高中物理万有引力与航天模拟试题

合集下载

高中物理万有引力与航天专项训练100(附答案)及解析

高中物理万有引力与航天专项训练100(附答案)及解析

高中物理万有引力与航天专项训练100(附答案)及解析一、高中物理精讲专题测试万有引力与航天1.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t=则由2v mg m R=求得:星球的第一宇宙速度v ==()2由222Mm hG mg m Rt==有:222hR M Gt= 所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2.宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个 星体的质量均为 m ,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为 G , 则: (1)直线三星系统中星体做囿周运动的周期为多少? (2)三角形三星系统中每颗星做囿周运动的角速度为多少?【答案】(1)345LGm233Gm L 【解析】 【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期; (2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度; 【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:222222()(2)Gm Gm m L L L Tπ+= 345L T Gm∴=(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗星,满足:2222cos30()cos30LGm m L ω︒=︒解得:33Gm Lω3.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T,距离地面的高度为h2.视地球为质量分布均匀的正球体,请比较h1和h2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)2312=4GMTh Rπ-(3)h1= h2【解析】【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度;(2)根据万有引力提供向心力可以求出静止轨道到地面的高度;(3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度;【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω(2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()MmG m R hR h T++解得:2312=4πGMTh R-(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T,根据牛顿运动定律,22222=()()()MmG m R hR h Tπ++解得:23224GMTh Rπ因此h1= h2.故本题答案是:(1)2π=T ω;(2)2312=4GMTh R π- (3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.4.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:v=12()6F F Rm -(3)在星球表面:2GMmmg R= ④ 星球密度:MV ρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.5.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;02tanav R t ;(4)02tan Rt v α【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R = 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.6.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)地球同步卫星的线速度大小.【答案】(1) GgR M 2=(2)v = 【解析】 【详解】(1)两极的物体受到的重力等于万有引力,则2GMmmg R = 解得GgR M 2=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则()2277GMmv m RR =而2GM gR =,解得7gRv =.7.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。

高中物理万有引力与航天题20套(带答案)

高中物理万有引力与航天题20套(带答案)

高中物理万有引力与航天题20套(带答案)一、高中物理精讲专题测试万有引力与航天1.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)【答案】【解析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为w1,w2.根据题意有w1=w2 ① (1分)r1+r2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P点,远地点为同步圆轨道Ⅲ上的Q点.到达远地点Q时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G,地球质量为M,地球半径为R,飞船质量为m,同步轨道距地面高度为h.当卫星距离地心的距离为r时,地球与卫星组成的系统的引力势能为p GMmEr=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.4.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=5.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMTh R π= 【解析】【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-6.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.7.一名宇航员抵达一半径为R 的星球表面后,为了测定该星球的质量,做下实验:将一个小球从该星球表面某位置以初速度v 竖直向上抛出,小球在空中运动一间后又落回原抛出位置,测得小球在空中运动的时间为t ,已知万有引力恒量为G ,不计阻力,试根据题中所提供的条件和测量结果,求:(1)该星球表面的“重力”加速度g 的大小; (2)该星球的质量M ;(3)如果在该星球上发射一颗围绕该星球做匀速圆周运动的卫星,则该卫星运行周期T 为多大?【答案】(1)2v g t =(2)22vR M Gt=(3)2T π=【解析】 【详解】(1)由运动学公式得:2vt g=解得该星球表面的“重力”加速度的大小 2v g t=(2)质量为m 的物体在该星球表面上受到的万有引力近似等于物体受到的重力,则对该星球表面上的物体,由牛顿第二定律和万有引力定律得:mg =2mM GR解得该星球的质量为 22vR M Gt= (3)当某个质量为m′的卫星做匀速圆周运动的半径等于该星球的半径R 时,该卫星运行的周期T 最小,则由牛顿第二定律和万有引力定律2224m M m RG R Tπ''=解得该卫星运行的最小周期 22Rt T vπ= 【点睛】重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.本题要求学生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向心力由万有引力提供.8.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr =将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算9.“嫦娥四号”卫星从地球经地一月转移轨道,在月球附近制动后进入环月轨道,然后以大小为v 的速度绕月球表面做匀速圆周运动,测出其绕月球运动的周期为T ,已知引力常量G ,月球的半径R 未知,求: (1)月球表面的重力加速度大小;(2)月球的平均密度。

