压力传感器(力效应)
压力传感器工作原理

压力传感器工作原理压力传感器是一种用于测量物体受到的压力的设备。
它将压力转化为电信号,通过测量电信号的变化来确定物体所受的压力大小。
压力传感器被广泛应用于工业控制、汽车工程、医疗设备等领域。
一、压力传感器的基本原理压力传感器的基本原理是利用物理效应将压力转化为电信号。
常见的压力传感器工作原理有电阻式、电容式和应变式。
1. 电阻式压力传感器电阻式压力传感器基于电阻值随压力变化而变化的原理。
它由一个弹性变形的薄膜和一对电极组成。
当物体受到压力时,薄膜会发生微小的变形,导致电阻值发生变化。
通过测量电阻值的变化,可以确定物体所受的压力大小。
2. 电容式压力传感器电容式压力传感器基于电容值随压力变化而变化的原理。
它由两个平行的金属板和一个绝缘层组成。
当物体受到压力时,金属板之间的距离会发生微小的变化,导致电容值发生变化。
通过测量电容值的变化,可以确定物体所受的压力大小。
3. 应变式压力传感器应变式压力传感器基于材料应变随压力变化而变化的原理。
它由一个弹性材料和一对电阻片组成。
当物体受到压力时,弹性材料会发生微小的应变,导致电阻值发生变化。
通过测量电阻值的变化,可以确定物体所受的压力大小。
二、压力传感器的工作过程压力传感器的工作过程可以分为以下几个步骤:1. 压力传感器感知压力压力传感器通过感知物体所受的压力,将压力转化为机械变形或电信号。
不同类型的压力传感器使用不同的物理效应来感知压力。
2. 压力传感器转换信号压力传感器将感知到的压力转换为电信号。
这一步骤通常通过传感器内部的电路来实现。
电阻式压力传感器通过测量电阻值的变化来转换信号,电容式压力传感器通过测量电容值的变化来转换信号,应变式压力传感器通过测量电阻值的变化来转换信号。
3. 压力传感器输出信号压力传感器将转换后的电信号输出给外部设备。
输出信号可以是模拟信号或数字信号,具体取决于传感器的类型和应用需求。
4. 压力传感器信号处理在一些应用中,压力传感器的输出信号需要进行进一步的处理。
压力传感器的分类与原理介绍

压力传感器的分类与原理介绍压力传感器是一种测量物体受力并将其转化为电信号的设备。
它被广泛应用于工业、汽车、航空航天等领域中,用于测量压力变化并实时反馈给控制系统。
压力传感器根据其工作原理和结构特点可以分为多种类型,下面将对几种常见的压力传感器进行分类与原理介绍。
1. 压阻式传感器压阻式传感器是一种基于电阻变化原理的压力传感器。
它通常由两个平行的金属片组成,两片金属片之间有一层敏感膜,当外力作用于敏感膜时,金属片的电阻值会发生变化。
这种变化可以通过电路进行检测和测量。
压阻式传感器的优点是结构简单、价格低廉,但是其精度较低,易受温度和湿度的影响。
2. 容积式传感器容积式传感器是一种基于压力变化引起的容积变化原理的压力传感器。
它通常由一个弹性元件和一个容器组成。
当压力作用于容器时,容器内的气体容积会发生变化,从而引起弹性元件的形变。
这种形变可以通过传感器内的压力变化转化为电信号进行测量。
容积式传感器的优点是精度较高、抗干扰能力强,但是其结构复杂,成本较高。
3. 电容式传感器电容式传感器是一种基于电容变化原理的压力传感器。
它通常由两个电极和一个电介质组成,当压力作用于电介质时,电容的值会发生变化。
这种变化可以通过电路进行检测和测量。
电容式传感器的优点是精度高、响应速度快,但是其受温度和湿度的影响较大,且易受外界电场干扰。
4. 压电式传感器压电式传感器是一种基于压电效应原理的压力传感器。
它通常由压电材料和电极组成,当外力作用于压电材料时,压电材料会产生电荷,从而生成电压信号。
这种电压信号可以通过电路进行检测和测量。
压电式传感器的优点是响应速度快、精度高、抗干扰能力强,但是其价格较高,使用时需要注意防止过载和过压。
5. 磁敏式传感器磁敏式传感器是一种基于磁阻效应原理的压力传感器。
它通常由一个磁敏材料和一个磁场组成,当压力作用于磁敏材料时,磁敏材料的磁阻值会发生变化。
这种变化可以通过电路进行检测和测量。
磁敏式传感器的优点是精度高、稳定性好,但是其价格较高,且易受外界磁场干扰。
压力传感器工作原理

压力传感器工作原理压力传感器是一种能够将压力信号转换为电信号输出的传感器,它在工业控制、汽车制造、医疗设备等领域都有着广泛的应用。
