含参量正常积分34页PPT
含参变量的正常积分

x
lim d f (x x, y) f (x, y) dy
x0 c
x
由拉格朗日中值定理
lim
x0
d
c fx (x x, y)dy
fx在=R上==连=续=,由 ==定理1
d
c
lim
x0
fx(x
x, y)dy
d
c fx (x, y)dy
固定x, 作积分
d
I (x) f (x, y)dy
c
(1)
此积分是x的函数, 其定义域为x [a,b],
则称此函数为定义在[a,b]上
y
含参量x的(正常)积分,
d
R
简称含参量积分.
c
oa
x bx
一般地,设有二元函数f (x, y),
如果可积
(x, y) G (x, y) a x b,c(x) y d (x)
形区域R [a,b][c,d]上连续,则函数
JI ((xy))
db ca
ff
((xx,,
yy))ddyx
在[ca, db]上连续。
注:(1). 设 f (x, y)在R [a,b][c,d]上连续,则
x0 [a,b],有 :
d
d
lim f (x, y)dy lim f (x, y)dy
d
d
f
(x, y)dy
d
f (x, y)dy
dx c
c x
证明分析 : x [a,b],设x充分小, x x [a,b],
要证, I (x)在[a,b]上可微,且
I(x)
《数学分析》第十九章 含参变量积分

0, 0,(x1, y1), (x2, y2 ) R,当 x1 x2 , y1 y2 ,
有 f (x1, y1) f (x2, y2) .
故当x 时有
d
I(x x) - I(x) c f (x x, y) f (x, y)dy. d c dx (d c).
d
I(x) c f (x, y)dy, x [a,b]
称为含参量 x 的正常积分,或简称含参量积分.
类似地称
b
J ( y) a f (x, y) dx
为含参变量 y 的积分。
I ( y) 是一个由含参变量的积分所确定的函数,下面我
们研究这种函数的连续性,可微性与可积性。
2、 含参量正常积分的性质:
F2( y0 )
lim
y y0
b( y) y
b( y0 ) y0
f
(x,
y)
b( y0 )
f
(b( y0 ),
y0 )
同样可以证明
定理证毕。
F3( y0 ) a( y0 ) f (a( y0 ), y0 )
例1:
求
1 dx
lim
0
1 x2 2.
I
' 2
(u)
d du
d
H (u, y)dy
c
d
c Hu (u, y)dy
d c
f (u, y)dy I (u).
从而I1'
(u
)
I
' 2
(u),
含参变量积分.ppt

定理2 如果函数 f ( x, y) 在矩形
R(a x b, y )
上连续,则
b
b
a [ f ( x, y)dy]dx [a f ( x, y)dx]dy.
公式(2)也可写成
b
b
a dx f ( x, y)dy dya f ( x, y)dx.
(2)
(2)
要点是:积分号与积分号的互换.
( xx )
( x)
f ( x x, y)dy f ( x, y)dy.
xx ( xx )
(x)f ( x ຫໍສະໝຸດ x, y)dy( xx )
(x)
( x)
f ( x x, y)dy f ( x x, y)dy
( xx )
(x)
( xx )
f ( x x, y)dy,
R(a x b, b )
上连续,那么由积分
(
x)
f
(
x,
y)dy
(a
x b)
确定的函数 ( x)在 [a, b]上也连续.
同理
x
x
x
f
x,
ydy
3
也是参变量 x的函数.
要点是:积分号与极限号的互换.
高等数学(下)
例1 求
lim 1 e xydx.