(必考题)高中物理必修二第七章《万有引力与宇宙航行》测试题(包含答案解析)

(必考题)高中物理必修二第七章《万有引力与宇宙航行》测试题(包含答案解析)

一、选择题1.我国的“神舟”系列航天飞船的成功发射和顺利返回,显示了我国航天事业取得的巨大成就。

已知地球的质量为M,引力常量为G,飞船的质量为m,设飞船绕地球做匀速圆周运动的轨道半径为r,则()ABC.飞船在此圆轨道上运行的周期为2D2.“木卫二”在离木星表面高h处绕木星近似做匀速圆周运动,其公转周期为T,把木星看作一质量分布均匀的球体,木星的半径为R,万有引力常量为G。

若有另一卫星绕木星表面附近做匀速圆周运动,则木星的质量和另一卫星的线速度大小分别为()A.()3222R hGTπ+B.()3222R hGTπ+C.()3224R hGTπ+D.()3224R hGTπ+3.2020年10月22日,俄“联盟MS-16”载人飞船已从国际空间站返回地球,在哈萨克斯坦着陆。

若载人飞船绕地球做圆周运动的周期为090minT=,地球半径为R、表面的重力加速度为g,则下列说法正确的是()A.飞船返回地球时受到的万有引力随飞船到地心的距离反比例增加B.飞船在轨运行速度一定大于7.9km/sC.飞船离地高度大于地球同步卫星离地高度D4.对于绕地球做匀速圆周运动的人造地球卫星,下列说法错误的是()A.卫星做匀速圆周运动的向心力是由地球对卫星的万有引力提供的B.轨道半径越大,卫星线速度越大C.轨道半径越大,卫星线速度越小D.同一轨道上运行的卫星,线速度大小相等5.如图所示的三个人造地球卫星,则说法正确的是()A .卫星可能的轨道为a 、b 、cB .卫星可能的轨道为a 、cC .同步卫星可能的轨道为a 、cD .同步卫星可能的轨道为a 、b6.如图所示,甲、乙为两颗轨道在同一平面内的地球人造卫星,其中甲卫星的轨道为圆形,乙卫星的轨道为椭圆形,M 、N 分别为椭圆轨道的近地点和远地点,P 点为两轨道的一个交点,圆形轨道的直径与椭圆轨道的长轴相等。

以下说法正确的是( )A .卫星乙在M 点的线速度小于在N 点的线速度B .卫星甲在P 点的线速度小于卫星乙在N 点的线速度C .卫星甲的周期等于卫星乙的周期D .卫星甲在P 点的加速度大于卫星乙在P 点的加速度7.“神舟十一号”飞船于2016年10月17日发射,对接“天宫二号”。

高考物理万有引力与航天试题(有答案和解析)

高考物理万有引力与航天试题(有答案和解析)

高考物理万有引力与航天试题(有答案和解析)一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。

着陆器到达距火星表面高度800m 时速度为60m/s ,在着陆器底部的火箭助推器作用下开始做匀减速直线运动;当高度下降到距火星表面100m 时速度减为10m/s 。

该过程探测器沿竖直方向运动,不计探测器质量的变化及火星表面的大气阻力,已知火星的质量和半径分别为地球的十分之一和二分之一,地球表面的重力加速度为g = 10m/s 2。

