等比数列基础练习题 百度文库

等比数列基础练习题 百度文库
等比数列基础练习题 百度文库

一、等比数列选择题

1.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则4

2

S S =( ) A .76

B .32

C .

2132

D .

14

2.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8

B .8-

C .16

D .16-

3.已知各项不为0的等差数列{}n a 满足2

6780a a a -+=,数列{}n b 是等比数列,且

77b a =,则3810b b b =( )

A .1

B .8

C .4

D .2 4.若1,a ,4成等比数列,则a =( )

A .1

B .2±

C .2

D .2-

5.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*n

a n N n

∈的最小值为( ) A .

16

25

B .

49

C .

12

D .1

6.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0

D .若S 2020>0,则a 2+a 4>0

7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里

B .86里

C .90里

D .96里

8.设n S 为等比数列{}n a 的前n 项和,若11

0,,22

n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4

?? ??

?

B .20,3

?? ??

?

C .30,4?? ???

D .20,3?? ???

9.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8

B .8±

C .8-

D .1

10.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列()

{}

1

11n n n a a -+-的

前n 项的和为( )

A .()23

82133n n +--

B .()23

182155n n +---

C .()2382133

n n ++-

D .()23182155

n n +-+-

11.已知等比数列{}n a 的前n 项和为n S ,若123

111

2a a a ++=,22a =,则3S =( ) A .8

B .7

C .6

D .4

12.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方

法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有

大吕

=大吕

=

太簇.据此,可得

正项等比数列{}n a 中,k a =( )

A

.n -

B

.n -C

. D

. 13.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9

B .10

C .11

D .12

14.已知数列{}n a 的首项11a =,前n 项的和为n S ,且满足()

*

122n n a S n N ++=∈,则

满足

2100111

1000

10

n n

S S 的n 的最大值为( ). A .7

B .8

C .9

D .10

15.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009

B .1010

C .1011

D .2020

16.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8

B .﹣8

C .±8

D .98

17.已知等比数列{}n a 的通项公式为2*

3()n n a n N +=∈,则该数列的公比是( )

A .

19

B .9

C .

13

D .3

18.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( ) A .4

B .-4

C .±4

D .不确定

19.数列{}n a 满足119211021119n n n n a n --?≤≤=?≤≤?,,

,则该数列从第5项到第15项的和为( )

A .2016

B .1528

C .1504

D .992

20.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-

B .3-

C .3

D .8

二、多选题

21.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=?=∈,则下列结论正确的是( )

A .101a <<

B

.11b <<

C .22n n S T <

D .22n n S T ≥

22.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有

()()()f x y f x f y +=,若112

a =

,()()*

n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( ) A .数列{}n S 递增,且1n S < B .数列{}n S 递减,最小值为

12

C .数列{}n S 递增,最小值为

12

D .数列{}n S 递减,最大值为1

23.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2

{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-1

24.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )

A .1

12n n n S S ++-= B .12n n a

C .21n

n S =-

D .1

21n n S -=-

25.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且

1010a b >,则下列结论一定正确的是( )

A .9100a a <

B .910a a >

C .100b >

D .910b b >

26.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件

1201920201,1a a a >>,

201920201

01

a a -<-,下列结论正确的是( )

A .S 2019

B .2019202010a a -<

C .T 2020是数列{}n T 中的最大值

D .数列{}n T 无最大值

27.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设213

2

n n n b a a ++=-

,记{}n b 的前

n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若1

4q =-

,则n n T S > D .若3

4

q =-

,则n n T S > 28.已知数列{}n a 满足11a =,()*123n

n n

a a n N a +=

∈+,则下列结论正确的有( ) A .13n a ??

+?

???

为等比数列 B .{}n a 的通项公式为1123

n n a +=-

C .{}n a 为递增数列

D .1n a ???

???

的前n 项和2

234n n T n +=-- 29.设{}n a 是无穷数列,若存在正整数k ,使得对任意n +∈N ,均有n k n a a +>,则称

{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是( )

A .公比大于1的等比数列一定是间隔递增数列

B .已知4

n a n n

=+

,则{}n a 是间隔递增数列 C .已知()21n

n a n =+-,则{}n a 是间隔递增数列且最小间隔数是2

D .已知2

2020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<

30.定义在()(),00,-∞?+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列

(){}n

f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在

()(),00,-∞?+∞上的四个函数中,是“保等比数列函数”的为( )

A .()2

f x x =

B .()2x

f x =

C .(

)f x =

D .()ln f x x =

31.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8

B .9

C .10

D .11

32.关于等差数列和等比数列,下列四个选项中不正确的有( )

A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列

B .若数列{}n a 的前n 项和1

22n n S +=-,则数列{}n a 为等差数列

C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,?仍为等差数

D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,?仍为等比数列;

33.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( )

A .数列n S n ??