y0 0
高等数学(下)
定理1证 设 x 和 x x 是[a,b]上的两点,则 ( x x) ( x)
x 0
高等数学(下)
证 因为 ( x) lim ( x x) ( x) ,
x0
x
为了求 ( x),先利用公式(1)作出增量之比
( x x) ( x)
x
f ( x x, y) x
数学《含参量积分》讲义

第十九章 含参量积分§1 含参量正常积分设:[,][,]f a b c d R ⨯→连续, 形如(,)dc f x y dy ⎰的积分, 称为含参量(x 的)正常积分. 若[,]x a b ∀∈,(,)dcf x y dy ⎰存在 (固定x 时, (,)f x y 关于y 可积), 则由()(,)dcx f x y dy ϕ=⎰([,]x a b ∈)定义了[,]a b 上的函数ϕ. 1) ϕ的连续性由于[,]a b 是闭区间,考察连续性就是考察一致连续性, 即需证 12 0,0,||:x x εδδ∀>∃>-<121212|()()||(,)(,)||(,)(,)|dddcccx x f x y dy f x y dy f x y f x y dy ϕϕε-=-≤-<⎰⎰⎰,只需1212[,],||: |(,)(,)|y c d x x f x y f x y d cεδ∀∈-<-<-,而f 在[,][,]a b c d ⨯上连续,则其在[,][,]a b c d ⨯上也一致连续. 因而121212120,0,,[,],,[,], ||,||:x x a b y y c d x x y y εδδδ∀>∃>∀∈∀∈-<-<1122|(,)(,)|f x y f x y d cε-<-特别地, 121212[,],,[,],|-|<: |(,)(,)|y c d x x a b x x f x y f x y d cεδ∀∈∈-<-.故有下面的结论.定理1 若f 在[,][,]a b c d ⨯上连续, 则函数()(,)dcx f x y dy ϕ=⎰在[,]a b 上连续, 即()lim (,)lim ()()(,)lim (,)d d dccc x xx xx xx f x y dy x x f x y dy f x y dy ϕϕϕ→→→=====⎰⎰⎰.2) ϕ的可导性 设[,],[,]x a b x h a b ∈+∈, 则()()(,)(,)(,), 01(,) (: )dc dx h h cdx x cx h x f x h y f x y dyhhf x h y dy f x y dy f ϕϕθθ+-+-==+⋅<<→⎰⎰⎰条件连续定理2 若f 与x f 在[,][,]a b c d ⨯上连续, 则函数()(,) ([,])dcx f x y dy x a b ϕ=∈⎰在[,]a b 上连续可导, 且()(,)dx cx f x y dy ϕ'=⎰.更一般地, 我们有定理3 设f 在[,][,]a b c d ⨯上连续, 则由(,)(,), [,]tcx t f x y dy t c d ψ=∈⎰定义的ψ在[,][,]a b c d ⨯上连续, 且当x f 连续时, 1C ψ∈(因而ψ可微) . 定理4 设f 在[,][,]a b c d ⨯上连续, 函数:[,][,]a b c d β→连续, 则函数()()(,) , [,]x cx f x y dy x a b βϕ=∈⎰连续. 进一步, 若x f 连续, β可微, 则ϕ可导. 且()'()(,)+(,())()x x cx f x y dy f x x x βϕββ'=⋅⎰定理5 若,,f αβ连续, 则函数()()()(,), [,]x x x f x y dy x a b βαϕ=∈⎰连续. 进一步, 若x f 连续, ,αβ可导, 则ϕ可导, 且()()()(,)+(,()) ()(,()) ()x x x x x f x y dy f x x x f x x x βαϕββαα'''=⋅-⋅⎰注 上述定理中[,]a b 均可改为(,)a b 或任意区间.3) ϕ的可积性定理6 若(,)f x y 在矩形域[,][,]a b c d ⨯上连续, 则()(,), ([,])d cx f x y dy x a b ϕ=∈⎰与()(,), ([,])bay f x y dx y c d ψ=∈⎰分别在[,]a b 和[,]c d 上可积.引入累次积分及记号(,)[(,)],(,)[(,)]bdb da cacdbd bcacadx f x y dy f x y dy dx dy f x y dx f x y dxdy∆∆==⎰⎰⎰⎰⎰⎰⎰⎰.