求:(1)火星表面重力加速度的大小; (2)火箭助推器对洞察号作用力的大小.【答案】(1)2=4m/s g 火 (2)F =260N 【解析】 【分析】火星表面或地球表面的万有引力等于重力,列式可求解火星表面的重力加速度;根据运动公式求解下落的加速度,然后根据牛顿第二定律求解火箭助推器对洞察号作用力. 【详解】(1)设火星表面的重力加速度为g 火,则2=M m Gmg r火火火2=M mGmg r 地地解得g 火=0.4g=4m/s 2(2)着陆下降的高度:h=h 1-h 2=700m ,设该过程的加速度为a ,则v 22-v 12=2ah 由牛顿第二定律:mg 火-F=ma 解得F=260N3.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)1v =【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R=,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为1v =4.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度0v 竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求: (1)行星的半径R ;(2)小石子能上升的最大高度. 【答案】(1)R = (2)202v h g =【解析】(1)对行星表面的某物体,有:2GMmmg R=-得:R =(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:2002v gh =-+得:202v h g=5.侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全部都拍摄下来,卫星在通过赤道上空时,卫星上的摄影像机至少应拍地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T .【答案】l =【解析】 【分析】 【详解】设卫星周期为1T ,那么:22214()()Mm m R h G R h T π+=+, ① 又2MmGmg R=, ② 由①②得1T =设卫星上的摄像机至少能拍摄地面上赤道圆周的弧长为l ,地球自转周期为T ,要使卫星在一天(地球自转周期)的时间内将赤道各处的情况全都拍摄下来,则12TlR T π⋅=. 所以23124()RT h R l T Tgππ+==. 【点睛】摄像机只要将地球的赤道拍摄全,便能将地面各处全部拍摄下来;根据万有引力提供向心力和万有引力等于重力求出卫星周期;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再根据弧长与圆心角的关系求解.6.利用万有引力定律可以测量天体的质量. (1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g ,地球半径为R ,引力常量为G .若忽略地球自转的影响,求地球的质量. (2)测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球A 和B ,如图所示.已知A 、B 间距离为L ,A 、B 绕O 点运动的周期均为T ,引力常量为G ,求A 、B 的总质量.(3)测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”.已知月球的公转周期为T 1,月球、地球球心间的距离为L 1.你还可以利用(1)、(2)中提供的信息,求月球的质量.【答案】(1)2gR G ;(2)2324L GT π;(3)2321214L gR GT G π-. 【解析】 【详解】(1)设地球的质量为M ,地球表面某物体质量为m ,忽略地球自转的影响,则有2Mm G mg R =解得:M =2gR G; (2)设A 的质量为M 1,A 到O 的距离为r 1,设B 的质量为M 2,B 到O 的距离为r 2, 根据万有引力提供向心力公式得:2121122()M M G M r L Tπ=, 2122222()M M GM r L T π=, 又因为L =r 1+r 2解得:231224L M M GTπ+=; (3)设月球质量为M 3,由(2)可知,2313214L M M GT π+=由(1)可知,M =2gR G解得:23213214L gR M GT Gπ=-7.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。

高中物理万有引力与航天题20套(带答案)含解析

高中物理万有引力与航天题20套(带答案)含解析

高中物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) 02v R h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度02R v g R v h=='4.我国预计于2022年建成自己的空间站。