压力传感器的工作原理是通过感受外部压力的作用,产生相应的变化,并将这种变化转化为电信号输出。
下面将详细介绍压力传感器的工作原理。
1. 压力传感器的类型压力传感器根据其工作原理和测量范围的不同,可以分为多种类型,包括压阻式压力传感器、压电式压力传感器、电容式压力传感器、共振式压力传感器等。
每种类型的压力传感器都有其特定的工作原理,但其基本原理都是通过感受外部压力的作用,产生相应的变化,并将这种变化转化为电信号输出。
2. 压阻式压力传感器的工作原理压阻式压力传感器是一种通过测量电阻值变化来感知压力的传感器。
其工作原理是利用一些特殊材料的电阻随着受力的不同而发生变化。
当外部压力作用在传感器上时,传感器内部的电阻值会发生相应的变化,这种变化会被转化为电信号输出。
通常压阻式压力传感器的灵敏度较高,能够测量较小范围内的压力变化。
3. 压电式压力传感器的工作原理压电式压力传感器是一种利用压电效应来感知压力的传感器。
其工作原理是利用压电材料在受到外部压力作用时会产生电荷的变化。
当外部压力作用在传感器上时,压电材料会产生相应的电荷变化,这种变化会被转化为电信号输出。
压电式压力传感器具有较高的频率响应特性,能够测量动态压力变化。
4. 电容式压力传感器的工作原理电容式压力传感器是一种利用电容变化来感知压力的传感器。
其工作原理是利用外部压力作用在传感器上时,导致传感器内部电容值发生变化。
这种电容值的变化会被转化为电信号输出。
电容式压力传感器具有较高的精度和稳定性,能够测量较大范围内的压力变化。
5. 共振式压力传感器的工作原理共振式压力传感器是一种利用共振频率的变化来感知压力的传感器。
其工作原理是利用外部压力作用在传感器上时,导致传感器内部的共振频率发生变化。
这种共振频率的变化会被转化为电信号输出。
压力传感器的原理

压力传感器的原理压力传感器是一种能够将压力信号转换为电信号输出的传感器,广泛应用于工业自动化控制、汽车电子、医疗设备等领域。
它的原理是利用一定的物理效应,将受力的变化转换为电信号输出,从而实现对压力的测量和控制。
压力传感器的原理主要包括以下几个方面:1. 压阻式原理。
压阻式压力传感器是利用压阻效应来实现对压力的测量。
当外力作用于传感器的敏感元件上时,敏感元件会发生形变,从而改变其电阻值。
通过测量电阻值的变化,就可以得到压力的大小。
这种原理的传感器简单、成本低,但精度较低,易受温度影响。
2. 容性原理。
容性压力传感器利用压力作用于传感器时,会改变传感器内部电容值的特性。
通过测量电容值的变化,就可以得到压力的大小。
这种原理的传感器具有较高的灵敏度和稳定性,但制造工艺复杂,成本较高。
3. 压电原理。
压电压力传感器是利用压电效应来实现对压力的测量。
当外力作用于传感器的压电晶体上时,会产生电荷的分布变化,从而产生电压信号输出。
通过测量电压信号的变化,就可以得到压力的大小。
这种原理的传感器具有高灵敏度、高稳定性和高精度,但制造工艺复杂,成本较高。
4. 光纤原理。
光纤压力传感器是利用光纤的光学原理来实现对压力的测量。
当外力作用于传感器上时,会改变光纤的折射率,从而改变光信号的传输特性。
通过测量光信号的变化,就可以得到压力的大小。
这种原理的传感器具有抗干扰性强、可靠性高的优点,但制造工艺复杂,成本较高。
总结:压力传感器的原理多种多样,每种原理都有其适用的场景和特点。
在实际应用中,需要根据具体的测量要求和环境条件选择合适的压力传感器。
随着科技的不断发展,压力传感器的原理和性能也在不断提升,为各行各业的应用提供了更加可靠和精准的压力测量解决方案。
压力传感器的工作原理及应用

压力传感器的工作原理及应用压力传感器是一种广泛应用于工业控制、医疗设备、汽车、航空航天等领域的传感器。
它可以将压力信号转换为电信号,并通过电子仪器进行测量、处理和控制。
本文将介绍压力传感器的工作原理以及它在不同领域的应用。
一、压力传感器的工作原理压力传感器的工作原理基于阿基米德原理和压阻效应。
阿基米德原理指出,一个浸入在流体中的物体所受到的浮力等于所排除的液体的重量。
而压阻效应是指当介质中存在形变体(如金属线、硅、聚合物等)时,介质在受到外力作用下会发生变形,从而引起电阻的改变。