????

的前10项和为100

B .若1,a 3,a m a 成等比数列,则21m =

C .若

11

16

25n

i i i a a =+>∑,则n 的最小值为6 D .若210m n a a a a +=+,则

116m n

+的最小值为25

12

34.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列

{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若9

8n a n n =+-,下面

哪些数不能作为数列{}n a 的“谷值点”?( ) A .3

B .2

C .7

D .5

35.对于数列{}n a ,若存在数列{}n b 满足1

n n n

b a a =-

(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;

B .若31n a n =-,则其“倒差数列”有最大值;

C .若31n a n =-,则其“倒差数列”有最小值;

D .若112n

n a ??=-- ???,则其“倒差数列”有最大值.

【参考答案】***试卷处理标记,请不要删除

一、等比数列选择题 1.B 【分析】

由5312a a a +=,解得q ,然后由4142

422

12(1)111(1)11a q S q q q a q S q q

---===+---求解. 【详解】

在等比数列{}n a 中,5312a a a +=, 所以421112a q a q a +=,即42210q q +-=, 解得2

12

q =

所以4142

42212(1)1311(1)12

1a q S q q q a q S q q

---===+=---, 故选:B 【点睛】

本题主要考查等比数列通项公式和前n 项和公式的基本运算,属于基础题, 2.C 【分析】

根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】

因为254,32a a ==,所以3

5

2

8a q a ==,所以2q ,

所以2

424416a a q ==?=,

故选:C. 3.B 【分析】

根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】

因为各项不为0的等差数列{}n a 满足2

6780a a a -+=,

所以2

7720a a -=,解得72a =或70a =(舍);

又数列{}n b 是等比数列,且772b a ==,

所以3

3810371178b b b b b b b ===.

故选:B. 4.B 【分析】

根据等比中项性质可得24a =,直接求解即可.

【详解】

由等比中项性质可得:

2144a =?=,

所以2a =±, 故选:B 5.D 【分析】

首先设等比数列{}n a 的公比为(0)q q ≠,根据14a ,22a ,3a 成等差数列,列出等量关系式,求得2q ,比较

()*n

a n N n

∈相邻两项的大小,求得其最小值. 【详解】

在等比数列{}n a 中,设公比(0)q q ≠, 当11a =时,有14a ,22a ,3a 成等差数列,

所以21344a a a =+,即2

44q q =+,解得2q

所以1

2

n n

a ,所以1

2n n a n n

-=

, 1

2111n n a n n a n n

++=≥+,当且仅当1n =时取等号, 所以当1n =或2n =时,()*

n a n N n

∈取得最小值1,

故选:D. 【点睛】

该题考查的是有关数列的问题,涉及到的知识点有等比数列的通项公式,三个数成等差数列的条件,求数列的最小项,属于简单题目. 6.A 【分析】

根据等比数列的求和公式及通项公式,可分析出答案. 【详解】

等比数列{}n a 的前n 项和为n S ,当1q ≠时,

202112021(1)01a q S q

-=>-,

因为2021

1q

-与1q -同号,

所以10a >,

所以2

131(1)0a a a q +=+>,

当1q =时,

2021120210S a =>,

所以10a >,

所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】

易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 7.D 【分析】

由题意得每天行走的路程成等比数列{}n a 、且公比为1

2

,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】

由题意可知此人每天走的步数构成

1

2

为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]

2378

1

12a -=-, 解得1192a =,∴此人第二天走1

192962

?

=里, ∴第二天走了96里,

故选:D . 8.A 【分析】

设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1

102n q -?>,

1

(1)

221n q q

-<-,即可求出参数q 的取值范围;

【详解】

解:设等比数列{}n a 的公比为q ,依题意可得1q ≠. 11

0,2

n a a >=

,2n S <, ∴1

102n q -?>,1

(1)221n q q

-<-, 10q ∴>>.

144q ∴-,解得34

q

. 综上可得:{}n a 的公比的取值范围是:30,4

?? ??

?

故选:A . 【点睛】

等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 9.A 【分析】

分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】

设等比数列{}n a 的公比为q ,则2

750a a q =>,

由等比中项的性质可得2

75964a a a ==,因此,78a =.