高中物理万有引力与航天模拟试题含解析

高中物理万有引力与航天模拟试题含解析

高中物理万有引力与航天模拟试题含分析一、高中物理精讲专题测试万有引力与航天1. 如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程能够筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽视不计),经过轨道上 P 点时点火加快,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地址为圆轨道Ⅰ上的P 点,远地址为同步圆轨道Ⅲ上的Q 点.抵达远地址 Q 时再次点火加快,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为 R ,飞船质量为m,同步轨道距地面高度为h .当卫星距离地心的距离为 r 时,地球与卫星构成的系统的引力势能为E pGMm(取无量远处的引力势能为r零),忽视地球自转和喷气后飞船质量的変化,问:( 1)在近地轨道Ⅰ上运转时,飞船的动能是多少?( 2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能互相转变.已知 飞船在椭圆轨道Ⅱ上运转中,经过P 点时的速率为 v 1 ,则经过 Q 点时的速率 v 2 多大?( 3)若在近地圆轨道Ⅰ上运转时,飞船上的发射装置短暂工作,将小探测器射出,并使它能离开地球引力范围(即探测器能够抵达离地心无量远处),则探测器走开飞船时的速度v 3 (有关于地心)起码是多少?(探测器走开地球的过程中只有引力做功,动能转变为引力势能)【答案】( 1) GMm( 2) v 12 2GM2GM ( 3) 2GM2RR hR R【分析】【剖析】( 1)万有引力供给向心力,求出速度,而后依据动能公式进行求解; ( 2)依据能量守恒进行求解即可;( 3)将小探测器射出,并使它能离开地球引力范围,动能所有用来战胜引力做功转变为势能; 【详解】( 1)在近地轨道(离地高度忽视不计)Ⅰ 上运转时,在万有引力作用下做匀速圆周运动即: GmMm v 2R 2R则飞船的动能为E k 1 mv 2GMm ;22R(2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能互相转变.由能量守恒可知动能的减少许等于势能的増加量:1mv121m v22GMm(GMm )22R h R若飞船在椭圆轨道上运转,经过P 点时速率为v1,则经过Q点时速率为:v2v122GM2GM ;R h R(3)若近地圆轨道运转时,飞船上的发射装置短暂工作,将小探测器射出,并使它能离开地球引力范围(即探测器离地心的距离无量远),动能所有用来战胜引力做功转变为势能即: G Mm1mv32 R2则探测器走开飞船时的速度(有关于地心)起码是:v32GM .R【点睛】此题考察了万有引力定律的应用,知道万有引力供给向心力,同时注意应用能量守恒定律进行求解.2.某星球半径为R 6 106m,假定该星球表面上有一倾角为30 的固定斜面体,一质量为 m 1kg 的小物块在力F作用下从静止开始沿斜面向上运动,力 F 一直与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3,力F随位移 x 变化的规律3如图乙所示(取沿斜面向上为正方向).已知小物块运动12m时速度恰巧为零,万有引力常量 G 6.6710 11 N?m 2 /kg 2,求(计算结果均保存一位有效数字)(1)该星球表面上的重力加快度g 的大小;(2)该星球的均匀密度.【答案】 g6m / s2,【分析】【剖析】【详解】(1)对物块受力剖析如下图;假定该星球表面的重力加快度为 g ,依据动能定理,小物块在力 F 1 作用过程中有:F 1s 1fs 1 mgs 1 sin1 mv2 02N mgcos fN小物块在力 F 2 作用过程中有:F 2s 2fs 2 mgs 2 sin0 1 mv 22由题图可知: F 1 15N , s 1 6?m ; F 2 3?N , s 2 6?m 整理能够获得:(2)依据万有引力等于重力:,则:,,代入数据得3. 如下图是一种丈量重力加快度 g 的装置。

高中物理万有引力与航天试题(有答案和解析)

高中物理万有引力与航天试题(有答案和解析)

高中物理万有引力与航天试题(有答案和解析)一、高中物理精讲专题测试万有引力与航天1.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m Mm+L,(2)()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 RMr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:()()23342L L T M m GG m M π==++ 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R= a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以2abV V = (3)最远的条件22a bT T πππ-=解得t =3.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数33μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到: (2)根据万有引力等于重力:,则:,,代入数据得4.地球同步卫星,在通讯、导航等方面起到重要作用。

高中物理万有引力与航天试题(有答案和解析)

高中物理万有引力与航天试题(有答案和解析)
得:
设该星球质量M,对该星球表现质量为m1的物体有 ,解得
由 ,得:
6.在月球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t落回抛出点,已知该月球半径为R,万有引力常量为G,月球质量分布均匀。求:
(1)月球的密度;
(2)月球的第一宇宙速度。
【答案】(1) (2)
【解析】
【详解】
(1)根据竖直上抛运动的特点可知:
所以:g=
设月球的半径为R,月球的质量为M,则:
体积与质量的关系:
联立得:
(2)由万有引力提供向心力得
解得;
综上所述本题答案是:(1) (2)
【点睛】
会利用万有引力定律提供向心力求中心天体的密度,并知道第一宇宙速度等于 。
7.我国的火星探测器计划于2020年前后发射,进行对火星的科学研究.假设探测器到了火星上空,绕火星做匀速圆周运动,并测出探测器距火星表面的距离为h,以及其绕行周期T和绕行速率V,不计其它天体对探测器的影响,引力常量为G,求:
(2)根据黄金代换公式可以求出.
8.假设在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t小球落回抛出点,已知月球半径为R,引力常数为G.
(1)求月球的密度.
(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?
【答案】(1) (2)
【解析】
【详解】
(1)由匀变速直线运动规律:
(1)火星表面重力加速度的大小;
(2)火箭助推器对洞察号作用力的大小.
【答案】(1) (2)F=260N
【解析】
【分析】
火星表面或地球表面的万有引力等于重力,列式可求解火星表面的重力加速度;根据运动公式求解下落的加速度,然后根据牛顿第二定律求解火箭助推器对洞察号作用力.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理万有引力与航天模拟试题一、高中物理精讲专题测试万有引力与航天1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ=f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到: (2)根据万有引力等于重力:,则:,,代入数据得3.地球同步卫星,在通讯、导航等方面起到重要作用。

