碳钢及其典型的金相
钢铁中常见的金相组织

钢铁中常见的金相组织区别简析钢铁中常见的金相组织1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。
晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在a-fe中的固溶体。
亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。
3.渗碳体-碳与铁形成的一种化合物。
在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。
过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。
铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。
4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。
珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小。
在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。
在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。
在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。
5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。
过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。
若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。
钢铁材料常见金相组织相图

钢铁材料常见金相组织简介在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:一、铁素体铁素体(ferrite,缩写FN,用F表示),纯铁在912℃以下为具有体心立方晶格。
碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。
这部分铁素体称为先共析铁素体或组织上自由的铁素体。
随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。
铁素体还是珠光体组织的基体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。
碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。
碳的质量分数为0.09%。
图1:铁素体二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。
TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。
碳素或合金结构钢中的奥氏体在冷却过程中转变为其他相,只有在高碳钢和渗碳钢渗碳高温淬火后,奥氏体才能残留在马氏体的间隙中存在,其金相组织由于不易受侵蚀而呈白色。
三、渗碳体渗碳体(cementite),指铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C型碳化物。
金相组织分析(碳钢的非平衡组织及常用金属材料显微组织观察)

实验三碳钢的非平衡组织及常用金属材料显微组织观察实验目的概述实验内容实验方法实验报告思考题一、实验目的1. 观察碳钢经不同热处理后的显微组织。
2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。
3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。
4. 了解上述材料的组织特征、性能特点及其主要应用。
TOP二、概述1. 碳钢热处理后的显微组织碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。
因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。
为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。
在缓慢冷时(相当于炉冷,见图2-3中的V1)应得到100%的珠光体;当冷却速度增大到V2。
时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至V4、V5,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体。
其中与C曲线鼻尖相切的冷却速度(V4)称为淬火的临界冷却速度。
转变类型组织名称形成温度范围/℃显微组织特征硬度(HRC)珠光体型相变珠光体(P)>650在400~500X金相显微镜下可以观察到铁索体和渗碳体的片层状组织~20(HBl80~200)索氏体(S)600~650在800一]000X以上的显微镜下才能分清片层状特征,在低倍下片层模糊不清25~35屈氏体(T)550~600用光学显微镜观察时呈黑色团状组织,只有在电子显徽镜(5000~15000X)下才能看出片层状35—40贝氏体型相变上贝氏体(B上)350~550在金相显微镜下呈暗灰色的羽毛状特征40—48下贝氏体(BT)230~350在金相显微镜下呈黑色针叶状特征48~58马氏体型相变马氏体(M)<230在正常淬火温度下呈细针状马氏体(隐晶马氏体),过热淬火时则呈粗大片状马氏体60~65亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,当奥氏体缓慢冷却时(相当于炉冷,如图2-3中V1:),转变产物接近平衡组织,即珠光体和铁素体。
碳钢材料金相

碳钢材料金相碳钢是一种由铁和碳组成的合金材料,其金相结构对于材料的性能和用途具有重要影响。
金相分析是研究材料金相结构的方法之一,通过显微镜观察和分析材料的金相组织特征,可以了解材料的晶体结构、相含量、相分布等信息,从而评估材料的性能和质量。
碳钢的金相组织主要由铁和碳组成,其中碳的含量在0.02%-2.11%之间。
根据碳钢中碳的含量不同,可以将碳钢分为低碳钢、中碳钢和高碳钢三类。
低碳钢的碳含量较低,具有良好的可焊性和可塑性,适用于制造冷冲压件、焊接结构件等;中碳钢的碳含量适中,具有较高的强度和硬度,适用于制造机械零件和工具;高碳钢的碳含量较高,具有较高的硬度和耐磨性,适用于制造刀具和弹簧等。
金相分析中常用的方法包括光学显微镜观察、腐蚀显微镜观察和电子显微镜观察等。
光学显微镜是最常用的金相观察工具,通过放大样品的金相组织,可以清晰地观察到晶粒的形状、大小和分布情况,进而判断材料的组织类型和相含量。
腐蚀显微镜是一种特殊的显微镜,可以通过对样品进行腐蚀处理,使不同组织的相在显微镜下呈现不同的颜色,从而更清晰地观察到材料的金相结构。
电子显微镜则可以进一步放大样品的金相组织,观察到更细微的细节。
在观察碳钢的金相组织时,可以发现晶粒的形状和大小是一个重要的特征。
碳钢的晶粒主要有铁素体和珠光体两种组织。
铁素体是一种由纯铁组成的组织,具有良好的可塑性和韧性,而珠光体则是由铁和碳组成的固溶体,具有较高的硬度和强度。
碳钢中的晶粒大小与材料的热处理工艺和碳含量有关,通常情况下,经过淬火处理的碳钢晶粒较小,而经过退火处理的碳钢晶粒较大。
除了晶粒的形状和大小,碳钢的金相组织还包括非金属夹杂物和相分布情况。
夹杂物是指存在于金属中的非金属颗粒,如氧化物、硫化物等。
夹杂物会对碳钢的性能产生负面影响,降低其强度和韧性。
相分布是指不同相在材料中的分布情况,对于碳钢而言,相分布的均匀性决定了材料的均匀性和稳定性。
金相分析在材料科学和工程领域具有广泛的应用。
金相组织分析(碳钢的非平衡组织及常用金属材料显微组织观察)