故选:A. 10.D 【分析】

根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入

()

1

11n n n a a -+-可知数列为等比数列,求和即可.

【详解】

因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,

所以31121

208a q a q a q ?+=?=?,

解得2q

,12a =,

所以1222n n

n a -=?=,

()

()

()

111

1

1

1222111n n n n n n n n a a ++-+--+=??-=∴--,

()

{

}

1

11n n n a a -+∴-是以8为首项,4-为公比的等比数列,

()

23

3

5

7

9

21

11

8[1(4)]8222222

(1)1(4)155

n n n n n n S -++---∴=-+--+

+?==+---, 故选:D 【点睛】

关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 11.A

利用已知条件化简,转化求解即可. 【详解】

已知{}n a 为等比数列,132

2a a a ∴=,且22a =,

满足131233

2

1231322111124

a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:

(1)先利用等比数列的性质,得132

2a a a ∴=,

(2)通分化简3

12311124

S a a a ++==. 12.C 【分析】

根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】

因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为

11n n a a q -=

,所以q =

所以11

1

111k k n n k a a a a a ---?? ?

?== ?

?

?

1111

n k k n n n

a a

----==? 故选:C. 13.C 【分析】

根据递推关系可得数列{}1n a -是以1为首项,2为公比的等比数列,利用等比数列的通项

公式可得1

21n n a -=+,即求.

【详解】

因为121n n a a +=-,所以()1121n n a a +-=-,即

11

21

n n a a +-=-, 所以数列{}1n a -是以1为首项,2为公比的等比数列.

则112n n a --=,即1

21n n a -=+.

因为513n a >,所以121513n -+>,所以12512n ->,所以10n >.

14.C 【分析】

根据(

)*

122n n a S n N ++=∈可求出n

a

的通项公式,然后利用求和公式求出2,n n S S ,结合

不等式可求n 的最大值. 【详解】

1122,22()2n n n n a S a S n +-+=+=≥相减得1(22)n n a a n +=≥,11a =,21

2

a =

;则{}n a 是首项为1,公比为12的等比数列,100111111000210n

??<+< ???,1111000210

n

??<< ???,则n 的最大值为9. 故选:C 15.C 【分析】

根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到2

10111a =,再利用

11,01a q ><<求解即可.

【详解】

根据题意:2022122022...a a a a =, 所以122021...1a a a =,

因为{a n }等比数列,设公比为q ,则0q >,

所以2

12021220201011...1a a a a a ====,

因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,

所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】

关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关

键是根据定义和等比数列性质得出2

10111a =以及11,01a q ><<进行判断.

16.A 【分析】

由已知条件求出公差和公比,即可由此求出结果. 【详解】

设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,4

19q ?=, 解之可得83

d =

,2

3q =,

()22218

183

b a a q ∴-=??=.

故选:A. 17.D 【分析】

利用等比数列的通项公式求出1a 和2a ,利用2

1

a a 求出公比即可 【详解】

设公比为q ,等比数列{}n a 的通项公式为2*

3()n n a n N +=∈,

则3

1327a ==,4

2381a ==,2

1

3a q a ∴

==, 故选:D 18.A 【分析】

根据等比中项的性质有216x =,而由等比通项公式知2

x q =,即可求得x 的值. 【详解】

由题意知:216x =,且若令公比为q 时有2

0x q =>,

∴4x =, 故选:A 19.C 【分析】

利用等比数列的求和公式进行分项求和,最后再求总和即可 【详解】

因为1192110

21119n n n n a n --?≤≤=?≤≤?,,

所以,410

4

9104561022222212

a a a -++

+=+

+==--,

49

8

4

4

8

941112152222222212

a a a -+++=+

+=+

+==--,

该数列从第5项到第15项的和为

10494465422222(2121)2(64322)16941504-+-=?-+-=?+-=?=

故选:C 【点睛】

解题关键在于利用等比数列的求和公式进行求解,属于基础题 20.A 【分析】

根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和.