已知地球表面重力加速度为g ,地球半径为R ,地球自转周期为T ,引力常量为G ,求: (1)地球的质量M ;(2)同步卫星距离地面的高度h 。

【答案】(1) (2)【解析】 【详解】(1)地球表面的物体受到的重力等于万有引力,即:mg=G解得地球质量为:M=;(2)同步卫星绕地球做圆周运动的周期等于地球自转周期T ,同步卫星做圆周运动,万有引力提供向心力,由牛顿第二定律得:解得:;【点睛】本题考查了万有引力定律的应用,知道地球表面的物体受到的重力等于万有引力,知道同步卫星的周期等于地球自转周期、万有引力提供向心力是解题的前提,应用万有引力公式与牛顿第二定律可以解题.4.如图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内.已知地球自转角速度为0ω ,地球质量为M ,B 离地心距离为r ,万有引力常量为G ,O 为地球中心,不考虑A 和B 之间的相互作用.(图中R 、h 不是已知条件)(1)求卫星A 的运行周期A T (2)求B 做圆周运动的周期B T(3)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)02A T πω=(2)32B r T GMπ=(3)03t GM r ω∆=- 【解析】 【分析】 【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得: 32B r T GMπ= (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆= 解得:03t GM r ω∆=- 点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.5.我国预计于2022年建成自己的空间站。

假设未来我国空间站绕地球做匀速圆周运动时离地面的高度为同步卫星离地面高度的,已知同步卫星到地面的距离为地球半径的6倍,地球的半径为R ,地球表面的重力加速度为g 。

求: (1)空间站做匀速圆周运动的线速度大小;(2)同步卫星做圆周运动和空间站做圆周运动的周期之比。

【答案】(1) (2)【解析】【详解】(1)卫星在地球表面时,可知:空间站做匀速圆周运动时:其中联立解得线速度为:(2)设同步卫星做圆周运动和空间站做圆周运动的周期分别为T1和T2,则由开普勒第三定律有:其中:,解得:【点睛】本题考查了万有引力的典型应用包括开普勒行星运动的三定律、黄金代换、环绕天体运动的参量。

6.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。

量子卫星成功运行后,我国已首次实现了卫星和地面之间的量子通信,成功构建了天地体化的量子保密通信与科学实验体系。

假设量子卫星轨道在赤道平面,如图所示。

已知量子卫星的轨道半径是地球半径的m倍,同步卫星的轨道半径是地球半径的n倍,图中P点是地球赤道上一点,求量子卫星的线速度与P点的线速度之比。

【答案】【解析】试题分析:研究量子卫星和同步卫星绕地球做匀速圆周运动,根据万有引力提供向心力,求出两颗卫星的线速度;研究地球赤道上的点和同步卫星,具有相等角速度,求P 点的线速度,从而比较量子卫星的线速度与P 点的线速度之比。