压力传感器通常由金属薄膜、弹簧、膜盒和电路等组成。
当外部施加压力时,膜盒发生弯曲,并通过弹簧将压力传递给金属薄膜。
金属薄膜在受到压力作用下会发生微小的形变,从而改变电阻值。
电路会测量并转换这个电阻值,得到与压力成比例的电信号输出。
二、压力传感器在工业控制中的应用压力传感器在工业控制中具有广泛的应用,可以用于测量和控制各种介质的压力。
例如,在工业生产中,通过安装压力传感器来监测设备中的压力变化,可以实时了解设备的运行状态,并及时采取措施进行调整和维修。
此外,压力传感器还可以用于液位测量。
通过测量液体所产生的压力,可以准确地确定液体的高度。
这在化工、石油、制药等行业中具有重要意义,可以保证生产过程的安全和稳定性。
三、压力传感器在医疗设备中的应用医疗设备中也广泛使用压力传感器。
例如,作为心电图仪的一部分,压力传感器可以测量患者的血压变化,以监测患者的心脏健康状况。
在呼吸机上,压力传感器可以用于测量患者的呼吸压力,从而调整呼吸机的工作状态。
此外,压力传感器还可以用于监测手术中使用的工具的压力。
在微创手术中,医生可以通过触觉反馈来判断手术进展。
压力传感器可以在手术工具上安装,实时测量手术时施加的力量,从而提供触觉反馈,帮助医生进行操作。
四、压力传感器在汽车领域的应用在汽车领域,压力传感器有多种应用。
例如,它可以用于测量轮胎的胎压,实时提醒车主胎压是否正常,以确保行驶安全。
压力传感器是什么原理

压力传感器是什么原理
压力传感器是一种能够测量压力变化的装置。
它的工作原理主要基于以下几种原理:
1.电阻变化原理:压力传感器内部包括一个弹性变形的元件,并通过电阻传感器测量其阻值的变化。
当外部受力施加在该元件上时,元件会发生形变,进而导致其阻值发生变化,通过测量阻值的变化即可得知压力的变化。
2.电容变化原理:压力传感器内部包括两个带电性质的电极,当施加压力时,电极之间的距离发生变化,进而改变了电容的数值。
通过测量电容的变化即可得知压力的变化。
3.压电效应原理:压力传感器内部包括一种称为压电晶体材料的元件。
当该晶体受到压力时,其内部结构发生变化,导致产生电荷。
测量所产生的电荷大小即可得知压力的变化。
4.挠性变形原理:压力传感器内部包括一个弯曲或弯折的弹性杆件,当受到压力时,弹性杆件发生弯曲或弯折变形。
测量杆件的形变程度即可得知压力的变化。
以上是常见的几种压力传感器的工作原理,不同类型的压力传感器可能会使用不同的原理,但其基本原理是通过测量变化的电阻、电容、压电效应或形变来实现对压力的测量。
压力传感器的工作原理

压力传感器的工作原理压力传感器是一种用于测量压力的传感器,它可以将压力转换成电信号输出。
压力传感器的工作原理主要是利用一些特定的物理效应来实现的。
在实际应用中,压力传感器被广泛应用于工业控制、汽车电子、医疗设备等领域。
1. 压电效应压电效应是压力传感器工作的基础。
压电效应是指某些晶体材料在受到外力作用时会产生电荷,这种效应被称为正压电效应。
利用这种效应,压力传感器可以将受到的压力转换成电荷信号。
2. 应变片效应应变片是一种金属或半导体材料制成的薄片,当受到外力作用时会产生形变。
利用应变片的这种特性,压力传感器可以将受到的压力转换成应变片的形变,进而转换成电信号输出。
3. 压力传感器的结构压力传感器的结构通常包括一个感应元件和一个信号处理电路。
感应元件可以是压电陶瓷、应变片等材料制成的,用于感应受到的压力。
信号处理电路用于处理感应元件输出的信号,将其转换成标准的电信号输出。
4. 工作原理当压力传感器受到外部压力作用时,感应元件会产生相应的变化,这种变化可以是电荷、电阻、电压等形式的。
信号处理电路会将感应元件输出的信号进行放大、滤波、线性化等处理,最终转换成标准的电信号输出。
5. 应用领域压力传感器在工业控制、汽车电子、医疗设备等领域有着广泛的应用。
在工业控制中,压力传感器可以用于测量管道内的液体或气体压力,实现对工艺参数的实时监测和控制。
在汽车电子中,压力传感器可以用于测量发动机油压、轮胎压力等参数,实现对车辆状态的监测和控制。
在医疗设备中,压力传感器可以用于测量血压、呼吸等生理参数,实现对患者健康状况的监测和诊断。
总之,压力传感器是一种利用特定物理效应来实现对压力的测量的传感器。