【详解】

设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2

326a a a =,

即2

(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)

661(2)2422

S a d ?-?-=+=?+?-=-. 故选:A

二、多选题

21.ABC 【分析】

利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】

因为数列{}n a 为递增数列, 所以123a a a <<,

所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,

所以2

1122b b b <=

,即1b < 又2

2234b b b <=,即21

2

2b b =

<, 所以11b >

,即11b <<,故B 正确;

{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++???++

= 22(121)

2[13(21)]22

n n n n +-++???+-=

=,

因为12n n n b b +?=,则1

122n n n b b +++?=,所以22n n b b +=,

则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++???++++???+

=1101101122(222)(222)()(21)n n n

b b b b --++???++++???+=+-

1)1)n n

>-=-,

当n =1

时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时

假设当n=k

时,21)2k k ->

21)k k ->, 则当n=k +1

1121)21)21)2k k k k k ++-=

+-=->

2221(1)k k k >++=+

所以对于任意*n N ∈

,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】

本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 22.AC 【分析】

计算()f n 的值,得出数列{}n a 的通项公式,从而可得数列{}n S 的通项公式,根据其通项公式进行判断即可 【详解】 解:因为112a =

,所以1(1)2

f =, 所以2

21

(2)(1)4

a f f ===

, 31

(3)(1)(2)8

a f f f ===,

……

所以1

()2

n n a n N +=∈,

所以11(1)

122111212

n n n S -==-<-, 所以数列{}n S 递增,当1n =时,n S 有最小值1112

S a ==, 故选:AC 【点睛】

关键点点睛:此题考查函数与数列的综合应用,解题的关键是由已知条件赋值归纳出数列

{}n a 的通项公式,进而可得数列{}n S 的通项公式,考查计算能力和转化思想,属于中档

题 23.AC 【分析】

根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断

D. 【详解】

设等比数列{}n a 公比为,(0)q q ≠

则2221

12

()n n n n

a a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;

若123,a a a <<则12

1

1101a a a q a q q >?<<∴?>?或1001a q

,即数列{}n a 是递增数列,C 正确; 若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211

323(1),3

a a q r r a a =

==∴=+=-,即D 错误 故选:AC 【点睛】

等比数列的判定方法

(1)定义法:若1

(n n

a q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且2

12n n a a a a ++=,则数列{}n a 是等比数列;

(3)通项公式法:若数列通项公式可写成(,n

n a cq c q =均是不为0的常数),则{}n a 是等比

数列;

(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,n

n S kq k q q k =-≠≠为非零常数),则

{}n a 是等比数列.

24.BC 【分析】

根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】

数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>

23464a a a =,2364a ∴=,解得34a =,

2410a a +=,4

410q q

∴+=即22520q q -+=,解得2q

12

, 又数列{a n }为单调递增的等比数列,取2q

,3124

14

a a q =

==, 1

2

n n

a ,212121

n n n S -==--,()1121212n n n

n n S S ++-=---=.

故选:BC 【点睛】

本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 25.AD 【分析】

根据等差、等比数列的性质依次判断选项即可. 【详解】

对选项A ,因为0q <,所以2

9109990a a a a q a q =?=<,故A 正确;

对选项B ,因为9100a a <,所以91000a a >??

a a ?,即910a a >或910a a <,故B 错误;

对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】

本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 26.AB 【分析】

由已知确定0q <和1q ≥均不符合题意,只有01q <<,数列{}n a 递减,从而确定

20191a >,202001a <<,从可判断各选项.

【详解】

当0q <时,2

2019202020190a a a q =<,不成立;

当1q ≥时,201920201,1a a >>,

201920201

01

a a -<-不成立;

故01q <<,且20191a >,202001a <<,故20202019S S >,A 正确;

2201920212020110a a a -=-<,故B 正确;

因为20191a >,202001a <<,所以2019T 是数列{}n T 中的最大值,C ,D 错误; 故选:AB 【点睛】

本题考查等比数列的单调性,解题关键是确定20191a >,202001a <<. 27.BD 【分析】

先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】

由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意;

当1q ≠时,()1101n n a q S q

-=

>-,即

101n

q q ->-,上式等价于1010

n q q ?->?->?①或10

10

n q q ?-

-.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.

综上所述,q 的取值范围是()()1,00,-+∞.

2213322n n n n b a a a q q ++??=-=- ???,所以232n n T q q S ?

?=- ??

?,所以

()2311222n n n n T S S q q S q q ???

?-=?--=?+?- ? ????

?,而0n S >,且()()1,00,q ∈-?+∞.

所以,当1

12

q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当1

2(0)2

q q -

<<≠时,0n n T S -<,即n n T S <. 当12

q =-

或2q 时,0,n n n n T S T S -==,A 选项错误.

综上所述,正确的选项为BD. 故选:BD 【点睛】

本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 28.ABD 【分析】 由()*123n

n n

a a n N a +=

∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】 因为

112323n n

n n a a a a ++==+,所以11132(3)n n a a ++=+,又11

340a +=≠, 所以13n a ??+?

???

