可以
使用各种水泵选型计算表和水泵性能表进行选择。
同时,也需要考虑
到一些特殊因素,如水质、环境温度、是否需要密封等。
6. 校核:选择好水泵型号后,需要校核水泵的汽蚀条件和校核水泵的
安装形式等。
7. 根据校核结果和实际使用需求进行最终确定。
通过以上步骤,可以完成水泵的选型。
在实际操作中可能会有一些变化,需要灵活应对。
同时,建议咨询专业人士以确保选型正确。
流体机械的选型设计

流体机械的选型设计摘要流体机械在工业生产中扮演着重要的角色,选型设计直接影响着流体机械的性能和效率。
本文将详细介绍流体机械的选型设计过程,并探讨一些常见的选型设计要点和注意事项。
引言流体机械是指能够利用液体或气体来传递能量的机械装置,广泛应用于工业生产中的流体输送、压缩、增压、加速等领域。
流体机械的选型设计对于确保机械设备的正常运行和优化工艺流程至关重要。
本文将从选型设计的基本原则、选型方法以及一些实际案例来详细介绍流体机械的选型设计过程。
选型设计的基本原则流体机械的选型设计需要遵循以下几个基本原则:1.安全性原则:选型设计应保证设备在工作过程中的安全可靠性,避免因设备故障导致的人员伤害和生产事故发生。
2.效率原则:选型设计应追求最佳的工作效率,最大程度地提高能源利用效率,降低能源消耗和生产成本。
3.可维护性原则:选型设计应考虑到设备的可维护性,在设备运行过程中方便维修和保养,减少设备的故障率和停机时间。
4.经济性原则:选型设计应在满足工艺流程需求的前提下,尽量减少设备的投资成本,实现最佳经济效益。
选型方法流体机械的选型设计一般可分为以下几个步骤:步骤一:明确工艺流程需求在选型设计之前,首先需要明确工艺流程的需求,包括液体或气体的流量、压力、温度等参数,以及所需达到的处理效果。
步骤二:设备技术条件的确认根据工艺流程需求,确定所选设备的技术条件,包括流量范围、压力范围、温度范围、材料要求等。
同时,应针对工艺特点考虑设备的可靠性和耐腐蚀性等因素。
步骤三:选型软件的应用利用现代化的选型软件进行设备的选型计算。
选型软件根据设备的技术条件和工艺流程需求,通过数据分析和模拟计算等方法,给出最佳选型结果。
步骤四:选型结果的评估根据选型软件给出的选型结果,进一步进行评估和比较。
评估的主要内容包括设备的功率消耗、工作效率、性能指标等方面。
步骤五:选型结果的确定根据评估结果,确定最终的选型结果。
在选型结果确定后,需要进一步进行设备的结构设计和尺寸设计,以及配套设备的选择和设计。
离心泵的设计与选型

离心泵的设计与选型1.引言1.1 概述离心泵是一种广泛应用于各个领域的流体传输设备,其工作原理是利用叶轮的旋转运动将液体带入泵体,并通过离心力将液体从泵体的中心推到出口,从而实现流体的输送。
离心泵具有结构简单、运行稳定、流量大、压力高等特点,已广泛应用于工业领域的冷却水循环、供水系统、石油化工、农业灌溉等领域。
在设计离心泵时,需要考虑一系列要点。
首先,泵的结构设计应合理,包括叶轮、泵体、轴承等部分的选择和设计,以确保泵能够正常运行并具有较长的使用寿命。
其次,泵的性能参数,如流量、扬程、效率等,应满足实际应用的需求。
同时,还需要考虑泵的工作环境和工作介质的特性,选择适合的材料和密封方式,以确保泵的运行安全可靠。
此外,对于大型离心泵,还需要考虑泵的运行成本和能耗情况,进行经济性分析,从而选型合适的离心泵。
综上所述,离心泵的设计与选型是一个综合性的工作,需要考虑多个因素的综合影响。
设计人员应充分了解离心泵的基本原理和设计要点,结合实际应用需求,合理选型,并根据具体情况提出设计与选型建议,以提高离心泵的工作效率和可靠性。
文章结构部分的内容可以是对整篇文章的组织和布局进行介绍,以引导读者了解文章的结构和内容安排。
可以按照以下方式编写文章1.2文章结构的内容:文章结构:本文将按照以下结构进行论述和分析离心泵的设计与选型:1. 引言:首先,我们将对离心泵的概述进行介绍,包括离心泵的定义和应用领域。
接着,我们将说明本文的目的,即为读者提供关于离心泵设计与选型的详细指导。
2. 正文:在正文部分,我们将详细阐述离心泵的基本原理,包括其工作原理和结构特点。