通过对压电效应、应变片效应等物理效应的利用,压力传感器可以将受到的压力转换成电信号输出,实现对压力的准确测量和监测。
压力传感器在工业控制、汽车电子、医疗设备等领域有着广泛的应用前景。
压力传感器工作原理

压力传感器工作原理1.应变片原理:应变片是最常见的压力传感器原理之一、它通过在金属片表面粘贴电阻式应变片,并将其安装在一个弹性体上来实现。
当压力作用于弹性体表面时,弹性体会发生变形,导致与其连接的应变片发生应变。
因为应变片是由导电材料制成的,它的电阻值会发生相应的变化。
通过测量应变片的电阻值变化,可以确定压力的大小。
2.容积变化原理:这种类型的压力传感器是基于弹簧和可变容腔原理设计的。
当压力作用于容积腔时,弹簧的长度会发生变化,从而改变容腔的体积。
通过测量容积腔的体积变化,可以确定压力的大小。
3.力传感器原理:力传感器利用一个弹簧和一个链接杆来实现压力的测量。
当压力作用于链接杆时,它会向弹簧施加一个力,弹簧会发生压缩或伸展。
测量弹簧受力的变化,可以确定压力的大小。
4.压电原理:压电传感器是基于压电效应原理工作的。
压电材料是一种特殊的材料,它可以在受到压力时产生电荷。
压电传感器利用这种压电效应来测量压力。
当压力作用于压电元件时,它会产生电荷,通过测量电荷的大小来确定压力的大小。
1.传感器安装:首先,将传感器安装在需要测量的位置,通常是受压体表面。
传感器与被测量对象之间需要有良好的密封以确保压力信号的准确性。
2.压力作用:压力会作用在传感器的敏感部分上,例如应变片、容积腔或力传感器。
这些敏感部分会发生相应的形变或受力。
3.信号转换:敏感部分的形变或受力会引起电阻、容积或力的变化。
传感器会将这种变化转换为电信号。
通常,压力传感器会通过电桥电路来转换电信号。
4.信号处理:传感器输出的电信号需要经过信号处理电路进行放大、滤波和线性化处理。
这些处理有助于提高信号的准确性和稳定性。
5.数据分析:最后,处理后的信号会传递给控制装置、仪器设备或监测系统进行数据分析和处理。
根据分析结果,可以进行压力的监测、控制和报警。
总结起来,压力传感器是通过测量敏感部分的形变或受力来实现对压力的测量。
通过信号转换、处理和分析,可以获取到准确的压力信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力传感器压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电信号作输出,给显示仪表显示压力值,或供控制和报警使用。
力学传感器的种类繁多,电阻应变式传感器结构简单、体积小、使用方便、性能稳定、可靠、灵敏度高动态响应快、适合静态及动态测量、测量精度高等诸多优点,因此是目前应用最广泛的传感器之一。
电阻应变式传感器由弹性元件和电阻应变片构成,当弹性元件感受到物理量时,其表面产生应变,粘贴在弹性元件表面的电阻应变片的电阻值将随着弹性元件的应变而相应变化。
通过测量电阻应变片的电阻值变化,可以用来测量位移加速度、力、力矩、压力等各种参数。
一、 压力传感器的基本原理1、金属电阻应变片的工作原理应变式压力传感器是把压力的变化转换成电阻值的变化来进行测量的,应变片是由金属导体或半导体制成的电阻体,是一种将被测件上的应变变化转换成为一种电信号的敏感器件。
它是压阻式应变传感器的主要组成部分之一。
电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。
金属电阻应变片又有丝状应变片和金属箔状应变片两种。
通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。
这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D 转换和CPU )显示或执行机构。
其阻值随压力所产生的应变而变化。
金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。