实验三碳钢的非平衡组织及常用金属材料显微组织观察实验目的概述实验内容实验方法实验报告思考题一、实验目的1. 观察碳钢经不同热处理后的显微组织。
2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。
3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。
4. 了解上述材料的组织特征、性能特点及其主要应用。
TOP二、概述1. 碳钢热处理后的显微组织碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。
因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。
为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。
在缓慢冷时(相当于炉冷,见图2-3中的V1)应得到100%的珠光体;当冷却速度增大到V2。
时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至V4、V5,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体。
其中与C曲线鼻尖相切的冷却速度(V4)称为淬火的临界冷却速度。
转变类型组织名称形成温度范围/℃显微组织特征硬度(HRC)珠光体型相变珠光体(P)>650在400~500X金相显微镜下可以观察到铁索体和渗碳体的片层状组织~20(HBl80~200)索氏体(S)600~650在800一]000X以上的显微镜下才能分清片层状特征,在低倍下片层模糊不清25~35屈氏体(T)550~600用光学显微镜观察时呈黑色团状组织,只有在电子显徽镜(5000~15000X)下才能看出片层状35—40贝氏体型相变上贝氏体(B上)350~550在金相显微镜下呈暗灰色的羽毛状特征40—48下贝氏体(BT)230~350在金相显微镜下呈黑色针叶状特征48~58马氏体型相变马氏体(M)<230在正常淬火温度下呈细针状马氏体(隐晶马氏体),过热淬火时则呈粗大片状马氏体60~65亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,当奥氏体缓慢冷却时(相当于炉冷,如图2-3中V1:),转变产物接近平衡组织,即珠光体和铁素体。
钢铁中常见的金相组织1

钢铁中常见的金相组织1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。
晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在a-fe中的固溶体。
亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。
3.渗碳体-碳与铁形成的一种化合物。
在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。
过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。
铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。
4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。
珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小。
在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。
在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。
在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。
5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。
过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。
若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。
铸钢的金相组织及检验