同时,我们还将重点讨论离心泵的设计要点,涵盖了功率计算、叶轮设计、进出口截面积的确定等关键问题。
通过深入分析这些要点,读者能够更好地理解离心泵的设计与选型过程。
3. 结论:最后,我们将总结本文的主要内容和结论。
在总结部分,我们将回顾离心泵的基本原理和设计要点,并给出相应的设计与选型建议。
水泵选型方案

水泵选型方案一、引言水泵作为一种常见的流体机械设备,在工农业生产和生活中起到了重要的作用。
它不仅能够将水从低地带抽送到高地带,满足人们对水资源的需求,还广泛应用于工业生产过程中的冷却、供水、循环等方面。
然而,在选择水泵时,我们常常会面临到各种各样的问题,如何正确选型成为了亟待解决的问题。
二、流量计算在进行水泵选型时,首先需要确定所需的流量。
流量是指单位时间内通过水泵的水量,通常以立方米/小时(m³/h)来表示。
流量的计算方法与应用场景有关,常见的方法有三种:根据需求直接给出流量需求,根据给定的管道直径和速度计算流量,根据用水设备的数量和用水量估算流量。
根据不同的场景和需求,选择合适的方法计算流量,以确保选出的水泵能够满足工农业生产和生活中对水资源的需求。
三、扬程计算扬程是指水泵将水抽送到一定高度或一定水平距离的能力,通常以米(m)为单位。
扬程的计算方法多种多样,根据应用场景的不同,可以使用静态扬程计算方法或者明渠流量计算方法。
静态扬程是指水泵水平抽水距离的垂直高度差,明渠流量则是指在一定高度差下,水泵能够抽送水的最大距离。
根据具体的场景和需求,选择合适的扬程计算方法,以确保选出的水泵能够有效地将水输送到目标位置。
四、动力需求水泵通常需要通过驱动装置来提供动力,如电动机、柴油机等。
在进行水泵选型时,需要根据实际的动力需求来选择合适的驱动装置。
这涉及到驱动装置的功率、转速以及其他相关参数的选择。
根据实际情况,选择符合要求的驱动装置,以确保水泵能够正常工作并提供足够的功率。
五、材质与耐用性在选择水泵时,还需要考虑到水泵的材质以及其耐用性。
水泵通常需要与水接触,所以必须具备良好的耐腐蚀性。
此外,水泵还需要能够承受较高的工作压力和温度,以确保其长期稳定运行。
因此,在选型时需要选择耐用性较好且适应特定工况要求的水泵材质,以保证水泵在使用过程中不出现故障或腐蚀问题。
六、维护保养维护保养对于水泵的性能和寿命至关重要。
泵的选型计算

泵的选型计算泵是一种常用的流体输送设备,广泛应用于各个工业领域。
在选择泵的时候,需要进行选型计算,以确保选择的泵能够满足工作条件和需求。
1. 工作条件确定在进行泵的选型计算之前,需要确定以下工作条件:- 流量要求:需要确定需要输送的流体的流量,即每分钟或每小时需要输送的液体或气体的体积。
- 扬程要求:需要确定从起始点到终点的高度差或压力差,以便泵能够提供足够的扬程。
- 泵需要承受的压力:需要确定泵所在系统的最大工作压力,以确保选用的泵能够承受该压力。
2. 泵的类型选择根据不同的工作条件和需求,可以选择不同类型的泵,如离心泵、容积泵等。
下面是几种常见的泵类型及其特点:- 离心泵:适用于输送清水、污水、化工液体等,具有流量大、扬程高、运行平稳的特点。
- 容积泵:适用于输送高粘度液体、液体中带有固体颗粒等,具有脉动小、输送稳定的特点。
- 往复泵:适用于输送高压、高温液体,具有压力稳定、输送能力强的特点。
根据工作条件和需求选择合适的泵类型。
3. 泵的选型计算根据所确定的工作条件和选择的泵类型,可以进行泵的选型计算。
选型计算主要包括以下几个方面:- 流量计算:根据流量要求和输送液体的性质,计算所需的泵的流量。
需要考虑液体的粘度、密度等参数。
- 扬程计算:根据扬程要求和输送距离,计算所需的泵的扬程。
需要考虑液体的密度、摩擦阻力等参数。
- 功率计算:根据流量和扬程的计算结果,通过功率公式计算所需的泵的功率。
需要考虑效率、摩擦损失等因素。
根据计算结果选择合适的泵型号和规格。
4. 泵的其他因素考虑除了工作条件和选型计算,还需要考虑以下因素:- 材料选择:根据输送液体的性质和工作环境,选择适合的泵材料,以保证泵的耐腐蚀性和使用寿命。