对于金属导体,如图1所示,一段圆截面的导线的金属丝,设其长为L,截面积为A (直径为D ) ,原始电阻为 R ,金属导体的电阻值可用下式表示:R=ρL ∕A (1)式中:ρ——金属导体的电阻率(m cm /2⋅Ω) S ——导体的截面积(2cm ) L ——导体的长度(m )图1 金属电阻丝应变效应当金属丝受到轴向力 F 而被拉伸或压缩产生形变 ,其电阻值会随之变化 ,通过对(1)式两边取对数后再取全微分得:ρρd A dA R dR +-=L dL (2) 式中ε=L dL 为材料轴向线应变 ,且 DdD A dA 2=跟据材料力学 ,在金属丝单向受力状态下 ,有L dL D dD μ-= (3) 式中μ为导体材料的泊松比。
因此 ,有ρρμρρd L dL d ++=)21( (4) 试验发现 ,金属材料电阻率的相对变化与其体的相对变化间的关系为VdV c d =ρρ(5) 式中 , c 为常数(由一定的材料和加工方式决定)εμ)21(-=+=AdA L dL V dV 将式 (5)代入 (4) ,且当ΔR=R 时 ,可得 εεμμK c RR =-++=∆)]21()21[( (6) 式中,k=(1+2µ)+c(1-2µ)为金属丝材料的应变灵敏系数。
上式表明 ,金属材料电阻的相对变化与其线应变成正比。
这就是金属材料的应变电阻效应。
电阻变化率 △R/R 的表达式为:K=ΔR/R µ/ε,式中μ—材料的泊松系数;ε—应变量。
当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。
当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。
只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变。
2.电阻应变片的测量电路由于应变片的电桥电路的输出信号一般比较微弱,所以目前大部分电阻应变式传感器的电桥输出端与直流放大器相连,如图2所示。
图2直流电桥设电桥的各臂的电阻分别为R 1R 3R 2R 4 它们可以全部或部分是应变片。
由于直流放大器的输入电阻比电桥电阻大的多,因此可将电桥输出端看成开路,这种电桥成为电压输出桥,输出电压U 0 为U 0= S U R R R R R R R R ))((43214231++- (7) 由上式可见:若R 1R 3=R 2R 4,则输出电压必为零,此时电桥处于平衡状态,称为平衡电桥。
平衡电桥的平衡条件为:R 1R 3=R 2R 4应变片工作时,其电阻变化ΔR,此时有不平衡电压输出。
1104R R U U ∆= (8) 由式(8)表明:ΔR《 R 1 时,电桥的输出电压于应变成线性关系。
若相邻两桥臂的应变极性一致,即同为拉应变活压应变时,输出电压为两者之差,若不同时,则输出电压为两者之和。
若相对两桥臂的极性一直,输出电压为两者之和,反之则为两者之差。
电桥供电电压U 越高,输出电压U 0 越大,但是,当U 大时,电阻应变片通过的电流也大,若超过电阻应变片所允许通过的最大工作电流,传感器就会出现蠕变和零漂。
基于这些原因可以合理的进行温度补偿和提高传感器的测量灵敏度。
由式(8)的线性关系是在应变片的参数变化很小,极ΔR《 R 1 的情况下得出的,若应变片承受的压力太大,则上述假设不成立,电桥的输出电压应变之间成非线性关系。
在在这种情况下,用按线性关系刻度的仪表进行测量必然带来非线性误差。
为了消除非线性误差,在实际应用中,常采用半桥差动或全桥差动电路,如图3所示,以改善非线性误差和提高输出灵敏度。
U U(a)半桥差动电路 (b ) 全桥差动电路图3 差动电桥 图3(a )为半桥差动电路,在传感器这中经常使用这种方法。
粘贴应变片时,使两个应变片一个受压,一个受拉。
应变符号相反,工作时将两个应变片接入电桥的相邻两臂。
设电桥在初始时所示平衡的,且为等臂电桥,考虑到ΔR =ΔR 1=ΔR 2 则得半桥差动电路的输出电压为U R R U OO ∆=2 (9) 由上式可见,半桥差动电路不仅可以消除非线性误差,而且还使电桥的输出灵敏度提高了一倍,同时还能起到温度补偿的作用。
如果按图3(b )所示构成全桥差动电路同样考虑到 ΔR =ΔR 1=ΔR 2=ΔR 3=ΔR 4时得全桥差动电路的输出电压为U R R U OO ∆= (10)可见,全桥的电压灵敏度比单臂工作时的灵敏度提高了4倍非线性误差也得到了消除,同时还具有温度补偿的作用,该电路也得到了广泛的应用。