定理7 (累次积分定理, 交换积分次序) 若(,)f x y 在[,][,]a b c d ⨯上连续, 则(,)(,)bd d baccadx f x y dy dy f x y dx =⎰⎰⎰⎰例1 1) 1220lim 14x dx x ααπα+→=++⎰.2) 11222223220011111arctan (0)arctan +()22(1)dx dx x x ααααααααα=≠⇒=+++⎰⎰.3) 设f 连续, 10()()()xn x f t x t dt ϕ-=-⎰, 求()n ϕ.4)设cos sin ()x xF x e =⎰, 求'F .5) 设(,)()()xy x y F x y x yz f z dz =-⎰, f 可微, 求xy F .例2 求1(,), (0)ln b ax x I a b dx b a x-=>>⎰.例3 求120ln(1)1x I dx x +=+⎰例4 讨论122()()yf x F y dx x y =+⎰的连续性, 其中f 为[0,1]上的正值连续函数.例5 试分别求累次积分221122200()x y dx dy x y -+⎰⎰与221122200()x y dy dx x y -+⎰⎰.§2 含参量反常积分设函数(,)f x y 定义在无界区域[,][,)a b c ⨯+∞上. 若对任一固定的[,]x a b ∈, 反常积分(,)cf x y dy +∞⎰收敛, 则其值为定义在[,]a b 上(关于x )的函数. 记为()x ϕ.即 ()(,) [,]cx f x y dy x a b ϕ+∞=∈⎰称为定义在[,]a b 上的含参量x 的无穷限反常积分, 简称含参量反常积分. 取1,,n A c A =↑+∞ 则 1()(,)() n ndA n A nx f x y dy x ϕϕ+==∑∑⎰.因而我们可仿照讨论函数项级数来讨论反常积分. 先比较一下函数项级数与反常积分性质判别方法x E ∈, )x 收敛)x =∑一致收敛(nx ϕ'∑x E ∈, ,)x y dy )cx dy +∞=⎰一致收敛b 上可微,)x y dy (cf x +∞bdx dx =⎰例1 证Cauchy 准则例2 反常积分()(,)cx f x y dy ϕ+∞=⎰在[,]a b 上一致收敛⇔对任一趋于+∞的递增数列1{},()n A A c = 函数项级数111(,)()n nA n A n n f x y dy x ϕ++∞+∞===∑∑⎰在[,]a b 上一致收敛.例3 证明可微性.例4 证明Abel 和Dirichlet 判别法.例5 1) 证明: 含参量积分2cos 1xydx x+∞+⎰在R 上一致收敛.2) 证明:sin xydy y+∞⎰在[,),(0)δδ+∞>上一致收敛,但在(0,)+∞上不一致收敛. 3) 证明: 11sin ,(0)y x dx y x+∞<⎰在(,],(0)δδ-∞<上一致收敛, 但在(,0)-∞上不一致收敛.4) 证明: 若(,)f x y 在[,][,)a b c ⨯+∞上连续,(,)cf x y dy +∞⎰在[,)a b 上收敛,(,)cf b y dy +∞⎰发散, 则(,)cf x y dy +∞⎰在[,)a b 上不一致收敛.例6 证明: 0sin ()kxxI k e dx x+∞-=⎰在[0,)+∞上连续, 并求()I k 的值.例7 求2cos cos (,),(,0)x xI dx xαβαβαβ+∞-=>⎰.例8 求证: 222400()cos (xx exdx edx γϕγγ+∞+∞---==⇒=⎰⎰.例9 (198P 定理13) (了解,不证明)设(,)f x y 定义在[,)[,)a c +∞⨯+∞上连续. 若 1)(,)af x y dx +∞⎰关于y 在任何闭区间[,]c d 上一致收敛,(,)cf x y dy +∞⎰关于x 在任何闭区间[,]a b 上一致收敛;2) 积分|(,)|acdx f x y dy +∞+∞⎰⎰与|(,)|cady f x y dx +∞+∞⎰⎰中有一个收敛, 则另一个积分也收敛, 且(,)(,)accadx f x y dy dy f x y dx +∞+∞+∞+∞=⎰⎰⎰⎰§3 Euler 积分含参量积分 10(), 0s x s x e dx s +∞--Γ=>⎰1110(,)(1), ,0p q B p q x x dx p q --=->⎰称为Euler 积分, Gamma 函数, Beta 函数. 