- 维护和保养:泵的选择还需要考虑维护和保养的难易程度,以及所需的维修和更换零部件的成本。
结论泵的选型计算是确保选择合适的泵的关键步骤。
根据工作条件确定流量要求和扬程要求,选择合适的泵类型,进行选型计算,并考虑材料选择和维护等因素,最终选出满足要求的泵型号和规格。
水泵选型参考

水泵如何选型和計算1、根据装置的布置、地形条件、水位条件、运转条件、经济方案比较等多方面因素2、考虑选择卧式、立式和其它型式(管道式、直角式、变角式、转角式、平行式、垂直式、直立式、潜水式、便拆式、液下式、无堵塞式、自吸式、齿轮式、充油式、充水温式)。
卧式泵拆卸装配方便,易維修、但体积大、价格较贵,、需很大占地面积;立式泵,很多情况下叶轮淹没在水中,任何时候可以启动,便于自动或远程控制,結構紧凑,安装面积小,价格较便宜。
3、根据液体介质性质,确定清水泵,热水泵还油泵、化工泵或耐腐蚀泵或杂质泵,或者采用不堵塞泵。
安装在爆炸区域的泵,应根据爆炸区域等级,采用防爆电动机。
4、振动量分为:气动、电动(电动分为220v电压和380v电压)。
5、根据流量大小,选单吸泵还是双吸泵:根据扬程高低,选单吸泵还是多吸泵,高转速泵还是低转速泵(空调泵)、多级泵效率比单级泵低,当选单级泵和多级泵同样都能用时,宜选用单级泵。
6、确定泵的具体型号,采用什么系列的泵选用后,就可按最大流量,放大5%——10%余量后的扬程这两个性能主要参数,在型谱图或系列特性曲线上确定具体型号。
利用泵特性曲线,在横坐标上找到所需流量值,在纵坐标上找到所需扬程值,从两值分别向上和向右引垂线或水平线,两线交点正好落在特性曲线上,则该泵就是要选的泵,但是这种理想情况一般不会太多,通常会碰上下列几种情况:A、第一种:交点在特性曲线上方,这说明流量满足要求,但扬程不够,此时,若扬程相差不多,或相差5%左右,仍可选用,若扬程相差很多,则选扬程较大的泵。
或设法减小管路阻力损失。
B、第二种:交点在特性曲线下方,在泵特性曲线扇状梯形范围内,就初步定下此型号,然后根据扬程相差多少,来决定是否切割叶轮直径,若扬程相差很小,就不切割,若扬程相差很大,就按所需Q、H、,根据其ns和切割公式,切割叶轮直径,若交点不落在扇状梯形范围内,应选扬程较小的泵。
选泵时,有时须考虑生产工艺要求,选用不同形状Q-H特性曲线。
水泵的选型原则

水泵的选型原则水泵是流体机械设备中的一种,主要用于输送水流或者其他流体介质。
在涉及到选购水泵的问题时,需要考虑多个因素来确保选购出适合使用场景的泵。
1. 压力水泵压力是选型时最基本、最重要的考虑因素之一。
水泵压力的大小需要考虑水源和水需要输送至的地点,以此来确认所需降低或者增加的压力。
此外,还需要考虑管道中的水位、流量以及使用的其他系统参数,来确定所需泵的排水量和压力。
2. 流量流量是决定水泵功率和动力的另一项重要因素。
泵的流量通常表示为单位时间内通过管道的流体量。
流量的大小取决于泵和管道的大小、泵的速度等多个因素。
需要根据预估的流量需求来选购合适的水泵,以达到最佳效果。
3. 功率水泵功率取决于其输出的压力和流量。
此外,还需要考虑学习要求的性能和水泵的效率。
对于使用时间较长的水泵,需要考虑更低的功率,以降低能源消耗,提高效率。
4. 材料水泵材料也是一个重要的选型方面。
不同的材料,其抗蚀能力和耐用性都不同。
应根据所需使用场景以及运输物质的含量、浓度等因素来考虑选购的水泵所需材质。
例如,海水等腐蚀性物质的处理需要选购具有更耐蚀性的水泵材质。
5. 温度和粘度流体温度和黏度也会直接影响泵的选型。
温度过高或者过低会影响泵的密封性能,导致泵的损坏。
对于非常稠密的流体,会导致泵的流经能力下降。
在不同场景中使用流体的黏度会有所变化,所以不同的选择需求可能与温度和黏度有关。
在选择所需的水泵时需要考虑的条件还有很多。
以上只是涉及到水泵的基本选择需求,还有各种应用场景特殊的要求。
综合考虑各种因素,才能选购合适的水泵,以确保达到最佳的使用效果。
第九章 流体机械的选型计算

H′ 2 q ′2 V qV
=