二、压力传感器系统本次设计是以单片机组成的压力测量,系统中必须有前向通道作为电信号的输入通道,用来采集输入信息。
压力的测量,需要传感器,利用传感器将压力转换成电信号后,再经放大并经A/D转换为数字量后才能由计算机进行有效处理。
然后用LED进行显示,而键盘的作用是改变输入量的系数的。
它的原理图如图4所示。
图4 压力测量仪表原理方框图通过压力传感器将需要测量的位置的压力信号转化为电信号,再经过运算放大器进行信号放大,送至8位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。
基于单片机的智能压力检测系统,选择的单片机是基于AT89C51单片机的测量与显示,将压力经过压力传感器变为电信号,再通过三运放放将电信号放大为标准信号为0-5V的电压信号,然后进入A/D转换器将模拟量转换为数字量,我们所采样的A/D转换器为ADC0832,ADC0832为8位分辨率A/D转换芯片,其最高分辨达256级,可以适应一般的模拟量转换要求。
其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在0~5V之间。
芯片转换时间仅为32μS,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。
独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便。
通过DI数据输入端,可以轻易的实现通道功能的选择。
正常情况下ADC0832与单片机的接口应为4条数据线,分别是CS、CLK、DO、DI 。
但由于DO 端与DI 端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将DO 和DI 并联在一根数据线上使用。
为了提高单片机系统I/O 口线的利用效率,利用单片机AT87C51的串行口和串行移位寄存器74LS164扩展输出多位LED 显示。
键盘是单片机系统实现人机对话的常用输入设备。
我们通过键盘,向计算机系统输入各种数据和命令,亦可通过使用键盘,让单片机系统处于预定的功能状态。
要想实现压力的显示需硬件与软件配合,最终调试出来。
三、 压力传感器的应用压力是工业生产中的重要参数,如高压容器的压力超过额定值时便是不安全的,必须进行测量和控制。
在某些工业生产过程中,压力还直接影响产品的质量和生产效率,如生产合成氨时,氮和氢不仅须在一定的压力下合成,而且压力的大小直接影响产量高低。
此外,在一定的条件下,测量压力还可间接得出温度、流量和液位等参数。
1643年,意大利人托里拆利首先测定标准的大气压力值为760毫米汞柱,奠定了液柱式压力测量仪表的基础。
1847年,法国人波登制成波登管压力表,由于结构简单、实用,很快在工业中获得广泛应用,一直是常用的压力测量仪表。
二十世纪上半叶出现了远传压力表和电接点压力表,从而解决了压力测量值的远距离传送和压力的报警、控制等问题。
60年代以后,为适应工业控制、航空工业和医学测试等方面的要求,压力测量仪表日益向体积轻巧、耐高温、耐冲击、耐振动和数字显示等方向发展。
压力是过程生产中四大重要参数之一,它在检测生产过程能否完全可靠正常运行的重要参数指标,尤其在化工生产过程中压力这一参数更显得尤为重要。
在化工生产过程中,压力即影响物料平衡,也影响化学反应速度,是标志生产过程能否正常进行的重要参数。
安全生产的需要,从确保安全生产的角度,压力检测也是非常重要的。
如:确保压力容器内的压力在安全指标之内,确保易燃易爆介质的压力不超标。
在其他工业生产中压力检测于控制也非常重要。
常可见到一些工业装置上都有压力表。
如:汽包压力,当压力过高容易爆炸,压力低动力不足;还有炉膛压力;一般维持在0mm O H 2,高了炉门缝冒烟尘,低了膛内出现负压降低温度。
若维持在10 mm O,节能20%。
H2压力也是间接测量物位的手段,用孔板测量流量仅能产生差压,而这个差压考压力检测的方法来测取才能最终求出流量。
液面的高度可以靠测取压力的大小来表示。
总之,压力检测是一般成产过程所不可缺少的环节,只有按工艺要求保持压力的稳定,才能维持生产的正常进行。
所以压力准确测量在实际过程是非常重要的,压力传感器应用很广泛。