一、Γ函数11101()()()s x s x s x e dx x e dx I s J s +∞----Γ=+=+⎰⎰对()I s : 1s ≥时, 正常积分; 0<1s <时, 收敛的瑕积分. 对()J s : 0s >时, 收敛的反常积分(无限). 故0s >, ()s Γ有定义.1. ()s Γ在定义域(0,)+∞上连续可导.对任何闭区间[,],(0)a b a >, 对()I s , 当01x ≤≤时, 从而()I s 在闭区间[,]a b 上一致收敛. 而对于()J s , 当1x ≥时, 11s xb xx e x e ----≤, 由于110b x x e dx --⎰收敛, 从而()J s 在闭区间[,]a b 上一致收敛. 从而()s Γ在0s >上连续.又1100()ln s xs x x e dx x e dx s+∞+∞----∂=∂⎰⎰, 类似可证在[,]a b 上一致收敛. 从而()s Γ在[,]a b 上可导. 故()s Γ在0s >上可导. 且10()10()ln , 0()(ln ), 0s x n s x n s x e xdx s s x e x dx s +∞--+∞--'Γ=>Γ=>⎰⎰.2. 0(1)()(1)!!x s s s n n e dx n +∞-Γ+=⋅Γ⇒Γ+==⎰3. Γ图像4. Γ的延拓定义 (1)(), 10, (0,)s s s s n sΓ+Γ=-<<≠-5. Γ的其他形式22210, ()2, (0)s y x y s y e dy s +∞--=Γ=>⎰10, (), (0,0)s s py x py s p y e dy s p +∞--=Γ=>>⎰二、B 函数1. (,)B p q 在定义域 0,0p q >>上连续.1) 定义域 0,0p q >>. 1,1p q ≥≥为正常积分. 当01,1p q <<≥时, 0为瑕点,1()(0)p f x xx -→. 而当1q <时, 0,1为瑕点,1112102()()()f x dx f x dx f x dx =+⎰⎰⎰,11()(0),()(1)(1)p q f x x x f x x x --→-→. 从而 0p >时, (,),(0)B p q q >收敛.2) 在 0,0p q >>连续.0,0p q ∀>>, 1111(1)(1), (,)p q p q x x x x p p q q -----≤-≥≥ (,)B p q ⇒在,p p q q ≥≥上一致收敛.1. 对称性 (,)(,)B p q B q p =作变换1x y =-得 1111110(,)(1)(1)(,)p q p q B p q x x dx y y dy B q p ----=-=-=⎰⎰2. 递推公式 1(,)(,1) (0,1)1q B p q B p q p q p q -=->>+-1(,)(1,) (1,0)1p B p q B p q p q p q -=->>+-(1)(1)(,)(1,1) (1,1)(1)(2)p q B p q B p q p q p q p q --=-->>+-+-3. 其他形式2212120cos , (,)sin cos q p x B p q d πϕϕϕϕ--==⎰10, (,)1(1)p p q y y x B p q dy y y -+∞+==++⎰ 11101, (,)(1)p q p q y y x B p q dy t y --++==+⎰三、Γ函数与B 函数的关系 1) ()()(,)()p q B p q p q Γ⋅Γ=Γ+2) (,1)()(1)sin B p p p p p ππ-=Γ⋅Γ-=3)1()2Γ=(120111()(,)222B πΓ===⎰) 11()2()22Γ-=-Γ=-321()()232Γ-=-Γ-=1()2n Γ+=1()2n Γ-= 4) 20111(,)sin cos (,), (,1)222p q p q I p q x xdx B p q π++==>-⎰ 特别地, 0,1q p =>-时,20(21)!!111()()()22(2)!!1222sin (2)!!22(1)()22(21)!!p n p p p nn xdx p p n p np n ππ-⎧++Γ⋅ΓΓ⎪=⎪===⎨≠⎪Γ+Γ⎪+⎩⎰三、利用Euler 积分求积分 例 1 1)6111()(1)16663dx x π+∞=ΓΓ-=+⎰2)10113(,)4444B ==⎰习 题 课例 1 证明: 10()(,)F y f x y dy =⎰连续, 这里1(,)01x y f x y x y x y>⎧⎪==⎨⎪-<⎩.