22.8 2 2 qV = 630000qV (6×10−3 )2
在图上作切割抛物线与泵性能曲线交于A点 在图上作切割抛物线与泵性能曲线交于 点, 则M′点与 点为切割前、 ′点与A 点为切割前、 后的对应点。从图可读出: 6.7× /s,28m,65%) 后的对应点。从图可读出:A(qV , H, η)=(6.7×10-3m3/s,28m,65%), 由切割定律可得
qV×103(m3/s) /s) H(m) 0 33.8 0 1 34.7 27.5 2 35 43 3 34.6 52.5 4 33.4 58.5 5 31.7 62.5 6 29.8 64.5 7 27.4 65 8 24.8 64.5 9 21.8 63 10 18.5 59 11 15 53
′′ ′ ∆P = Psh − Psh = 2.72 − 2.10 = 0.62(kW)
流体机械原理、 流体机械原理、设计及应用 第二节 选型的基本原则与步骤
泵与风机的选择是指,用户根据使用要求, 泵与风机的选择是指,用户根据使用要求,在泵与风机的已 有系列产品中,选择一种适用的而不需要另外设计、 有系列产品中,选择一种适用的而不需要另外设计、制造的泵与 风机的过程。 风机的过程。
;(b) (a) 斜车削;( )平行车削 ) 斜车削;(
流体机械原理、 流体机械原理、设计及应用 三、切割定律的应用
【例 】某输送常温水的单级单吸离心泵在转速 n=2900r/min时的性能参 时的性能参 数如下表。管路性能曲线方程为: 数如下表。管路性能曲线方程为:Hc=20+78000qV2,m;式中 V 的单位为 ;式中q m3/s。泵的叶轮外径 2=162mm,水的密度ρ=1000㎏/m3。求: 。泵的叶轮外径D , ㎏
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体机械课程设计题目:矿井排水设备选型设计1概述2设计的原始资料开拓方式为立井,排水高度为342m ,正常涌水量为655m 3/h ;最大涌水量为850m 3/h ;持续时间60d 。
矿水PH 值为中性,重度为10003N/m 3,水温为15℃。
该矿井属于高沼气矿井,年产量为5万吨。
3排水方案的确定在我国煤矿中,目前通常采用集中排水法。
集中排水开拓量小,管路敷设简单,管理费用低,但由于上水平需要流到下水平后再排出,则增加了电耗。
当矿井较深时可采用分段排水。
涌水量大和水文地质条件复杂的矿井,若发生突然涌水有可能淹没矿井。
因此,当主水泵房设在最终水平时,应设防水门。
在煤矿生产中,单水平开采通常采用集中排水;两个水平同时开采时,应根据矿井的具体情况进行具体分析,综合基建投资、施工、操作和维护管理等因素,经过技术和经济比较后。
确定最合理的排水系统。
从给定的条件可知,该矿井只有一个开采水平,故可选用单水平开采方案的直接排水系统,只需要在2343车场附近设立中央泵房,就可将井底所有矿水集中排至地面。
4水泵的选型与计算根据《煤矿安全规程》的要求,主要排水设备必须有工作水泵、备用水泵和检修水泵。
工作水泵的能力应能在20h 内排除矿井24h 的正常涌水量(包括充填水和其他用水)。
备用水泵的能力应不小于工作水泵能力的70%,并且工作水泵和备用水泵的总能力,应能在20h 内排出矿井24h 的最大泳水量。
检修水泵的能力应不小于工作水泵能力的25%。
水文地质条件复杂的矿井,可根据具体情况在主水泵房内预留安装一定数量水泵的位置,或另增设水泵。
排水管路必须有工作和备用水管。
工作水管的能力应能配合工作水泵在20h 内排完24h 的正常涌水量。
工作和备用水管的总能力,应能配合工作和备用水泵在20h 内排出矿井24h 的最大涌水量。
水泵必须排水能力计算正常涌水期h m q q Q z z B /7866552.12.120243=⨯===最大涌水期h m q q Q /10208502.12.120243max max max =⨯===式中B Q ——工作水泵具备的总排水能力,3/m h ;max Q ——工作和备用水泵具备的总排水能力,3/m h ;z q ——矿井正常涌水量,3/m h ; max q ———— 矿井最大涌水量,3/m h 。