铸钢的金相组织及检验一、铸造碳钢的金相组织及检验(一)铸造碳钢的显微组织1.铸态组织为铁素体+珠光体+魏氏组织。
如图8-1、图8-2。
图8-1 ZG230-450铸钢铸态组织(100×) 图8-2 ZG310-570铸钢铸态组织(100×)铸态组织的形貌和组成相的含量与钢的碳含量有关。
碳含量越低的铸钢,铁素体含量越多,魏氏组织的针状越明显、越发达,数量也多。
随铸钢碳含量的增加,珠光体量增多,魏氏组织中的针状和三角形的铁素体量减少,针齿变短,量也减少,而块状和晶界上的网状铁素体粗化,含量也增多。
若存在严重的魏氏组织,或存在大量低熔点非金属夹杂物沿晶界呈断续网状分布,将使铸钢的脆性显著增加。
2.退火组织为铁素体+珠光体。
铁素体呈细等轴晶。
珠光体分布形态随钢的碳含量增加而变化。
随钢的碳含量增加,珠光体呈断续网状分布→网状分布→珠光体与铁素体均匀分布,其含量也不断增多。
若退火组织中存在残留的铸态组织或组织粗化均属于不正常组织。
3.正火组织为铁素体+珠光体,分布较均匀,如图8-3。
与退火组织相比较,正火组织的组成相更细、更均匀,珠光体含量稍多。
若存在残留铸态组织或组织粗化均属不正常组织。
4.调质组织 ZG270-500以上牌号的铸造碳钢可进行调质处理,组织为回火索氏体,见图8-4。
若出现未溶铁素体或粗大的回火索氏体属不正常组织。
图8-3 ZG230-450 铸钢正火组织(100 ×) 图8-4 ZG35CrMo铸钢调质组织(650×)5.几种常用铸造碳钢的组织见表8-1,表8-1 常用铸造碳钢的组织铸造碳钢 ZG200-400 ZG230-450 ZG270-500 ZG310-570 ZG340-640显微组织铸态魏氏组织+块状铁素体+珠光体珠光体+魏氏组织+铁素体珠光体+铁素体部分铁素体呈网状分布铁素体呈网状分布退火铁素体+珠光体珠光体+铁素体珠光体呈断续网状分布珠光体呈网状分布正火铁素体+珠光体珠光体+铁素体调质回火索氏体(二)铸造碳钢的质量检验铸造碳钢多数用于一般工程,金相检验按照GB/T 8493-1987《一般工程用铸造碳钢金相》标准进行。
碳钢的热处理后硬度测定以及金相分析实验指导书