例 2 求22222220ln(sin cos ), (0)(0,0)a x b x dx a b a b π++≠>>⎰例 3 求101sin(ln ), (0)ln b ax x dx b a x x->>⎰例 4 证明: 0xy xe dy +∞-⎰在[,],(0)a b a >上一致收敛, 但在(0,]b 上不一致收敛.例 5 求22222(0)a x b x ee dx b a x --+∞->>⎰例 6 1) 对极限202xy xye dy +∞-⎰能否进行极限与积分运算次序.2) 2130(22)xy dy y xy e dx +∞--⎰⎰能否交换积分次序.3) 对230()xy F x x edy +∞-=⎰能否交换积分与求导次序.例 7 设10()(,)()u x k x y v y dy =⎰,其中(1)(,)(1)x y x y k x y y x x y-≤⎧=⎨->⎩,v 为[0,1]上的连续函数, 求证: ()()u x v x ''=-.。
数学分析(下)19-1含参量正常积分

§1含参量正常积分对多元函数其中的一个自变量进行积分形成的函数称为含参量积分, 它可用来构造新的非初等函数. 含参量积分包含正常积分和非正常积分两种形式.一、含参量正常积分的定义二、含参量正常积分的连续性三、含参量正常积分的可微性四、含参量正常积分的可积性五、例题返回一、含参量正常积分的定义(,)f x y [,][,]R a b c d =´设是定义在矩形区域上的定义在[,]c d 上以y 为自变量的一元函数. 倘若这时(,)f x y [,]c d 在上可积, 则其积分值()(,)d ,[,](1)d c I x f x y y x a b =Îò是定义在[,]a b 上的函数.一般地, 设(,)f x y 为定义在区域二元函数.当x 取[,]a b 上的定值时,函数是(,)f x yG数在闭区间[(),()]c x d x 上可积, 则其积分值()()()(,)d ,[,] (2)d x c x F x f x y y x a b =Îò是定义在[,]a b 上的函数.()I x ()F x 用积分形式(1) 和(2) 所定义的这函数与通称为定义在[,]a b 上的含参量x 的(正常)积分, 或简称为含参量积分.二、含参量正常积分的连续性()I x 的连续性(,)f x y 定理19.1() 若二元函数在矩形区域[,][,]R a b c d =´上连续, 则函数=ò()(,)d dc I x f x y y 在[ a , b ]上连续.证设对充分小的[,],x a b Î,[,]x x x a b +Î有D D (若x 为区间的端点,则仅考虑00x x D D ><或), 于是()()[(,)(,)]d ,(3)dc I x x I x f x x y f x y y +-=+-òD D 由于(,)f x y 在有界闭区域R 上连续, 从而一致连续,0,e >0,d >即对任意总存在对R 内任意两点1122(,)(,)x y x y 与,只要1212||,||,x x y y d d -<-<就有-<1122|(,)(,)|. (4)f x y f x y e 所以由(3), (4)可得, ||,x d D 当时<+-£+-ò|()()||(,)(,)|d dc I x x I x f x x y f x y yD D d ().d c x d c e e <=-ò即I (x ) 在[,]a b 上连续.同理可证:若(,)f x y 在矩形区域R 上连续,则含参量y 的积分=ò()(,)d (5)b a J y f x y x 在[c ,d ]上连续.注1对于定理19.1的结论也可以写成如下的形式:若(,)f x y 在矩形区域R 上连续,则对任何Î0[,],x a b 都有®®=òò00lim (,)d lim (,)d .d d c c x x x x f x y y f x y y 这个结论表明,定义在矩形区域上的连续函数,其极限运算与积分运算的顺序是可以交换的.[,][,][,],a b c d c d ´Á´上连续可改为在上连续其中Á为任意区间.