水泵所需扬程估算由于水泵和管路均未确定,无法确切知道所需的扬程,所以需进行估算,即385m 0.94342H H gsyB =+==η式中 B H ——估算水泵所需扬程,m ;sy H ——侧地高度,即吸水井最低水位至排水管出口间的高度差,一般可取sy H =井底与地面标高差+4(井底车场与吸水井最低水位距离),m ; g η——管路效率。
当管路在立井中铺设时,g η=~;当管路在斜井中铺设,且倾角α>30o时,g η=~;α=30o ~20o 时,g η=~;α<20o 时,g η=~。
水泵的型号及台数选择水泵型号的选择根据计算的工作水泵排水能力,初选水泵。
从水泵产目录中选取D450-60×11型号泵,流量550~400 m 3/h 额定扬程594~。
则:水泵级数的确定0.65594385H H i i B ===取i =1级 式中 i ——水泵的级数;i H ——单级水泵的额定扬程,m 。
水泵台数确定工作泵台数1.32594786Q Q n e B 1=≥=取n 1=2备用水泵台数n 2≥=×2=和n 2≥Q max /Q e -n 1=1020/594-1= 取n 2=2 检修泵数n 3≥ n 1=×2=,取n 3=2 因此,共选5台泵。
5管路的选择管路趟数及泵房内管路布置形式根据泵的总台数,选用典型五泵两趟管路系统,一条管路工作一条管路备用。
正常涌水时,两台泵向一趟管路供水;最大涌水时,四台泵同时工作就能达到20h 内排出24h 的最大涌水量,故从减少能耗的角可采用两台泵向两趟管路供水,从而可知每趟管路内流量Q e 等于两台泵的流量。
管材的选择由于井深远大于200m ,确定采用无缝钢管。
排水内径0.374m~0.3092.2~1.55940.0188v Q 0.0188v 36004Qd ppp====π式中p d ——排水管内径,m ;Q ——排水管中的流量,3/m h ;p v ——排水管内的流速,通常取经济流速p v =1.5~2.2(m/s )来计算。
从表1-1预选Φ351×8无缝钢管,则排水内径p d =(351-2×8)mm = 335mm表1-1热轧无缝钢管 (YB231-70)壁厚验算p 0.5d 1C δ⎛⎫≥+ ⎪ ⎪⎝⎭式中 p d ——所选标准内径,cm ;z σ——管材许用应力。
焊接钢管z σ=60MPa ,无缝钢管z σ=80MPa ;p ——管内水压,考虑流动损失,作为估算0.011p a B =H MP ;C ——附加厚度。
焊接钢管0.2C cm =,无缝钢管0.1~0.2C cm =。
0.8cm0.780.111-2960.0111.3-803710.0110.48035.50.5≤=+⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯+⨯= 所选标准壁厚应等于或略大于按上式计算所得的值。
吸水管壁厚不需要验算。
因此所选壁厚合适。
吸水管径据根选择的排水管径,吸水管选用Φ377×8无缝钢管。
6工况点的确定及校验 管路系统管路布置参照图1-2所示的方案。
这种管路布置方式任何一台水泵都可以经过三趟管路中任意一趟排水,排水管路系统图如1-2所示。
图1-2泵房管路布置图估算管路长度L p =排水管长度可估算为:H sy +(40~50)m=346+(40~50)m=(386~396)m 取L p =390m ,吸水管长度可估算为L x =7m 。
管路阻力系数R 的计算 沿程阻力系数吸水管 λx = 0.3dx021.00.30.3510.021= = 排水管 λp =0.3p d 021.0=0.0210.30.335= 0.0292 局部阻力系数 吸、排水管及其阻力系数分别列于表1-3、表1-4中附件名称 数量 局部阻力系数 底阀 1 90。