是以4为首项,2位公比的等比数列,1

1342n n a -+=?即1123n n a +=-,故

选项A 、B 正确. 由{}n a 的通项公式为1

12

3

n n a +=

-知,{}n a 为递减数列,选项C 不正确.

因为

1231n n

a +=-,所以 1n a ??

????

的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-+

+-=++

+-

22(12)2312

234n n n n +-?-=?-=--.选项D 正确,

故选:ABD 【点睛】

本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题. 29.BCD 【分析】

根据间隔递增数列的定义求解. 【详解】 A. ()

1111

111n k n n n k k n a a a a q

q q a q +---+=-=--,因为1q >,所以当10a <时,

n k n a a +<,故错误;

B. ()()244441++n k

n n kn a a n k n k k n k n n k n n k n +????+-?

?-=++-+=-= ?

? ? ? ?+??????

,令24t n kn =+-,t 在n *∈N 单调递增,则()1140t k =+->,解得3k >,故正确;

C. ()()

()()()()

21212111n k

n n k

n k n a a n k n k ++??-=++--+-=+---??

,当n 为奇数时,()2110k

k --+>,存在1k 成立,当n 为偶数时,()2110k

k +-->,存在2

k ≥成立,综上:{}n a 是间隔递增数列且最小间隔数是2,故正确; D. 若{}n a 是间隔递增数列且最小间隔数是3,

则()()()

2

2

2

2020202020n k n a a n k t n k n tn kn k tk +-=+-++--+=+->,n *

∈N 成立,

则()2

20k t k +->,对于3k ≥成立,且()2

20k t k +-≤,对于k 2≤成立

即()20k t +->,对于3k ≥成立,且()20k t +-≤,对于k 2≤成立 所以23t -<,且22t -≥ 解得45t ≤<,故正确. 故选:BCD 【点睛】

本题主要考查数列的新定义,还考查了运算求解的能力,属于中档题. 30.AC 【分析】

直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可.

【详解】

设等比数列{}n a 的公比为q .

对于A ,则2

2

211

12()()n n n n n n f a a a q f a a a +++??=== ???

,故A 是“保等比数列函数”;

对于B ,则

1

11()22()2

n n n n a a a n a n f a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C

,则

1()

()

n n f a f a +==

=,故C 是“保等比数列函数”;

对于D ,则

11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n n

a a q a q

q f a f a a a a a ++?+====+≠ 常数,故D 不是“保等比数列函数”. 故选:AC. 【点睛】

本题考查等比数列的定义,考查推理能力,属于基础题. 31.AB 【分析】

由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案. 【详解】

由题意,a n =1+2(n ﹣1)=2n ﹣1,1

2

n n b -=,

n n b c a ==2?2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,

其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1) =(21

+22

+ (2)

)﹣n (

)21212

n n -=

-=-2

n +1

﹣2﹣n .

当n =9时,T n =1013<2019; 当n =10时,T n =2036>2019. ∴n 的取值可以是8,9. 故选:AB 【点睛】

本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 32.ABD 【分析】

根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案. 【详解】

根据题意,依次分析选项:

对于A ,若数列{}n a 的前n 项和2

n S an bn c =++,

若0c =,由等差数列的性质可得数列{}n a 为等差数列, 若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;

对于B ,若数列{}n a 的前n 项和1

22n n S +=-,

可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;

对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,?,即为

12n a a a ++?+,12n n a a ++?+,213n n a a ++?+,?,

即为2

2322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,

故C 正确;

对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,?不一定为等比数列,

比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,?,均为0,不为等比数列.故

D 不正确. 故选:ABD . 【点睛】

本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题. 33.AB 【分析】

由已知可得:43n a n =-,2

2n S n n =-,

=21n S n n -,则数列n S n ??

????

为等差数列通过公式即可求得前10项和;通过等比中项可验证B 选项;因为

11111=44341i i a a n n +??

- ?-+??

,通过裂项求和可求得

11

1

n

i i i a a =+∑;由等差的性质可知12m n +=利用基本不等式可验证选项D 错误. 【详解】

由已知可得:43n a n =-,2

2n S n n =-,

=21n S n n -,则数列n S n ??

????为等差数列,则前10项和为()10119=1002

+.所以A 正确; 1,a 3,a m a 成等比数列,则231=,m a a a ?81m a =,即=4381m a m =-=,解得21m =故B 正确;

因为11111=44341i i a a n n +??

- ?-+??所以11

11111116

=1=45549413245

1n

i i i n n n a a n =+??-+-++

-> ?

++??-∑,解得6n >,故n 的最小值

相关主题