注2 由于连续性是局部性质,定理19.1中条件f 在()F x 的连续性(,)f x y 定理19.2() 若二元函数在区域=££££{(,)|()(),}G x y c x y d x a x b 上连续, 其中c (x ), d (x )为[,]a b 上的连续函数, 则函数=ò()()()(,)d (6)d x c x F x f x y y在[,]a b 上连续.证对积分(6)用换元积分法, 令()(()()).y c x t d x c x =+-当y 在c (x )与d (x )之间取值时, t 在[0, 1] 上取值,且d (()())d .y d x c x t =-所以从(6)式可得=ò()()()(,)d d x c x F x f x y y 10(,()(()()))(()())d .f x c x t d x c x d x c x t =+--ò由于被积函数+--(,()(()()))(()())f x c x t d x c x d x c x 在矩形区域[,][0,1]a b ´上连续,由定理19.1得积分(6)所确定的函数F (x ) 在[a , b ]连续.Dx x a b +Î[,](,)(,),f x x y f x y q e D =+-<d d注由于可微性也是局部性质, 定理19.3 中条件f 与[,][,][,],x f a b c d c d ´Á´在上连续可改为在上连续其中Á为任意区间.四、含参量正常积分的可积性由定理19.1与定理19.2推得:()I x 的可积性(,)f x y 定理19.5() 若在矩形区域[,][,]R a b c d =´[,]a b 上连续,则I (x )与J (x )分别在和[,]c d 上可积.这就是说: 在(,)f x y 连续性假设下, 同时存在两个求积顺序不同的积分:éùêúëûòò(,)d d bda c f x y y x éùêúëûòò(,)d d .dbca f x y x y 与为书写简便起见, 今后将上述两个积分写作òòd (,)d bdacx f x y yòòd (,)d .dbcay f x y x 与前者表示(,)f x y 先对y 求积然后对x 求积, 后者则表示求积顺序相反. 它们统称为累次积分.在(,)f x y 连续性假设下,累次积分与求积顺序无关.(,)f x y =´[,][,]R a b c d 定理19.6若在矩形区域上连续, 则d (,)d d (,)d .(8)bddbaccax f x y y y f x y x =òòòò证记定理19.3,五、例题ln(1)xy +例3计算积分x x1a a+æö另一方面解由于(9)中被积函数1(,)()()n F x t x t f t -=-以及同理()()().n x f x j =()x j 于是附带说明:当x = 0 时,及复习思考题()(,)d ,dc I x f x y x =ò()I x [,)a +¥能否推得在上一致连续?。
数学分析PPT课件第四版华东师大研制 第19章 含参量积分

则函数
d
I( x) c f ( x, y)dy
在[ a, b]上可微, 且
d
dx
d
d
c
f ( x, y)dy c
fx ( x, y)dy .
前页 后页 返回
证 对于[a, b]内任意一点x, 设 x x [a, b] (若 x为 区间的端点, 则讨论单侧函数), 则
I( x x) I( x) d f ( x x, y) f ( x, y)dy .
(1)
是定义在 [ a,b]上的函数.
一般地, 设 f ( x, y)为定义在区域
前页 后页 返回
G {( x, y) | c( x) y d( x) ,a x b}
上的二元函数, 其中c (x), d (x)为定义在[a, b]上的连
续函数(图19-1),
y
y d(x)
G
y c(x)
限运算与积分运算的顺序是可以交换的.
注2 由于连续性是局部性质, 定理19.1中条件 f 在 [a,b][c,d ] 上连续可改为在 [c,d ] 上连续, 其中 为任意区间.
前页 后页 返回
定理19.2 ( F ( x)的连续性 ) 若二元函数 f ( x, y)在区 域 G {( x, y) | c( x) y d( x) ,a x b}上连续, 其
前页 后页 返回
dy (d( x) c( x))dt . 所以从(6)式可得
d(x)
F ( x) f ( x, y)dy c( x) 1 0 f ( x, c( x) t(d( x) c( x)))(d( x) c( x))dt.