弯头 1 异径管 14.094xζ=∑表1-4排水管附件及局部阻力系数][454521)1(8p p p p p x x x x x d d l d d l g R ξλξλπ∑+++∑+=()}⎥⎦⎤⎢⎣⎡++⨯++⨯⎩⎨⎧⨯=454520.335120.41210.3353750.02920.3514.0940.35170.02889.818π=式中 R ——管路阻力系数,25/s m ;x l 、p l ——吸、排水管的长度,m ; x d 、p d ——吸、排水管的内径,mx λ、p λ——吸、排水管的沿程阻力系数,对于流速v ≥s ,其值可按舍维列夫公式计算,即0.30.021d λ=xζ∑、pζ∑——吸、排水管附件局部阻力系数之和,根据排水管路系统中局部件的组成,见表1-3、1-4。
管路特性方程新管25212661 3.87110sy KRQ Q -H =H +=+⨯⨯⨯ 旧管2522266 1.7 3.87110syKRQ Q -H =H +=+⨯⨯⨯式中 K ——考虑水管内径由于污泥淤积后减小而引起阻力损失增大的系数,对于新管K=1,对挂污管径缩小10%,取K=,一般要同时考虑K=1和K=两种情况,俗称新管和旧管。
绘制管路特性曲线并确定工况点根据求得的新、旧管路特性方程,取8个流量值求得相应的损失,列入表1-5中。
表1-5管路特性参数表Q/(m 3·h -1) 200 250300350400450500550H 1/mH 2/m利用表1-5中各点数据绘制出管路特性曲线如图1-7所示,新、旧管路特性曲线与扬程特性曲线的交点分别为M 1和M 2,即为新、旧管路水泵的工况点。
由图中可知:新管的工况点参数为Q M1=810m 3/h,H M1=346m,ηM1=,Hs M1=,N M1=498KW ;旧管的工况点参数为Q M2=795 m 3/h ,H M2=352m,ηM2=,Hs M2=,N M2=492KW ,因ηM1、ηM2均大于,允许吸上真空度Hs M1=,符合《规范》要求。
校验计算排水时间的验算管路挂污后,水泵的流量减小,因此应按管路挂污后工况点流量校核。
正常涌水时,工作水泵1n 台同时工作时每天的排水小时数h M 2010795265524Q n 24q T 21z z ≤=⨯⨯==最大涌水期,工作水泵1n 、2n 台同时工作时每天的排水小时数max max 12)2242465015.120((11)516M q h h h n n Q +⨯T ===≤+⨯即实际工作时,只需4台水泵同时工作即能完成在20h 内排出24h 的最大涌水量。
经济性校核工况点效率应满足η1M =≥ηmax ≥×=, η2M =≥。
稳定性校核H sy =346≤=×1×676=608m 式中0H ——单级零流量扬程,m 。
由D450-60×11型水泵特性曲线图可知0H =608m经济流速校核排水管中流速122532/ 1.68/9009000.335M x x Q v m s m s d ππ===⨯⨯ 吸水管中流速s m 1.530.351900532d 900Q v 22x M1p =⨯⨯==ππ吸、排水管中的流速在经济流速之内,故满足要求。
注:吸、排水管的经济流速通常取~s吸水管高度校核[][]21125418x x SM x M x x l x Q g d d ζλπ⎛⎫∑+H =H -+ ⎪⎝⎭254287 4.09415325.470.02923.149.810.3350.33536005.470.824.65m⎛⎫+⎛⎫=-⨯⨯+⨯ ⎪ ⎪⨯⎝⎭⎝⎭=-= 式中 [H SM1] = H SM1-(10-h a )-() =()-() = 注:a h ——不同海拔高度z时大气压值见表[]m;n h ——不同水温t时的饱和蒸汽压力值[]m;实际吸水高度H x =4m <[H x ],吸水高度满足要求。
电机功率计算11136001000M M M d dH Q K N ηγ⨯⨯='1070kw 0.836001000346810100031.1=⨯⨯⨯⨯⨯=式中d K ——电动机容量富余系数,一般当水泵轴功率大于100KW 时,取d K =;当水泵轴功率为10~100KW 时,取d K =~。
水泵配套电机功率为N d =1250KW ,大于计算值,满足要求。