实验七碳钢的热处理及硬度测定以及金相分析实验项目名称:碳钢的热处理及硬度测定、金相分析实验项目性质:综合实验所属课程名称:金属材料与热处理实验计划学时:4一、实验目的(1)熟悉碳钢的基本热处理(退火、正火、淬火及回火)工艺方法。
(2)了解含碳量、加热温度、冷却速度等因素与碳钢热处理后性能的关系。
(3)分析淬火及回火温度对钢性能的影响。
(4)学会洛氏硬度计的使用。
(5)学会采用不同的热处理工艺,将会得到不同的组织结构,从而使钢的性能发生变化。
二、实验内容和要求热处理是一种很重要的金属加工工艺方法,热处理的主要目的是改善钢材性能,提高工件使用寿命。
钢的热处理工艺特点是将钢加热到一定的温度,经一定时间的保温,然后以某种速度冷却下来,通过这样的工艺过程能使钢的性能发生改变。
热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织发生了质的变化。
采用不同的热处理工艺过程,将会使钢得到不同的组织结构,从而获得所需要的性能。
普通热处理的基本操作有退火、正火、淬火及回火等。
热处理操作中,加热温度、保温时间和冷却方式是最重要的三个关键工序,也称热处理三要素。
正确选择这三种工艺参数,是热处理成功的基本保证。
Fe-FeC 相图和C-曲线是制定碳钢热处理工艺的重要依据。
1、加热温度(1)退火加热温度:完全退火加热温度,适用于亚共析钢,Ac+(30~50℃);3球化退火加热温度,适用于共析钢和过共析钢,Ac 1+(30~50℃)。
(2)正火加热温度:对亚共析钢是Ac 3+(30~50℃);过共析钢是Ac cm +(30~50℃),也就是加热到单相奥氏体区。
退火和正火的加热温度范围见图2-1所示。
(3)淬火加热温度:对亚共析钢是Ac 3+(30~50℃);对共析钢和过共析钢是Ac 1+(30~50℃),见图2-2。
钢的临界温度Ac 1、Ac 3及Ac cm ,在热处理手册或合金钢手册中均可查到。
再经计算可求出钢的热处理温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢中典型金相组织
屈氏体:
成分:C 0.81%, Si 0.25%, Mn 0.36%, P 0.014%, S 0.009% 热处理:850℃ 水淬后,350℃ 回火
钢中典型金相组织
索氏体:
成分:C 0.81%, Si 0.18%, Mn 0.33%, P 0.022%, S 0.014% 热处理:820℃ 水淬;580℃回 火
热处理: 930℃退火
钢中典型金相组织
珠光体:
成分:C 0.86%, Si 0.17%, Mn 0.22%, P 0.011%, S 0.004% 热处理: 950℃退火
钢中典型金相组织
珠光体+ 网状渗碳体:
成分:C 1.13%, Si 0.17%, Mn 0.45%, P 0.022%, S 0.009%
碳钢
按含碳量可以把碳钢分为低碳钢(WC ≤ 0.25%),中碳钢(WC0.25%——0.6%)和高碳 钢(WC>0.6%) 按磷、硫含量可以把碳素钢分为普通碳素钢(含 磷、硫较高)、优质碳素钢(含磷、硫较低)和 高级优质钢(含磷、硫更低) 一般碳钢中含碳量较高则硬度越高,强度也越高, 但塑性较低。
钢中典型金相组织
边部
过渡区
心部
钢中典型金相组织
铁素体:
成分:C 0.03%, Si 0.33%, Mn 0.22%, P 0.014%, S 0.012% 热处理:950℃退火
钢中典型金相组织
珠光体+铁素体
成分:C 0.44%, Si 0.19%, Mn 0.73%, P 0.022%, S 0.011%
热处理:900℃退火
钢中典型1.13 %, Si 0.17%, Mn 0.45%, P 0.022%, S 0.009% 热处理:780℃ 退火1小时后徐 冷
钢中典型金相组织
马氏体:
成分:C 0.81%, Si 0.25%, Mn 0.36%, P 0.014%, S 0.009%
钢中典型金相组织
上贝氏体:
成分:C 0.84%, Si 0.29%, Mn 0.40%, P 0.012%, S 0.008% 热处理:930℃奥 氏体化后放入 400℃盐浴炉中等 温处理10s后水冷
钢中典型金相组织
下贝氏体:
成分:C 0.74%, Si 0.44%, Mn 0.76%, P 0.021%, S 0.058% 热处理:880890℃奥氏体化后 放入290-300℃盐 浴炉中等温处理15 分钟后水冷
钢中典型金相组织
魏氏组织:
成分:C 0.33%, Si 0.17%, Mn 0.74%, P 0.027%, S 0.015% 热处理:从 1280℃加热1小 时后空冷
碳钢
碳钢主要指力学性能取决于钢中的碳含量,而一般 不添加大量的合金元素的钢,有时也称为普碳钢或 碳素钢。
碳钢也叫碳素钢,含碳量WC小于2%的铁碳合金。 碳钢除含碳外一般还含有少量的硅、锰、硫、磷 按用途可以把碳钢分为碳素结构钢、碳素工具钢和 易切削结构钢三类。碳素结构钢又分为建筑结构钢 和机器制造结构钢两种。
钢中典型金相组织
屈氏体+马氏体
成分:C 0.41%, Si 0.25%, Mn 0.73%, P 0.015%, S 0.011% 热处理:850℃油 冷
钢中典型金相组织
马氏体+铁素体
成分:C 0.33%, Si 0.17%, Mn 0.74%, P 0.027%, S 0.015% 热处理:从950℃ 炉冷到750℃后水 淬
碳 ( C)
钢中典型金相组织
渗碳组织
成分:C 0.16%, Si 0.26%, Mn 0.53%, P 0.018%, S 0.019% 热处理:在890℃ 加热2小时固体渗 碳后徐冷 渗碳层全貌
钢中典型金相组织
边部
过渡区
心部
钢中典型金相组织
脱碳组织
成分:C 0.81%, Si 0.18%, Mn 0.33%, P 0.022%, S 0.014% 热处理:在氧化 铝中960℃加热 2.5小时炉冷 脱碳层全貌
钢中典型金相组织
残留奥氏体:
成分:C 1.13%, Si 0.17%, Mn 0.45%, P 0.022%, S 0.009% 热处理:1030℃ 油冷
钢中典型金相组织
马氏体+球状 渗碳体:
成分:C 1.13 %, Si 0.17%, Mn 0.45%, P 0.022%, S 0.009% 热处理:球化珠光 体组织加热到 800℃水冷, 100℃回火
碳钢及其典型的金相组织
辽宁科技大学材冶学院 李娜
碳(C)
钢中含碳量增加,屈服点和抗拉强度升高, 但塑性和冲击性降低,当碳量超过0.23%时, 钢的焊接性能变坏,因此用于焊接的低合 金结构钢,含碳量一般不超过0.20%。碳量 高还会降低钢的耐大气腐蚀能力,在露天 料场的高碳钢就易锈蚀;此外,碳能增加 钢的冷脆性和时效敏感性。