由于被积函数 f ( x, c( x) t(d( x) c( x)))(d( x) c( x))
第十八章 含参量积分

第十八章 含参量积分第一节 含参量正常积分从本章开始我们讨论多元函数的各种积分问题,首先研究含参量积分.设()y x f ,是定义在矩形区域[][]d c b a R ,,⨯=上的二元函数.当x 取[]b a ,上某定值时,函数()y x f ,则是定义在[]d c ,上以y 为自变量的一元函数.倘若这时()y x f ,在[]d c ,上可积分,则其积分值是x 在[]b a ,上取值的函数,记它为()x I ,就有()()[].,,,⎰=dcb a x dy y x f x I (1)一般地,设()y x f ,为定义在区域()()(){}b x a x d y x c y x G ≤≤≤≤=,|,上的二元函数,其中()x c ,()x d 为定义在[]b a ,上的连续函数(图18-1),若对于[]b a ,上每一固定的x 值,()y x f ,作为y 的函数在闭区间()[()]x d x c ,上可积分,则其积分值是x 在[]b a ,上取值的函数,记作)(x F 时,就有 )(x F ()()()[].,,, b a x dy y x f x d xc ∈=⎰ (2)图18-1用积分形式所定义的这两个函数(1)与(2),通常为定义在[]b a ,上的含参量x 的(正常)积分,或简称含参量积分.下面讨论含参量积分的连续性、可微性与可积性.定理18-1(连续性) 若二元函数()y x f ,在矩形区域[][]d c b a R ,,⨯=上连续,则函数 ()()dy y x f dc⎰=,x I在[]b a ,上连续.证 设[]b a x ,∈,对充分小的x ∆,有[]b a x x ,∈∆+(若x 为区间的端点,则仅考虑(0>∆x 或0<∆x ),于是 ()()()[]⎰-∆+=-∆+dcdy y x f y x x f x I x x I .,,)( (3)由于()y x f ,在有界闭域R 上连续,从而一致连续,即对任给的正数ε,总存在某个整数δ,对R 内任意两点()11,y x 与()22,y x ,只要,||,||2121δδ<-<-y y x x就有()().|,|2211ε<--y x f y x f (4) 所以由(3),(4)可推得;当.||ε<∆x()()()()()⎰⎰-=<-∆+≤-∆+dcd cc d dx dy y x f y x x f x I x x I .|,,|||εε这就证得()x I 在[]b a ,上连续.同理可证:若()y x f ,在矩形区域R 上连续,则含参量y 的积分()()dy y x f y J ba⎰=, (5)在()d c ,上连续.对于定理18-1的结论也可以写成如下的形式:若()y x f ,在矩形区域R 上连续,则对任何[]b a x ,0∈,都有()()⎰⎰→→=dcdc x x x x dy y x f dy y x f |,lim ,lim这个结论表明,定义在矩形区域上的连续函数,其极限运算与积分运算的顺序是可以交换的. 定理18-2(连续性) 设二元函数()y x f ,在区域(){()()}b x a x d y x c y x G ≤≤≤≤=,|,上连续,其中()x c ,()x d 为[]b a ,上连续函数,则函数()()()()dy y x f x F x d x c ⎰=, (6)在[]b a ,上连续证 对积分(6)用换元积分法,令()()()().x c x d t x c y -+=当y 在()x c 与()x d 取值时,t 在[]1,0上取值,且()(()).dt x c x d dy -=所以从(6)式可得()()()()dy y x f x F x d x c ⎰=,=()()()()()()()()dt x c x d x c x d t x c x f --+⎰10,.由于被积函数()()()()()()x c x d x c x d t x c x f --+])(,[在矩形区域[][]1,0,⨯b a 上连续,由定理18-1得积分(6)所确定的函数()x F 在[]b a ,上连续.下面讨论含参量积分的求导与积分运算的可交换性. 定理18-3(可微性) 若函数()y x f ,与其偏导数()y x f x,∂∂都在矩形区域[][]d c b a R ,,⨯=上连续,则()()dy y x f x I dc⎰=,在[]b a ,上可微,且()()dy y x f x dy y x f dx d d c dc⎰⎰∂∂=,,. 