设地球的半径为R ,对量子卫星,根据万有引力提供向心力则有:,又解得:对同步卫星,根据万有引力提供向心力则有:,又解得:同步卫星与P 点有相同的角速度,则有:解得:则量子卫星的线速度与P 点的线速度之比为【点睛】求一个物理量之比,我们应该把这个物理量先用已知的物理量表示出来,再根据表达式进行比较.向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用.7.据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星.假设该行星质量约为地球质量的6倍,半径约为地球半径的2倍.若某人在地球表面能举起60kg 的物体,试求:(1)人在这个行星表面能举起的物体的质量为多少? (2)这个行星的第一宇宙速度是地球第一宇宙速度的多少倍? 【答案】(1)40kg (23 【解析】 【详解】(1)物体在星体表面的重力等于物体受到的万有引力,又有同一个人在两个星体表面能举起的物体重力相同,故有:22GM m GM mmg m g R R ''行地地行地行===; 所以,2221260406R M m m kg kg M R '⋅⋅⨯行地行地===;(2)第一宇宙速度即近地卫星的速度,故有:22 GMm mvR R=所以,GMv R=;所以,1 632v M R v M R 行行地地地行===⋅⨯;8.今年6月13日,我国首颗地球同步轨道高分辨率对地观测卫星高分四号正式投入使用,这也是世界上地球同步轨道分辨率最高的对地观测卫星.如图所示,A 是地球的同步卫星,已知地球半径为R ,地球自转的周期为T ,地球表面的重力加速度为g,求:(1)同步卫星离地面高度h (2)地球的密度ρ(已知引力常量为G )【答案】(122324gR TR π(2)34g GR π 【解析】 【分析】 【详解】(1)设地球质量为M ,卫星质量为m ,地球同步卫星到地面的高度为h ,同步卫星所受万有引力等于向心力为()2224()R h mMG mR h T π+=+ 在地球表面上引力等于重力为2MmGmg R= 故地球同步卫星离地面的高度为22324gR T h R π=(2)根据在地球表面上引力等于重力2MmGmg R= 结合密度公式为233443gR M g G V GR R ρππ===9.某宇航员乘坐载人飞船登上月球后,在月球上以大小为v 0的速度竖直向上抛出一物体(视为质点),测得物体上升的最大高度为h ,已知月球的半径为R ,引力常量为G 。

(1)求月球的质量M ;(2)若登上月球前飞船绕月球做匀速圆周运动的周期为T ,求此时飞船距离月球表面的高度H 。

【答案】(1)2202v R M Gh = (2)H R = 【解析】 【详解】(1)设月球表面的重力加速度为g ,在竖直上抛运动过程中有:202v gh =由万有引力定律可知2GMmmg R= 解得:2202v RM Gh=(2)飞船绕月球做匀速圆周运动时有:222'4'GMm rm r Tπ=解得:r =飞船距离月球表面的高度H R =-10.2017年4月20日19时41分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。

22日12时23分,天舟一号货运飞船与天宫二号空间实验室顺利完成首次自动交会对接。

中国载人航天工程已经顺利完成“三步走”发展战略的前两步,中国航天空间站预计2022年建成。

建成后的空间站绕地球做匀速圆周运动。

已知地球质量为M ,空间站的质量为m 0,轨道半径为r 0,引力常量为G ,不考虑地球自转的影响。

(1)求空间站线速度v 0的大小;(2)宇航员相对太空舱静止站立,应用物理规律推导说明宇航员对太空舱的压力大小等于零;(3)规定距地球无穷远处引力势能为零,质量为m 的物体与地心距离为r 时引力势能为Ep=-GMmr。

由于太空中宇宙尘埃的阻力以及地磁场的电磁阻尼作用,长时间在轨无动力运行的空间站轨道半径慢慢减小到r 1(仍可看作匀速圆周运动),为了修正轨道使轨道半径恢复到r 0,需要短时间开动发动机对空间站做功,求发动机至少做多少功。

【答案】(1) 00GMv r =;(2)0;(3) 1022GMm GMm W r r =- 【解析】 【详解】解:(1)空间站在万有引力作用下做匀速圆周运动,则有:2000200GMm m v r r = 解得:00GMv r =(2)宇航员相对太空舱静止,即随太空舱一起绕地球做匀速圆周运动,轨道半径与速度和太空舱相同,此时宇航员受万有引力和太空舱的支持力,合力提供向心力设宇航员质量为m ,所受支持力为N F ,则有:2000200N GMm m v F r r -= 解得:0N F =根据牛顿第三定律,宇航员对太空舱的压力大小等于太空舱对宇航员的支持力,故宇航员对太空舱的压力大小等于零(3) 在空间站轨道由1r 修正到0r 的过程中,根据动能定理有:22011122W W mv mv +=-万 而:10()GMm GMmW r r =---万 21211mv GMm r r = 联立上述方程解得:1022GMm GMmW r r =-。

相关文档
最新文档