证 对于[]b a ,内任意一点x ,设[]b a x x ,∈∆+(若x 为区间端点,则讨论单侧导数),则()()()()dy xy x f y x x f x x I x x I d c ⎰∆-∆+=∆-∆+,,由微分学的拉格朗日中值定理及()y x f ,在有界闭域R 上连续(从而一致连续),对任给正数ε,存在正数δ,只要当δ<∆x 时,就有εθ<-∆+=),(),(y x f y x x f x x ),(),(),(y x f xy x f y x x f x -∆-∆+其中)1,0(∈θ.因此dyy x f xy x f y x x f dy y x f f x Ix d cx d c ),(),(),(),(-∆-∆+≤-∆∆⎰⎰).(c d -<ε这就证得对一切[]b a x ,∈,有.),()(dy y x f x x I d dd c x⎰∂∂=定理18-4(可微性)设),(),,(y x f y x f x 在[][]q p b a R ,,⨯=上连续,)(),(x d x c 为定义在[]b a ,上其值含于[]q p ,内的可微函数,则函数⎰=)()(),()(x d x c dy y x f x F在[]b a ,上可微,且).())(,()())(,(),()()()(x c x c x f x d x d x f dy y x f x F x d x c x '-'+='⎰(7)证 把)(x F 看作复合函数:).(),(,),(),,()(x d d x c c dy y x f d c x H x F dc====⎰由复合函数求导法则及活动上限积分的求导法则,有).())(,()())(,(),()()()(x c x c x f x d x d x f dy y x f dx dd d H dx dc c H x H x F dx d x d x c x '-'+=∂∂+∂∂+∂∂=⎰关于函数)(x I 和)(x F 的可积性,可由定理18-1与定理18-2推得:定理18-5(可积性) 若),(y x f 在矩形区域[][]d c b a R ,,⨯=上连续,则)(x I 和)(y J 分别在[]b a ,和[]d c ,可积.这就是说:在),(y x f 连续性假设下,同时存在两个求积顺序不同的积分:dx dy y x f ba d c ⎰⎰⎥⎦⎤⎢⎣⎡),(与dy dx y x f d cb a ⎰⎰⎥⎦⎤⎢⎣⎡),(. 为书写简便起见,今后将上述两个积分写作dy y x f dx bad c⎰⎰),(和dx y x f dy d c ba ⎰⎰),(前者表示),(y x f 先对y 求积然后对x 求积,后者则求积顺序相反,它们统称为累次积分,或更确切地称为二次积分.下面的定理指出,在),(y x f 连续性假设下,累次积分与求积顺序无关. 定理18-6 若),(y x f 在矩形区域[][]d c b a R ,,⨯=上连续,则 dy y x f dx bad c⎰⎰),(=dx y x f dy d c ba ⎰⎰),(. (8)证 记⎰⎰=ua dcdy y x f dx u I ,),()(1⎰⎰=dcuadx y x f dy u I ,),()(2其中[]b a u ,∈,现在分别求)(1u I 与)(2u I 的导数。
数学分析 第十九章 课件 含参变量的积分

d c
| x | ,就有 | f ( x x, y ) f ( x. y ) | 因此只要
y [c, d ] 都成立,因而
| I ( x x) I ( x) | | f ( x + x) f ( x, y ) | dy
c d
d c
d
,对
d c
即
I ( x, u ) 在 ( x0 , u0 ) 点连续,由 I ( x0 , u0 ) [a, b] [c, d ]
的任意性,便证得 I ( x, u ) 在[a, b] [c, d ]连续。 (2)由微积分基本定理,I 对u有连续的偏导数
I f ( x, u ) u
又由定理19.2,I对x也有连续的偏导数
注意到 I(0)=0,故
I (1) I (1) I (0) I ( ) d
0
1
1 1 [ ln 2 ln(1 )]d 2 0 1 4 2 1 ln(1 ) 1 1 2 [ ln(1 ) ln 2 arctan ]| d 0 0 1 2 8 2
0
dx 1 cos x 0
1 arctan t 1 0 1 2 1 2 2
因此
I ( ) 1 2 1 2 (1 1 2 )
积分得
I ( )
d 1 2 (1 1 2 )
则 F ( x)
d ( x)
c( x)
f ( x, y)dy 在[a, b]连续。
证明: 令u=d (x) ,v=c (x), I ( x, u ) f ( x, y)dy